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Abstract

Motivation: Sequence models based on deep neural networks have achieved state-of-the-art performance on regula-
tory genomics prediction tasks, such as chromatin accessibility and transcription factor binding. But despite their high
accuracy, their contributions to a mechanistic understanding of the biology of regulatory elements is often hindered
by the complexity of the predictive model and thus poor interpretability of its decision boundaries. To address this, we
introduce seqgra, a deep learning pipeline that incorporates the rule-based simulation of biological sequence data and
the training and evaluation of models, whose decision boundaries mirror the rules from the simulation process.

Results: We show that seqgra can be used to (i) generate data under the assumption of a hypothesized model of
genome regulation, (ii) identify neural network architectures capable of recovering the rules of said model and (iii)
analyze a model’s predictive performance as a function of training set size and the complexity of the rules behind
the simulated data.

Availability and implementation: The source code of the seqgra package is hosted on GitHub (https://github.com/gif
ford-lab/seqgra). seqgra is a pip-installable Python package. Extensive documentation can be found at https://
kkrismer.github.io/seqgra.

Contact: gifford@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the last 5–10 years, neural networks were successfully applied
to make large gains on a wide range of tasks in such diverse fields as
computer vision, computer audition, natural language processing
and robotics. While the structure and the semantics of the data used
to train and evaluate neural networks can be vastly different, the
core learning algorithms are almost always the same and the neural
network architectures are often composed of similar building
blocks. This is also true for the field of genomics, and computational
biology as a whole, where deep neural networks are trained on data
that are obtained experimentally using functional genomics assays
such as DNase-seq (Boyle et al., 2008), ATAC-seq (Buenrostro
et al., 2013) and ChIP-seq. Motivated by their success, architectural
building blocks commonly seen in these networks, such as convolu-
tional layers, recurrent layers, batch normalization, dropout and
skip connections (Kelley et al., 2016; Nair et al., 2019; Quang and
Xie, 2016; Zhou and Troyanskaya, 2015), have been imported from
computer vision and other fields. This cross-fertilization between

fields and the general applicability of the building blocks of deep
learning has more recently been seen in the adoption of transformer-

based architectures for image classification tasks in computer vision
and protein prediction tasks in biology. However, most datasets
used to train supervised deep learning models in biology are differ-

ent from datasets in computer vision and natural language process-
ing in two ways. (i) Biological problems contain noisy input and
noisy labels in that not only is there substantial intraclass variability
and noise in the input, e.g. images labeled as cat contain cats that

vary in terms of breed, color, position, pose, etc., but also a signifi-
cant fraction of examples are mislabeled, i.e. images labeled as cat
are empty or contain dogs. This is rare in computer vision datasets,
but common in datasets derived from functional genomics assays.

(ii) Feature attribution or other model explanation methods are not
human-interpretable. We understand images of cats in the sense that
we know which parts of the image contain information that is rele-

vant for the classification (because they belong to the cat) and which
parts are irrelevant (because they belong to the background). This
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intuitive understanding is necessary when attribution methods such
as saliency maps are applied to assess a model’s ability to base pre-
dictions on relevant parts of the input. In biology, examples often in-
clude DNA sequence windows of various widths, most commonly
1000 base pairs (bp), which, unlike images of cats, are not human-
readable. This biology-specific issue of inherently opaque examples
exacerbates the general interpretability issue of deep neural net-
works, whereas the lack of high-quality datasets contributes to the
reproducibility crisis and makes it more difficult to compare archi-
tectures, as they are often only evaluated on a custom dataset.

The method introduced here, seqgra, attempts to improve the
process by which neural network architectures are chosen for specif-
ic genomics prediction tasks and provides a framework to evaluate
model interpretation methods. Its fully reproducible pipeline pro-
vides a means to (i) simulate data based on a predefined set of prob-
abilistic rules, (ii) create and train models based on a precise
description of their architecture, loss, optimizer and training process
and (iii) evaluate the trained models using conventional test set met-
rics as well as an array of feature attribution methods. These feature
attribution methods in combination with simulated data and thus
perfect ground truth enable an analysis of the model’s decision
boundaries and how well they capture the underlying rules of the
data generation process from step 1. Utilizing this framework, mod-
els are not only evaluated based on their predictive performance, but
also on the ability to recover the vocabulary (e.g. specific transcrip-
tion factor binding site motifs) and grammar (e.g. spacing con-
straints between interacting transcription factors) of the dataset,
while assigning little weight to confounding factors and idiosyncrat-
ic noise.

