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The ubiquitous airborne fungal pathogen Aspergillus fumigatus is inhaled by humans

every day. In the lung, it is able to quickly adapt to the humid environment and,

if not removed within a time frame of 4–8 h, the pathogen may cause damage by

germination and invasive growth. Applying a to-scale agent-based model of human

alveoli to simulate early A. fumigatus infection under physiological conditions, we recently

demonstrated that alveolar macrophages require chemotactic cues to accomplish the

task of pathogen detection within the aforementioned time frame. The objective of this

study is to specify our general prediction on the as yet unidentified chemokine by a

quantitative analysis of its expected properties, such as the diffusion coefficient and

the rates of secretion and degradation. To this end, the rule-based implementation of

chemokine diffusion in the initial agent-based model is revised by numerically solving

the spatio-temporal reaction-diffusion equation in the complex structure of the alveolus.

In this hybrid agent-based model, alveolar macrophages are represented as migrating

agents that are coupled to the interactive layer of diffusing molecule concentrations by

the kinetics of chemokine receptor binding, internalization and re-expression. Performing

simulations for more than a million virtual infection scenarios, we find that the ratio of

secretion rate to the diffusion coefficient is the main indicator for the success of pathogen

detection. Moreover, a subdivision of the parameter space into regimes of successful and

unsuccessful parameter combination by this ratio is specific for values of the migration

speed and the directional persistence time of alveolar macrophages, but depends only

weakly on chemokine degradation rates.

Keywords: Aspergillus fumigatus, fungal infection, agent-based modeling, reaction-diffusion equation,

chemotaxis, human alveolus, alveolar macrophage, alveolar epithelial cell

1. Introduction

Aspergillus fumigatus is the most dangerous airborne fungal pathogen in humans leading to high
mortality rates (Heinekamp et al., 2014). Immunocompetent individuals are able to prevail over
inhaled conidia of the fungus in an everyday challenge. In contrast, patients with an altered immune
system, e.g., as a consequence of organ transplantation or an underlying disease like HIV, are at
high risk to die from invasive aspergillosis (Horn et al., 2012), where the lung is the site of infection
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in 70% of the cases (Lin et al., 2001). A. fumigatus is able to
adapt within hours to the humid and nutrient rich milieu of
the lung (Hohl, 2008; Hasenberg et al., 2011), by this setting a
tight time scale for phagocytes to find, detect and remove the
pathogenic fungus before the onset of germination and hyphal
invasion of alveolar epithelium.

Alveolar macrophages (AM) reside on the inner surface of
lung alveoli and are the first professional motile phagocytes that
get in contact with inhaled conidia of A. fumigatus (Hasenberg
et al., 2013). AM are capable of clearing the lower respiratory
tract from all kinds of inhaled particles and microbes in order to
maintain a pathogen-free alveolar surface and to ensure optimal
exchange of oxygen and carbon-dioxide (Fels and Cohn, 1986).
The migration of AM takes place within the alveolar lining
layer, which is a viscous fluid—referred to as surfactant—that
coats the alveolar surface with an average thickness of about
200 nm (Bastacky and Lee, 1995). Apart from the stabilizing
effect of the surfactant avoiding alveolus collapse, it also provides
the environment for diffusive transport of molecules, such as
lipids and immunoregulatory proteins SP-A and SP-D, that
are continuously produced, secreted and recycled by alveolar
epithelial cells (AEC) (Herzog et al., 2008).

For over one decade computational approaches have proven
to successfully complement wet-lab studies in the frame of
systems biology (Kitano, 2002; Horn et al., 2012). Computer
modeling and simulation are nowadays important tools to
verify hypotheses in advance of cost- and time intensive
experimental investigations to narrow down the range of
possible wet-lab experiments to the most promising ones.
Furthermore, predictions may be derived from virtual models,
which subsequently can be tested in experiment. The present
study aims at predicting AM chemokine properties from an
existing agent-based virtual infection model of human alveoli
under physiological conditions (Pollmächer and Figge, 2014).
Due to the peculiar physiology of the human lung, investigations
in vivo, including live-cell imaging, are hard to realize. Thus,
quantitative measures like AM motility, chemokine secretion
rates of AEC or the diffusion coefficient of molecules within
the surfactant are not directly accessible. AEC type II cell
lines have been studied intensively in the past, but as they do
account for only five percent of the alveolar surface, experimental
investigations of type I AEC would be highly appreciated.
However, isolation and cultivation of type I AEC with current
methods are demanding tasks due to their thin and delicate
morphology. The present computational modeling approach
enables us studying A. fumigatus infection in alveoli for varying
parameter sets of AM motility and of chemokine properties in
order to reveal the relative importance of each of the parameters
and their potential regimes in healthy individuals.

Recently, we established an agent-based model (ABM) of
A. fumigatus infection in the human alveolus to study the early
immune response under physiological conditions (Pollmächer
and Figge, 2014). In this three-dimensional to-scale model, we
represented the human alveolus by a three-quarter spherical
structure consisting of type I and type II AEC as well as pores
of Kohn. Our computations of the first-passage-time, i.e., the
time it takes until the conidium is detected by an AM for

the first time, clearly showed that pathogen detection by AM
resembles the problem of finding the needle in the haystack
within a time limit that is set by the germination time for
A. fumigatus conidia of about 6 h. Statistical analyses based on
hundreds of thousands of computer simulations revealed that for
AM to successfully accomplish finding the conidium within 6 h
time, chemotactic cues are required that guide AM to the AEC
associated with a conidium. Chemotaxis was implemented in the
ABM based on a probabilistic rule, i.e., AM were directed toward
the AEC associated with the fungus with a probability that was
defined by the distance-dependent strength of the chemokine
gradient (Pollmächer and Figge, 2014). The gradient of the
chemokine concentration in the alveolus was approximated
by the analytical steady state solution of the two-dimensional
diffusion equation for a point source on a planar surface. We
demonstrated that this level of detail was sufficient to arrive at
the conclusion that chemotactic cues are required for directing
AM migration in the alveolus to the site of the pathogen.
However, the specific chemokine remains as of yet unknown,
including its characteristic parameters such as the secretion rate,
diffusion coefficient and rate of degradation. In order to arrive
at quantitative predictions of characteristic parameters that may
narrow down the regime of candidate chemokines, the ABM
has to be revised to describe the spatio-temporal dynamics of
chemokine diffusion in the alveolus and the receptor binding on
AM at a higher level of detail.

Mathematical models of chemotaxis typically set focus on one
of the three key aspects that are associated with the directed
migration of cells: gradient-sensing, polarization and motility.
While integrative models combining all three aspects are still
rare today (Iglesias and Devreotes, 2008), a chemotaxis model
including the processes of gradient-sensing and motility was
developed by Guo and Tay (2008). In this approach, a hybrid
ABM (hABM) was used to simulate the migration behavior of
leucocytes and to compare with experimental results of under-
agarose assays. A hABM is a multi-scale model where cells are
represented as migrating and interacting agents that are coupled
to the interactive layer of diffusing molecule concentrations by
the kinetics of chemokine receptor binding, internalization and
re-expression (see Figure 1). From a technical point of view,
this requires the implementation of a solver for the spatio-
temporal reaction-diffusion equation of molecule concentrations
in the complex alveolar structure with spherical symmetry and
peculiar boundary conditions as imposed by the pores of Kohn
and the alveolar entrance ring. This is achieved by generating
a Delaunay triangulation of the alveolar surface for close-to-
equidistant surface points. The geometric quantities of the
corresponding Voronoi tesselation, i.e., the dual graph of the
Delaunay triangulation, can then be used to solve the reaction-
diffusion equation by a finite difference method on unstructured
grids (Sukumar, 2003). We perform a numerical study of the
steady state behavior of molecules for typical values of the
diffusion coefficient, chemokine secretion rate and the rate
of molecular degradation. Furthermore, performing statistical
analyses of first-passage-time distributions we narrow down the
regime of characteristic parameters required for the time-limited
detection of A. fumigatus conidia by AM.
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FIGURE 1 | Schematic overview and structural relations between

different components of the hybrid agent-based model. (A)

Close-to-equidistant discretization of the three-quarter alveolus with 10,000

grid points. Grid points with label alveolar surface point (orange spheres) are

connected with their neighboring grid points (orange lines) and those with label

boundary point (blue spheres) correspond to either pores of Kohn or the

alveolar entrance ring. (B) To-scale reconstruction of the human three-quarter

alveolus from Pollmächer and Figge (2014) including alveolar epithelial cells

(AEC) of type I (yellow) and type II (blue) as well as the pores of Kohn (black).

(C) Receptor kinetics model that drives the chemotaxis of alveolar

macrophages (AM). Free chemokine receptors [R] bind to chemokine ligands

[L] located at grid points associated with the AM. Bound receptors [LR] are

processed into internalized receptors [R*] and are re-expressed subsequently.

(D) Snapshot of a virtual infection scenario where AM (green) aim to find a

conidium of A. fumigatus (red). The information contained in the molecule layer

is integrated using chemokine concentration isolines (white), which are plotted

proportional to their respective values with different sizes.