Efforts in this area include Kipoi (Avsec et al., 2019), a reposi-
tory for trained genomics models, and Selene (Chen et al., 2019), a
framework for biological sequence-based deep learning models that
supports training of PyTorch models, model evaluation with con-
ventional test set metrics (ROC and precision–recall curves), and
variant effect prediction and in silico mutagenesis of trained models.
To our knowledge none of the existing methods offer functionality
for simulating data using a general framework of probabilistic rules,
nor do they incorporate feature attribution methods.

Furthermore, this simulation-based framework can also serve as
a means to investigate the strengths and weaknesses of various fea-
ture attribution methods across different neural network architec-
tures that are trained on datasets with varying degrees of
complexity. With simulated and thus perfect data, the idiosyncrasies
of attribution methods can more easily be exposed.

2 Materials and methods

2.1 Alphabet distribution for grammars
For all grammars discussed in this paper, we used the natural nu-
cleotide distribution of the human genome, 29.565% adenine (A),
20.435% cytosine (C), 20.435% guanine (G) and 29.565% thymine
(T) (Piovesan et al., 2019).

2.2 Motif database
We used HOMER motifs for all grammar sequence elements that
were based on transcription factor binding site motifs. These motifs
were obtained by analyzing data from publicly available ChIP-seq
experiments (Heinz et al., 2010).

2.3 Feature importance evaluators
While conventional test set metrics, such as ROC curves and preci-
sion–recall curves, assess model performance based on a set of exam-
ples (e.g. the test set), feature importance evaluators (FIEs) quantify
the contribution of each input feature to the model’s prediction. In the
context of seqgra, FIEs are used to assess what we call grammar or vo-
cabulary recovery, the degree to which a model was able to align its
decision boundaries with the rules of the grammar that was used to
simulate the data it was trained on. This is possible because for simu-
lated data we not only know the ground truth label for each example,

but also which positions are part of the background and thus contain
no information about the class label, and which positions were altered
by a grammar rule and thus do contain information about the class
label. These position-level annotations (background positions, gram-
mar positions) are provided for all simulated examples.

More formally, FIEs take a model f(x), a target y and an example
xi of width n, and return z, an n-dimensional vector that contains
the attribution value (also known as importance, relevance, contri-
bution) of each input position to model f(x) predicting target y.
Please note that n is the sequence length of the example, not the
number of features. For instance, if the input to the model is a
150 nt DNA sequence, xi is a 150 by 4 matrix (one-hot encoded),
containing 600 features, but its width n¼150. Feature attribution
values in seqgra are grouped and reported at the position level, not
the input feature level.

Attribution values are visualized with so-called grammar agree-
ment plots, which are heatmaps depicting attributions and position-
level annotations of several examples. The plots encode the attribu-
tion values in the color luminosity, where lighter colors indicate low
values (low feature importance) and dark colors indicate high values
(high feature importance). The position-level annotations are
encoded in the color hue, with grammar positions in green and back-
ground positions in red.

2.4 Gradient-based feature importance evaluators
This large class of FIEs uses backpropagation to calculate the partial
derivatives of the output, fyðxÞ, with respect to the input, xi. seqgra
includes seven gradient-based FIEs off-the-shelf, whose implementa-
tions are based on code by Wang (2018).

The most basic FIE, raw gradient (Simonyan et al., 2014), just
returns the gradient with respect to the input example xi

zRG ¼
@fyðxÞ
@xi

; (1)

or short rfyðxiÞ, where fjð�Þ is the activation of the target neuron in
the output layer, e.g. class j for multiclass classification tasks.

The absolute gradient method or saliency is defined as

zS ¼ jrfyðxiÞj; (2)

where jxj applies the element-wise absolute value operation to vec-
tor x.