2. Materials and Methods

2.1. Hybrid Agent-Based Model
In this study, we revised our agent-based model (ABM) of
the human alveolus to explicitly account for the dynamics
of molecular diffusion and reactions with cells, which were
previously modeled in a simple rule-based fashion using
a steady-state approximation (Pollmächer and Figge, 2014).
We refer to the revised model as hybrid agent-based model
(hABM), because single cells are represented as individual
agents that migrate and interact in continuous space, whereas
chemokine concentrations are represented as spatio-temporal
distributions on a discrete grid. In this multi-scale approach,
interactions between cellular agents and the layer of diffusing
molecular concentrations are realized via modeling the kinetics
of chemokine receptor binding, internalization and re-expression
on alveolar macrophages (AM) as shown in Figure 1. The present

agent-based simulation algorithm has linear time complexity
in the number of agents and in the number of timesteps.
Thus, treating single molecules as single virtual agents would
render the simulations computationally intractable. Scalability in
terms of constituent quantities is one of the strengths of partial
differential equations (Horn et al., 2012) as the time complexity
of our numerical method is linear in the number of grid points,
molecule species and timesteps. In summary, treating cells at
the microscopic level of discrete agents and molecules at the
macroscopic level of continuous distributions ensures keeping
the balance between computational tractability and detailed
modeling across interwoven time- and length-scales (Guo et al.,
2008). The source code of the hABM is available from the authors
upon request.

2.2. Numerical Solution of the Reaction-Diffusion
Equation in the Alveolus
2.2.1. Reaction-diffusion equation
The spatio-temporal distribution of chemokines on the inner
surface of the alveolus is described by the following reaction-
diffusion equation:

∂c(Er, t)

∂t
= D1c(Er, t)− λ c(Er, t)+ S(Er, t)− Q(Er, t). (1)

Here c(Er, t) denotes the molecular concentration of chemokines
at position Er and time t and 1 is the Laplace operator. The
chemokine’s isotropic diffusion coefficient is given by D and
its degradation rate is given by λ. The spatio-temporal source
of molecular concentration is represented by the term S(Er, t)
associated with chemokine producing alveolar epithelial cells
(AEC) of type I and type II. The term Q(Er, t) represents the
uptake of chemokines by AM and is explained in detail below.
Numerical integration of the reaction-diffusion Equation (1)
within the surfactant on the inner alveolar surface requires a
discretization of the thin fluidic lining layer by a grid with
close-to-equidistant grid points.

2.2.2. Discretization of the Surfactant
Generating a grid with an arbitrary number of close-to-
equidistant grid points on the surface of a spherical geometry is
related to the Thomson problem (Thomson, 1904). This problem
was raised more than a century ago in the context of finding the
minimal electrostatic potential energy configuration for n equally
charged particles that repel each other by Coulomb forces on the
surface of a unit sphere. An equidistant distribution of points
is beneficial for the numerical solution of the reaction-diffusion
equation with regard to computing time and numerical stability.
We take advantage of a crowd-based numerical approximation
platform that determines the global minima using a variety
of different optimization algorithms (MacWilliam and Cecka,
2013). Next, in order to obtain the neighborhood relationship
between the grid points, we use the close-to regular distribution
of points as inputs and compute the convex hull, where each of
its edges corresponds to a pair of neighboring grid points. Note
that the triangulation of discrete points on a sphere surface using
the convex hull is equivalent to the Delaunay triangulation of
these points in three dimensions (Brown, 1979). Finally, the dual
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graph of the Delaunay triangulation, i.e., the Voronoi tesselation
(De Berg et al., 2008), was computed in order to obtain the
surface-area associated with each grid point, i.e., the area of
the corresponding Voronoi cell. As will be shown below, this
measure together with the length of the Voronoi edge between
neighboring Voronoi cells are required for solving the reaction-
diffusion Equation (1) numerically.

It should be noted that, since the human alveolus does not
correspond to a full sphere, not each grid point belongs to the
alveolar surface. In fact, each point of the grid can be labeled
as one of the three categories: (i) alveolar surface point, (ii)
boundary point, (iii) outside point. A point is considered to
be an alveolar surface point if it is part of the alveolar three-
quarter sphere and does not cover a pore of Kohn. All other
points are outside points, except for boundary points which
have at least one neighboring point being an alveolar surface
point (see Supplementary Figure S1A and Video S1). We use
absorbing boundary conditions in each simulation scenario, i.e.,
the concentration at each boundary point is kept fixed at zero
for all times. The representation of the surfactant with an average
thickness of only 200 nm (Bastacky and Lee, 1995) is based on
104 close-to-equidistant grid points of the spherical surface at an
average distance of 4.45 ± 0.16µm (see Video S1). This allows
resolving AEC of type I and type II that are, respectively, 60µm
and 9.3µm in diameter, as well as the pores of Kohn that are
6µm in diameter as estimated from literature data in Pollmächer
and Figge (2014).