Gradient-x-input (Baehrens et al., 2010; gradient times input) is
defined as

zGI ¼ xirfyðxiÞ: (3)

Integrated Gradients (Sundararajan et al., 2017) take the aver-
age of multiple (here, K¼100) gradients evaluated along the linear
path from the baseline x0 (which in seqgra is the zero vector) to the
input example xi. The method is defined as

zIG ¼
1

K

XK

k

rfy
k

K
xi

� �
: (4)

seqgra also supports gradient-based methods that alter the way the
gradient is obtained using backpropagation, namely Guided
Backpropagation (Springenberg et al., 2015), Deconvolution (Zeiler
and Fergus, 2014) and DeepLIFT (Shrikumar et al., 2017). The
details of these methods are beyond the scope of this work.

2.5 Model-agnostic feature importance evaluators
Model-agnostic FIEs do not require access to the gradients and
make no assumptions about the structure of the model, hence the
name. They rely solely on the ability to evaluate fyðxÞ, for various
altered versions of x.

Sufficient input subsets (SIS) (Carter et al., 2019) is a
perturbation-based method that identifies subsets of input features
that are sufficient to keep fyðxÞ > s, i.e. if all other features are
masked, the class prediction does not change (is still above some
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threshold s). Unlike gradient-based FIEs, which return a real-valued
vector of feature attributions, SIS returns a binary vector, indicating
for each feature whether it is part of an SIS or not.

2.6 Hardware infrastructure
Models presented in this paper were trained on three compute nodes
with a total of six CPUs (2� Intel Xeon E5-2630 v4, 2� Intel Xeon
Gold 6138, 2� Intel Xeon Gold 6240), 26 GPUs (8� NVIDIA
GeForce GTX 1080 Ti with 11 GB GDDR5X, 10� NVIDIA
GeForce RTX 2080 Ti with 11 GB GDDR6 and 8� NVIDIA Titan
RTX with 24 GB GDDR6), and a total of 833 GB of main memory.
The total GPU time (for training and evaluation) was roughly 12
GPU months.

2.7 Software infrastructure
All seqgra data presented in this paper was obtained on machines
running Ubuntu 18.04.3 LTS, CUDA 10.1, cuDNN 7.6.5, Python
3.8, NumPy 1.19.2, TensorFlow 2.2.0, PyTorch 1.7.0 and R 4.0.

3 Results

3.1 seqgra provides a reproducible, simulation-based

framework for neural network architecture evaluation
The method we describe in this paper (seqgra) generates synthetic
biological sequence data according to predefined probabilistic rules
in order to either (i) evaluate neural network architectures trained
on these datasets or (ii) compare feature attribution methods in a
setting with perfect dense (position-specific) labels. In the former
scenario, the result would be a neural network architecture that—
when trained on datasets generated from a similar set of rules—has
high predictive performance and decision boundaries that closely re-
flect those set of generative rules. The goal of the latter approach is
to investigate the interplay between grammar complexity and model
complexity and how they influence feature attribution methods.

A dataset in the context of seqgra, whether obtained by simula-
tion or experiment, is always divided into three subsets, training set,
validation set and test set. Each of the subsets comprises a number
of supervised examples, which are (x, y, a)-triplets. Here, the input
variable x is a biological sequence (DNA, RNA, protein) of fixed or
variable length, also referred to as sequence window or features; y is
the target variable, the condition this example belongs to (e.g. cell
type), which is either a mutually exclusive class or a non-mutually
exclusive label, for multiclass classification tasks or multilabel classi-
fication tasks, respectively; and a is the positional annotation of the
example, denoting for each position in x whether it is part of the
grammar or part of the background. Grammar positions contain in-
formation related to y and are therefore important for classification,
whereas background positions do not and are thus irrelevant for
classification.

The core functionality of seqgra can be broken down into three
components: (i) simulator, (ii) learner and (iii) evaluator. Each com-
ponent corresponds to a distinct step in the pipeline depicted in
Figure 1A.

In step 1, the simulator generates a synthetic dataset according
to the specifications laid out in the data definition, a document that
contains a precise description of the generated data, from the back-
ground nucleotide distribution to the set of probabilistic rules that
determines how information about the condition y (label, class) is
encoded in the sequence window x. This set of probabilistic rules is
also referred to as grammar or sequence grammar throughout this
manuscript (hence the name seqgra), and although related to formal
grammars, seqgra’s probabilistic rules are not expressed as and not
equivalent to production rules in the context of formal language
theory.

Schematic depictions of six toy datasets, generated from prob-
abilistic rules of varying complexity, are shown in Figure 1B. In each
case, the dataset contains examples belonging to one of four classes
and the probabilistic rules determine how information about the
class y (in this case, the cell type) is encoded in the sequence window

x. The ability to recover this relationship during training is impera-
tive for the model’s predictive performance. The sequence windows
of the examples are shown as gray bars with colored spots, where
background positions are shown in gray and grammar positions are
shown in color. In the first example, each of the four cell types can
easily be identified by the presence of a class-specific k-mer at the
center of the sequence window, a relationship that, unsurprisingly,
can be learned perfectly (i.e. close to an ROC AUC of 1.0) and effi-
ciently (i.e. with few training examples) by most neural network
architectures. Since a set of rules as simple as the one used in ex-
ample 1 will almost always be an inadequate description of any bio-
logical process, seqgra allows for various ways to increase the
complexity. Example 2 represents a small step up in complexity by
replacing the fixed, class-specific k-mer with a class-specific position
weight matrix (PWM), which is a common representation of natur-
ally occurring sequence elements, such as binding sites for a tran-
scription factor. Another small step up in complexity is example 3,
where the PWM is placed randomly within in sequence window. In
example 4, none of the PWMs is class-specific, only a combination
of PWMs. Rules like these could be used to model cell type specific
chromatin accessibility that is dependent on the interaction between
transcription factors. Examples 5 and 6 encode class information in
the relative position of PWMs instead of their presence or absence,
with example dataset 5 using class-specific order constraints and ex-
ample dataset 6 class-specific spacing constraints.

Once the synthetic dataset is generated, it is used by the learner
component in step 2 to train a neural network model. It is important
to note that the learner only has access to x and y of the (x, y, a) ex-
ample triplets, and the positional annotations a are only utilized in
step 3. Analogous to the role of the data definition for the simulator
in step 1, the model definition serves as a blueprint for the learner
by providing a precise description of the neural network architec-
ture, the loss function, the optimizer and hyperparameters of the
training process, and thus ensuring a reproducible model creation,
training and serving process for both PyTorch and TensorFlow
models.

In step 3, the fully trained model from step 2 is then evaluated
with the help of an array of conventional test set metrics and FIEs,
such as Integrated Gradients (Sundararajan et al., 2017) and SIS
(Carter et al., 2019).

As a means to illustrate the various inputs and outputs of this
pipeline, we prepared the results of a single seqgra analysis in
Supplementary Figure S2 (using DNA sequences as input) and
Supplementary Figure S3 (using protein sequences as input) and de-
scribe the process in Supplementary Section S1.7.

3.2 seqgra-enabled ablation analysis reveals most

efficient neural network architecture
Ablation, a technique widely used in neuroscience to determine the
functions of brain regions by removing them one by one, has been
used similarly to identify the relevant components of an artificial
neural network (Lillian et al., 2018; Meyes et al., 2019). We per-
formed ablation analysis to determine the effects of dropout
(Srivastava et al., 2014) and batch normalization (Ioffe and Szegedy,
2015) on the predictive performance and grammar recovery of a
basic neural network architecture with two hidden layers, a convo-
lutional layer with 10 21-nt wide filters, followed by a dense layer
with 5 hidden units, and dropout or batch normalization operations
after each layer. Models were trained on binary classification data-
sets generated by grammars using class-specific HOMER motifs (see
schematic in Fig. 2A), class-specific order of HOMER motifs
(Fig. 2B) and class-specific spacing constraints between HOMER
motifs (Fig. 2C). Test set precision–recall curve AUCs are shown for
all models across all grammars in Figure 2D. Unsurprisingly, the
predictive performance of all architectures increases with dataset
size, and all architectures approach a PR AUC of 1.0 for sufficiently
large datasets. But this analysis reveals a striking difference between
the neural network architectures in terms of their efficiency, i.e. how
many training examples are required to reach an AUC of approxi-
mately 1.0. On the grammars tested here, batch normalization had a
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negative effect on efficiency, requiring up to 100 000 examples more
to converge than architectures without the operation. The architec-
ture with dropout after each hidden layer was the most efficient and

highest performing, both in terms of predictive performance and
grammar recovery (i.e. the model’s propensity to classify examples

based on grammar positions) as shown in Figure 2E.