2.2.3. Numerical integration of the reaction-diffusion

equation
The reaction-diffusion Equation (1) is numerically integrated
in time using a finite difference method for unstructured
grids as described by Sukumar (2003). Here, Voronoi cells are
the placeholders of the chemokine concentrations, where each
Voronoi cell may contain several molecular species. The kth
Voronoi cell is associated with grid point Erk of the Delaunay
triangulation and has area Ak and a finite set of neighbors N (k).
The relation with neighboring Voronoi cells ℓ ∈ N (k) is defined
by the length of the Voronoi edge hkℓ and the Euclidean distance
between the two Voronoi cells dkℓ, as depicted in Supplementary
Figure S1B. The numerical integration is then performed in a
straightforward fashion over eachVoronoi cell k that is associated
with a grid point of the category alveolar surface point:

c̃(Erk, t + 1t) = c̃(Erk, t)+ 1t
(

∑

ℓ∈N (k)

D
hkℓ

dkℓAk

[

c̃(Erℓ, t)− c̃(Erk, t)
]

−λ c̃(Erk, t)+ S(Erk, t)− Q(Erk, t)
)

. (2)

Here and in what follows the discretized concentration values are
indicated by the symbol c̃. In our model, both AEC of type I and
type II may secrete chemokines, which is appropriately captured
by a non-vanishing source term S(Erk, t) at all grid points of the
AEC associated with the conidium.

2.2.4. Validation of the numerical solution
In order to validate the implementation of the close-to-
equidistant grid for the spherical system and the algorithm for
the numerical solution of the reaction-diffusion Equation (1),
we performed simulations of scenarios for which the analytical
solutions are known. These scenarios were based on the analytical
solution of the isotropic diffusion equation in terms of spherical
harmonics (Sbalzarini et al., 2006). For a sphere with radius r
and molecular diffusion coefficient D on its surface an analytical
solution of the reaction-diffusion Equation (1) for vanishing
molecule degradation and absent source- and reaction-term is
given by

c(Er = (r, ϑ, ϕ), t) =

√

3

4π
cos(ϑ) exp

(

−
2D

r2
t

)

. (3)

Here, surface positions Er are represented using spherical
coordinates with polar angle ϑ and azimuthal angle
ϕ. Simulations were started from the initial condition
c(Er, t = 0) =

√

3/(4π) cos(ϑ). The accuracy of the numerical
solution was evaluated by comparing with the analytical solution
on the spherical surface using biquadratic interpolation at 2×104

pre-defined close-to-equidistant points.

2.3. Chemotaxis Model of Alveolar Macrophages
The previously established agent-based model of the human
alveolus (Pollmächer and Figge, 2014) is extended by modeling
the interactions between molecule concentrations and
chemokine receptors of AM, including the internalization
of bound receptors and their subsequent re-expression on the
AM surface. This enables AM to sense chemokine gradients that
ultimately drive the migratory response of the phagocytes. Here,
we essentially follow the receptor kinetics model as previously
presented in Guo and Tay (2008) and Guo et al. (2008), apart
from modifications required in the present context of modeling
the dynamics of infection in the curved environment of a human
three-quarter alveolus.

Since the average distance between neighboring grid points
is four to five times smaller than the AM diameter of
rAM = 10.6 µm (Krombach and Münzing, 1997), each AM is an
agent associated with on average 20 grid points on the interactive
molecule layer. In the reaction-diffusion Equation (1), the
interaction between chemokines andAM receptors is represented
by the term

Q(Er, t) =
∑

m∈M(t)

Qm(Er, t) , (4)

where M(t) is the set of AM present in the alveolus at time
t. Qm(Er, t) denotes the reaction term of the mth AM with the
chemokines in the surfactant, which is defined at each grid point
q as follows:

Qm(Erq, t) =

{

kb
AAM

c̃(Erq, t) [R]m(t) , if q ∈ covm(t)

0 otherwise,
(5)

where covm(t) represents the set of covered grid points by the
mth AM (see Supplementary Figure S2), [R]m(t) is the current
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number of free receptors on the AM and kb is the binding
rate between AM receptors and the chemotactic cytokines in
the surfactant. The interaction surface for the reaction between
the receptors of the AM cell wall and the chemokines in the
surfactant is denoted by AAM = πr2AM. Beside the number
of free receptors, each AM m is an agent keeping track of its
current number of bound ([LR]m) and internalized receptors
([R∗]m). The kinetics of ligand-binding, receptor internalization
and re-expression is described by a system of ordinary differential
equations:

d[R]m(t)

dt
= kr [R

∗]m(t)− AAM

∑

q

Qm(Erq, t) , (6)

d[RL]m(t)

dt
= AAM

∑

q

Qm(Erq, t)− ki [LR]m(t) , (7)

d[R∗]m(t)

dt
= ki [LR]m(t)− kr [R

∗]m(t) . (8)

Here, ki is the internalization rate of bound receptors and
kr is the recycling rate associated with the re-expression of
internalized receptors. All model parameters together with their
experimentally relevant regimes of values are listed in Table 1.
The parameters related to the receptor-kinetics model of AM, kb,
ki and kr , are fixed to the geometric means of their corresponding
experimental range.

In our model, the kinetics of bound receptor differences along
the current chemokine gradient is coupled to the directional
persistence time of migrating AM (Farrell et al., 1990). Thus, as
shown in Supplementary Figure S2, we consider that themth AM
weights the direction of the average chemokine concentration
gradient Egm(t) in each timestep by the difference in newly bound
receptors at the front and rear of the cell along the gradient.

The difference in the chemokine concentration across the
interaction surface of the mth AM between its front and
rear, 1cm,diff, is computed using the distance between the
respective barycenters of the front und rear of this AM and its
corresponding concentration gradient:

1cm,diff(t) =
8 rAM

3π
||Egm(t)|| , (9)

where the chemokine concentration gradient Egm(t) over the mth
AM is obtained from averaging over the local gradients of all grid

points covered by the mth AM (covm(t)). Then, the difference
in newly bound receptors between the front and rear of the AM
along the current gradient per timestep 1t is

1[LR]m,diff(t) = kb 1cm,diff(t)
[R]m(t)

2
1t . (10)

The most favorable direction of migrating AM is determined by
computing the sum of weighted gradients over one period of
directional persistence:

Egm,cum(t
∗
begin, t

∗
end) =

t∗
end

∑

t=t∗
begin

1[LR]m,diff(t)
Egm(t)

||Egm(t)||
, (11)

where t∗
begin

and t∗
end

denote the start and the end time for the

period of directional persistence.
Finally, after each period of directional persistence, the

respective AM migrates in the direction of the weighted
cumulative gradient Egm,cum(t

∗
begin

, t∗
end

) with probability

pdirected = min(||Egm,cum(t
∗
begin, t

∗
end)||σAM , 1) . (12)

This probability is proportional to the bound receptor differences
along the cumulative gradient (Devreotes and Zigmond, 1988)
and the constant of proportionality is the AM sensitivity σAM that
was determined by Tranquillo et al. (1988) (see Table 1).

2.4. System Setup for Simulation Studies
2.4.1. Steady state analysis
Initially, all grid points were set to zero molecular concentration
and one permanently and homogenously secreting AEC of
type I at the bottom of an otherwise empty three-quarter
alveolus was placed. Keeping track of the time-dependent relative
concentration change,

1c̃rel(Erk, t) ≡
c̃(Erk, t + 1t)− c̃(Erk, t)

c̃(Erk, t)
, (13)

at grid points k, the steady state of the molecular distribution
was considered to be reached when the maximum value of
1c̃rel over all grid points fell below a threshold value of one
permille. Measurements were repeated 50 times per parameter
configuration and the results were averaged, keeping the number
of randomly positioned pores of Kohn in the alveolus constant.

TABLE 1 | Parameters used for the chemotaxis model of alveolar macrophages.

Symbol Description Unit Value Experimental range References

D Chemokine diffusion coefficient (in water) µm2 ×min−1 Varied 6× 102 – 3.5× 104 Francis and Palsson (1997); Randolph et al. (2005)

sAEC Chemokine secretion rate of AEC min−1 Varied Unknown

λ Chemokine degradation rate min−1 Varied 3× 10−3 – 4.2× 10−2 Beyer and Meyer-Hermann (2008)

kb Ligand-receptor binding rate µm2 ×min−1 1× 10−2 7× 10−4 – 0.3 Sklar (1984); Pelletier (2000); Guo et al. (2008)

ki Receptor internalisation rate min−1 7× 10−2 3× 10−3 – 1.8 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

kr Receptor recycling rate min−1 5× 10−2 6× 10−3 – 0.5 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