3.3 Deepsea dominates comparison of popular

genomics deep learning architectures
Furthermore, we compared three popular neural network architec-

tures used in the field of genomics, Basset (Kelley et al., 2016),
ChromDragoNN (Nair et al., 2019) and DeepSEA (Zhou and
Troyanskaya, 2015). All three architectures were devised with func-

tional genomics datasets in mind and were originally trained on mul-
tilabel classification datasets obtained from numerous DNase-seq

assays, with ChromDragoNN also utilizing RNA-seq and DeepSEA
ChIP-seq data. With over 4 million (Basset), over 6 million
(DeepSEA) and over 20 million (ChromDragoNN) trainable param-

eters, all three can be considered high-capacity models. The three
architectures make use of commonly used building blocks such as
convolutional, followed by dense layers (all three), max pooling and

dropout operations (all three), ReLU activation functions (all three),
batch normalization (Basset and ChromDragoNN) and skip connec-
tions (ChromDragoNN). Input and output layers were adjusted to
fit the prediction task and architectures were trained on simulated
datasets from scratch without pretraining on their original datasets.

We used the area under the microaveraged precision–recall curve
to evaluate the test set predictive performance on four multiclass
classification tasks (with 2, 10, 20 and 50 classes) and three or four
grammars each, with a sequence window of 1000 nucleotides. The
results are shown in Supplementary Figure S6A for binary classifica-
tion, and Supplementary Figures S6B, S6C and S6D for multiclass
classification with 10, 20 and 50 classes, respectively. The HOMER
motifs used by the grammars presented here are listed in
Supplementary Tables S2–S5. Each panel contains precision–recall
AUCs of models trained on datasets generated by one grammar,
using five different random seeds for simulation (error bars) and 19
different dataset sizes. The DeepSEA architecture exhibited an at
times substantially higher predictive performance than Basset and
ChromDragoNN and was the highest performing architecture on all
tested datasets. While DeepSEA is the preferred architecture on
datasets derived from the grammars we tested, this is not necessarily
true for datasets with other grammars or experimentally obtained

Fig. 1. A framework for simulation-based evaluation of neural network architectures. (A) Schematic of the three main components: First, a simulator generates synthetic data

according to the rules and specifications defined in the data definition file. Second, a learner creates a neural network model whose architecture and hyperparameters are speci-

fied in the model definition file, and trains it on the synthetic data from step 1. And third, the trained model is evaluated in terms of predictive performance and its ability to re-

cover the rules specified in the data definition file. (B) The data definition specifies the basic properties of the synthetic data, including the alphabet (e.g. DNA, RNA, protein)

and its distribution, as well as condition-specific rules (the grammar), which determine how information about the label y is encoded in the input x. (C) The model definition

contains all information required to create and train the model. (D) A schematic of six simulated toy datasets for multiclass classification, where the classes y correspond to cell

types and the input x are sequence windows (depicted as gray bars) that encode information about the class y at certain positions in x (colored areas). The rules that determine

how this information is encoded range from basic (cell type specific k-mer at fixed position) to complex (non-specific combinations of PWMs with cell type specific spacing

constraints)
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data. ChromDragoNN, e.g. is intended to be also trained on RNA-
seq data, which we did not provide. Interestingly, we observed that
high-capacity architectures such as those tested here perform better
on datasets generated by grammars that include interactions, specif-
ically interactions that encode the class label in the order or spacing
of the interacting sequence elements. This is not the case for small-
scale architectures with less than 100 000 trainable parameters,
which, as expected, do better on grammars without interactions,
where the class label is encoded in the presence of class-specific se-
quence elements.

3.4 High predictive performance of simulation-vetted

neural network architecture recapitulated with ChIP-seq

data
In this section, we address the question of whether neural network
architectures that perform well on simulated data also succeed on

data obtained experimentally. We decided to model the well-known
hetero-dimeric pair of transcription factors SOX2 and POU5F1,
whose spacing constraints were previously characterized (Chew
et al., 2005; Guo et al., 2012). To that end, we used the HOMER
motifs SOX2_HUMAN.H11MO.0.A and PO5F1_HUMAN.
H11MO.1.A as sequence elements in the data definition. We also
included spacing constraints (0–3 bp between SOX2 and PO5F1
motifs). Figure 3A shows a schematic depiction of the analysis.

The experimental dataset was based on two ChIP-seq assays,
which targeted the two transcription factors. The preprocessed data
were obtained from the Cistrome Data Browser (Mei et al., 2017),
specifically the data associated with GEO IDs GSM1701825 for
SOX2 and GSM1705258 for POU5F1.

We evaluated the same neural network architectures on both the
simulated and the experimental datasets. The architecture described
in Figure 3B with one fully connected layer (not counting the output
layer) is an example of an architecture that does not assume any

Fig. 2. seqgra-enabled ablation analysis reveals most efficient neural network architecture. (A) Schematic of binary classification grammar using class-specific HOMER motifs

as sequence elements. (B) Schematic of binary classification grammar using class-specific order of HOMER motifs. (C) Schematic of binary classification grammar using class-

specific spacing of HOMER motifs. (D) Predictive performance of six neural network architectures with and without batch normalization and dropout. (E) Vocabulary recov-

ery of six neural network architectures with and without batch normalization and dropout
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structure in the input. It is a naive architecture in the sense that it
was constructed without any knowledge about the grammar that
was used to simulate the data. The architecture described in
Figure 3C, on the contrary, makes assumptions about the data that
are in agreement with the grammar, such as a 1D spatial structure
with information encoded in 11-nt long code words (enough to
cover the SOX2-POU5F1 interaction), whose position in the se-
quence window is irrelevant.

As expected, the test set predictive performance of the naive
architecture (Fig. 3D) was significantly lower than the grammar-
informed architecture (Fig. 3E). Furthermore, the performance on
the simulated data proved to be a good predictor for the perform-
ance on the experimental data (Fig. 3D and E).

The agreement between feature importance and the grammar
positions, a proxy for a model’s ability to recover the SOX2 and
POU5F1 motifs, is shown in Figure 3F for the naive architecture and
in Figure 3G for the grammar-informed architecture. The grammar-
informed model’s predictions were based almost exclusively on
grammar positions (positions that contained SOX2 and POU5F1
motifs), whereas this was not the case for the naive model. Both pan-
els were created with the Integrated Gradients FIE.

4 Discussion

In this paper, we introduced seqgra, a deep learning infrastructure
method for genomics. It is intended to streamline the development
of deep learning models for biological sequence-based prediction
tasks, by providing a reproducible unified framework for (i) flexible,
rule-based synthetic data generation; (ii) model training and (iii)

model evaluation with conventional test set metrics and feature at-
tribution methods. This three-step pipeline supports datasets
obtained by simulation and experiment, models implemented in
PyTorch and TensorFlow, and numerous gradient-based feature at-
tribution methods as well as SIS, a model-agnostic feature attribu-
tion method, in addition to conventional ROC and precision–recall
curves for model evaluation. Our method greatly simplifies an array
of commonly performed diagnostics and performance assessments
of deep learning models, such as ablation analysis, estimated dataset
size requirements and tolerated noise thresholds. The simulator and
the language of the probabilistic rules are flexible enough to span
multiclass and multilabel classification tasks with any number of
classes or labels, DNA or amino acid sequence windows of variable
or fixed length, class-dependent background distributions, sequence
elements defined as PWMs or list of k-mers with associated proba-
bilities, and interactions between sequence elements with associated
order or spacing constraints.

Moreover, the controlled environment of data simulation and re-
producible model training, serving and evaluation makes seqgra a
suitable testbed for feature attribution and interpretability methods
and their interdependencies with neural network architectures and
the complexity level of the training data. Moreover, the framework
can be used to perform extensive comparisons between deep learn-
ing libraries, which are rarely done (see Supplementary Figs S10 and
S11) or identify undocumented behavior of the deep learning tech-
nology stack, such as an unusual training instability caused by a ran-
dom seed of zero on some grammar-architecture combinations,
which is reproducible and occurs in both PyTorch and TensorFlow
(see Supplementary Figs S7 and S8).