R0 Initial number of chemokine receptors 5× 104 2× 104 – 2× 105 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

σAM Sensitivity to bound-receptor differences 1.2× 10−3 1.2× 10−3 Devreotes and Zigmond (1988); Farrell et al. (1990)
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2.4.2. Virtual infection scenario
For studying A. fumigatus infection in a three-quarter alveolus
with constant radius, the virtual infection scenario from
Pollmächer and Figge (2014) was followed. At t = 0 a
binomially distributed number of AM and the conidium were
placed randomly over the surface of the three-quarter alveolus
and all grid points were set to zero molecular concentration.
AM migrated according to a biased persistent random walk with
constant speed v and constant directional persistence time tp
and were able to leave or enter the alveolus at either a pore
of Kohn or the alveolar entrance ring. The position of the
conidium was fixed over the whole simulation and migration
of AM followed the chemotaxis model that was here previously
introduced. In each virtual infection scenario the AEC of type I
or II that was associated with the randomly positioned conidium
released the chemoattractant permanently and homogenously
with a constant secretion rate sAEC. The simulation ended at
the first physical contact between an arbitrary AM and the
conidium. The diffusion coefficient D of the chemokine was
varied over a wide range in order to account for the viscosity of
the surfactant that is expected to be higher than that of water and
to which experimental ranges are typically referring. In Table 1,
the parameter regimes of the chemotaxis model are summarized
and the values that were varied in the simulations are indicated.

2.4.3. Virtual infection scenario including

gradient-based recruitment of alveolar macrophages
In Pollmächer and Figge (2014), AM insertion into the three-
quarter alveolus followed a uniform distribution over the length
of the boundary line elements. Numerical values of chemokine
concentrations allow for recruitment of AM from neighboring
alveoli based on the strength of the gradient. Realization of
gradient-based recruitment was implemented in the following
way. First, on AM entrance into the alveolus the maximum
gradient was computed, max{||Egb(t)||}, over the finite set of edges

of the triangulated grid that cross the boundary. The pairs of
vertices corresponding to these edges each held one vertex labeled
as boundary point and the other one labeled as alveolar surface
point. Secondly, a uniformly distributed random boundary point
Erb,random was drawn from all possible boundary points and the
corresponding probability of AM insertion was calculated as
follows:

pin(Erb,random, t) =
||Eg(Erb,random, t)||

max{||Egb(t)||}
. (14)

This probability was used for stochastic AM insertion at position
Erb,random and was realized by a Monte Carlo acceptance-rejection
method to sample the gradient-based probability distribution
of AM insertion over the boundary points. On rejection of
a boundary point a new one was drawn with probability
pin(Erb,random, t) followed by another Monte Carlo decision
until a boundary point was accepted. As before, first-passage-
time simulations were performed over 103 repetitions for each
parameter configuration.

3. Results

3.1. Hybrid Agent-Based Model Reproduces
Analytical Solutions
We evaluated and validated the numerical solution of our
PDE solver by comparison with an analytical solution over the
surface of a full sphere (see Section 2.2.4 for details). The
mean of the absolute and relative errors per timestep were
computed for both varying timesteps and varying numbers of
grid points in order to demonstrate the accuracy of the numerical
method (see Figure 2). The method shows first-order accuracy
in the timestep as the absolute and relative mean errors per
timestep scale quadratically. Furthermore, it is observed that
numerical instability occurs for too large values of 1t, as is
expected for an explicit forward-Euler approach. To guarantee

FIGURE 2 | Numerical error analysis of the PDE solver for Equation (2)

on the spherical surface with λ = 0, S(Erk, t) = 0, and Q(Erk, t) = 0 at

each grid point k. Simulations were carried out in an alveolus with a radius

r = 116.5µm from time t = 0min to a final time t = 1min with an isotropic

diffusion coefficient of D = 2000µm2/min. The mean absolute error (A) and

mean relative error (B) per timestep of our PDE solver for different numbers

of grid points N and timesteps 1t are compared to the theoretically expected

quadratic scaling (solid line).
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numerical stability in our simulations, we determined the limits
of numerical stability for different diffusion coefficients D over
the set of grid points G using the condition

1t ≤ min
k∈G







D
∑

l∈N (k)

hkl

dklAk





−1

 (15)

and adjusted the global simulation timestep 1t one order of
magnitude lower than the respective limits.

3.2. Steady State of Alveolar Chemokine
Distribution Reached within Hours
We performed a numerical study to characterize the steady
state of the alveolar chemokine distribution in terms of the

concentration profile and the time required to reach the steady
state (see Video S2 for the transition from the onset of AEC
secretion into steady state). Simulations were carried out using
one permanently and homogenously secreting AEC of type I in
the bottom of an empty alveolus (see Section 2.4.1 for details) In
Figure 3, we summarize the results of the steady state analysis for
varied diffusion coefficients, degradation rates and secretion rates
of the chemokine. Interestingly, we found that the time required
to reach the steady state depends on the values for the diffusion
coefficientD and the degradation rate λ but not on the amount of
chemokine secretion sAEC per time (Figure 3A). In the absence
of degradation, the time required to reach the steady state ranges
from 4min for a diffusion coefficient of D = 6000µm2/min
to 8.5 h for a diffusion coefficient of D = 20µm2/min. In the
presence of degradation, the times required to reach the steady

FIGURE 3 | Steady state analysis of the concentration profile in the

alveolus for varied diffusion coefficients D, secretion rates sAEC and

degradation rate λ. One permanently and homogenously secreting

source with radius rAEC = 30 µm was placed in the bottom of the

three-quarter alveolus and tthe relative concentration changes 1c̃rel (see

Equation 13) were tracked over time at each grid point k. The steady state

of the molecular distribution was considered to be reached when the

maximum value of 1c̃rel over all grid points fell below a threshold value of

0.001. (A) Comparison of the mean values of the time when steady state

was reached for different degradation rates and diffusion coefficients

averaging over the secretion rates {1.5× 103, 5× 103, 1.5× 104, 5× 104,

1.5× 105, 5× 105}min−1. Each mean value has a relative standard

deviation less than five percent. (B) Average concentration over all grid

points labeled as alveolar surface point at steady state. (C) Concentration

profile at steady state as a function of the geodesic distance from the

center of the source. In each simulation concentration values were

averaged over points of the three-quarter sphere with equivalent geodesic

distance from the center of the source. Here biquadratic interpolation was

used to obtain the concentration value at arbitrary points on the alveolar

surface. Afterwards the means over simulation runs with identical

parameter configuration were computed. We applied exponential fits to

each concentration profile using least squares to optimize the parameters a

and b in the function c(x) = a exp(bx) over concentration values at geodesic

distances above the AEC radius rAEC = 30µm.
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state were systematically decreasing with increasing degradation
rates in a diffusion-dependent fashion (Figure 3A).

In Figure 3B it can be seen that the parameter variation
lead to average concentration values that span a range of
five orders of magnitude from 10−2 µm−2 to 102 µm−2. The
mean concentration was observed to increase linearly with
increasing secretion rate sAEC. We found that different parameter
combinations showed similar mean concentration values and
almost identical concentration profiles over the geodesic distance
from the secreting AEC (see Figure 3C). Irrespective of the
secretion rate, diffusion coefficient and degradation rate the
profile of concentration over the surface of the alveolus showed
an exponential distance-dependence from the secreting AEC for
geodesic distances larger than the radius of the secreting AEC.

We generally observed that the impact of chemokine
degradation on the time to reach the steady state and on the
amount and profile of the chemokine concentration is largest
for small diffusion coefficients (see Figures 3A–C). This is a
direct consequence of reduced molecule motion, because on
average molecules remain in the alveolus for a longer time
period before leaving through a pore of Kohn or through the
alveolar entrance ring. In particular, the time required to reach
the steady state, the average chemokine concentration as well as
the level of the concentration profile were lowered for elevated
degradation rates. These effects were depending on the diffusion
coefficient: While for diffusion coefficents D ≥ 2000µm2/min
all three observables were reduced by less than 5% relative
to the case with absent degradation, for D ≤ 60µm2/min
this reduction was observed to increase up to 85%. For
example, in the extreme case of the small diffusion coefficient
D = 20µm2/min and at a secretion rate of 1.5 × 104 molecules
per minute, the average concentration ranges between 2.3 and
14.7 molecules per µm2 and the time required to reach the
steady state varied in a degradation-dependent fashion between
3.5 and 8.5 h.