Fig. 3. Predictive performance and grammar recovery of various model architectures on simulated and experimental data. (A) Schematic of model selection process: first, iden-

tify suitable model architectures on simulated data; second, train models with simulation-vetted architectures on experimental data. (B) Naı̈ve neural network architecture

with fully connected layer. (C) Grammar-informed neural network architecture with convolutional layer, global max pooling and fully connected layer. (D) Predictive perform-

ance of naive architecture, trained and evaluated on simulated and experimental data. (E) Predictive performance of grammar-informed architecture, trained and evaluated on

simulated and experimental data. (F) Grammar agreement plot (Integrated Gradients) of naive architecture, trained on experimental data. (G) Grammar agreement plot

(Integrated Gradients) of grammar-informed architecture, trained on experimental data
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To avoid confusion, we would like to point out that seqgra is not a
neural architecture search technique in the sense that it will not propose
suitable neural network architectures for a particular dataset. The
model definition is an input, not an output of the seqgra pipeline.
However, seqgra can be used in conjunction with neural architecture
search, such as AMBER (Zhang et al., 2021), a neural architecture
search method for architectures aimed at genomics prediction tasks, or
general hyperparameter optimization methods, such as Hyperband (Li
et al., 2016). Likewise, seqgra currently does not automatically explore
the space of generative rules to find a set of rules that match a particu-
lar experimental situation. The rules underlying the generative process
of the simulator are an input to seqgra (the data definition) and usually
based on domain expert. Furthermore, if the goal is to find the model
with the highest predictive performance on a particular experimental
dataset, a general hyperparameter optimization approach such as
Hyperband or NAS when exploring a carefully selected hyperpara-
meter subspace, is expected to outperform seqgra. However, these (in
all likelihood) very-high-capacity models tend to be less useful when
the primary concern is not predictive performance, but a better under-
standing of the underlying rules. Oftentimes a simpler model with
lower predictive performance is better than a complex model with
higher predictive performance, especially when dealing with biological
data where noise levels are high and often systematic, e.g. biases intro-
duced by the assay that are present in both training and test sets, but
are not part of the underlying biological systems. The predictive per-
formance gains that incorporate these are often undesired.

One caveat of all simulation-based approaches is the inevitable
gap between simulated and real-world datasets, in the sense that the
former is always a simplified approximation of the latter. Thus,
insights gained from simulated data might not carry over to the ex-
perimental world. In fact, to a certain degree, this will always be the
case. However, while high-performing neural network architectures
on simulated data might not perform as highly on experimental data,
the opposite is rarely the case, i.e. low-performing architectures in
simulation are unlikely to improve when trained on noisier and/or
smaller experimental datasets. Moreover, if a model performs well on
both simulated and experimental data, that does not imply that the
underlying grammar rules of the simulated data are similar to the rules
governing the experiment. The opposite situation, where the model
performs well on simulated data and poorly on experimental data, in
contrast, is oftentimes more insightful as it suggests that either the
underlying rules are different or if the rules are similar, the model fails
to learn them because of high noise levels in the experimental data or
a paucity of experimental data available for training.

While the intricacies of noisy and biased high-throughput genomics
experiments make for highly complex and poorly understood datasets,
training highly complex alchemy-like (Hutson, 2018a) deep neural net-
works on them contributes little to a mechanistic understanding of the
biological processes that are at work underneath and might worsen the
reproducibility crisis in both machine learning (Hutson, 2018b) and
biology (Baker, 2016; Begley and Ellis, 2012). Simulated data, how-
ever, are perfectly understood, its noise levels controlled and any biases
artificially introduced and accounted for, which makes it an excellent
environment for model evaluation. With seqgra, the clean room of
simulated data and a precise description of the patterns in the data (i.e.
the probabilistic rules in the data definition) on the one end is paired
with an array of feature attribution methods on the other, to answer
questions that are often impossible to answer with poorly understood
genomics data. One such question is whether the predictions of the
model are based on those parts of the input that are in fact relevant for
the phenomenon that is predicted, or, to put it another way, whether
the model was able to recover the underlying rules of the dataset.
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Data availability

The source code of the seqgra package is hosted on GitHub (https://
github.com/gifford-lab/seqgra) and licensed under the MIT license.
seqgra is part of the Python Package Index PyPI and can be installed
using pip, the Python package installer. Extensive documentation
can be found at https://kkrismer.github.io/seqgra.

The data underlying this article will be shared on reasonable re-
quest to the corresponding author.
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