3.3. Virtual Infection Model Reveals Relevant
Parameter Regimes
We performed computer simulations on the early immune
response against A. fumigatus infection mediated by chemokines
that are released from the AEC associated with the conidium. In
contrast to our previous study, where chemotaxis was modeled
in a simplified fashion by a probabilistic rule (Pollmächer and
Figge, 2014), we here implemented a numerical solver for the
reaction-diffusion equation extending over the inner surface of
the alveolus. Thus, in the present implementation AM performed
a biased persistent random walk and the directional bias was
derived from local sensing of the current chemokine gradient by
AM. The relative impact of directional over random migration
was inferred from the difference in newly bound AM receptors
along the gradient. Computer simulations with the refined AM
chemotaxis model, which is described in the Section 2 and
depicted in Supplementary Figure S2, enabled us to narrow
down the regime of relevant parameters in terms of the diffusion
coefficient, the degradation rate and the secretion rate of the
postulated chemokine.

3.3.1. First-passage-times are mainly determined by

diffusion coefficients and secretion rates
We measured first-passage-times in the alveolus, i.e., the
time of first contact between AM and the conidium (see
Video S3), in order to determine the requirements on the
chemokine properties for a successful discovery of the fungal
pathogen before the onset of germination (see Section 2.4.2
for details). First-passage-times were computed for 864
different parameter combinations (see Supplementary data
in Supplementary Material) and for each combination 103

simulations of the A. fumigatus infection scenario were
performed to obtain statistically firm results. From the
distributions of first-passage-times, we computed the fraction
of first-passage-times above 6 h, p(FPT > 6 h), where
6 h were chosen based on the typical time period required
for A. fumigatus germination. The results are presented in
Figure 4 and demonstrate, in agreement with our previous
study (Pollmächer and Figge, 2014), that AM with migration
speed v = 2µm/min exceeded the first-passage-time of 6 h in
more than 5% of the simulations for all parameter combinations
(see short-dashed lines in Figures 4A,D,G). A comparison of
Figures 4A,D shows that an increase in the persistence time
from tp = 1min to tp = 2min was always associated with a
decrease of p(FPT > 6 h). Next, we found that taking molecular
degradation into account did not have a strong impact on
p(FPT > 6 h), as can be observed by comparing Figures 4D,G

for tp = 2min. These observations remain qualitatively the
same for higher migration speeds of AM, see Figures 4B,E,H for
v = 4µm/min and Figures 4C,F,I for v = 6µm/min. However,
higher migration speeds of AM do have a quantitative impact on
p(FPT > 6 h).

The dashed-dotted and long-dashed lines in Figure 4 indicate
the values of p(FPT > 6 h) for AM performing, respectively,
a persistent random walk and a biased persistent random walk,
as previously simulated in Pollmächer and Figge (2014). The
persistent random walk of AM always marks an upper limit for
p(FPT > 6 h), i.e., first-passage-times are on average always
decreased in the presence of chemotaxis, as could be expected
for a low concentration of chemokines in the alveolus. On the
other hand, compared to the biased persistent random walk
model the performance of the chemotaxis model could yield
lower values for p(FPT > 6 h), depending on the combination
of parameters. In particular, we found that this is the case for
combinations of a relatively high secretion rate and a relatively
low diffusion constant. Note that the probabilistic rule for biased
persistent random walk as previously simulated in Pollmächer
and Figge (2014) was coupled to the direction of the shortest
path from the AM to the AEC associated with the conidium.
Occasionally, AM could leave the alveolus through a pore of
Kohn if one of them was along the respective path of migration.
In the present approach the frequency of this event was reduced,
due to preferred AMmigration in the direction of the chemokine
gradient, which generally pointed away from pores of Kohn (see
Videos S2 and S3). In summary, the diffusion coefficient and
the secretion rate were again found to be the most important
parameters, whereas the value of the degradation rate had only
minor impact on p(FPT > 6 h) (see Figures 4G–I).
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FIGURE 4 | Analysis of first-passage-time distributions varying the

macrophage related parameters migration speed and persistence

time and varying the chemokine related parameters diffusion

coefficient, secretion rate and degradation rate. In each subfigure

(A–I) the fraction of first-passage-times above 6 h, p(FPT > 6 h), is

plotted against the secretion rate of the AEC associated with the

fungal conidi. The calculation of this fraction is based on the

first-passage-time distribution which was derived performing 1000

first-passage-time simulations per parameter configuration. The results

of the present study are compared to the biased persistent random

walk (long-dashed black line) and the persistent random walk

(dashed-dotted black line) by Pollmächer and Figge (2014). The

short-dashed black line denotes the threshold p(FPT > 6 h) = 0.05. In

(A–C) the focus is on the variation of diffusion coefficients,

(D–F) show the results for different persistence times tp and

(G–I) demonstrate the influence of the degradation rate λ.

Interestingly, we observed a minimum of p(FPT > 6 h) as a
function of the secretion rate for various diffusion coefficients in
the case of AM migration speed v = 2µm/min and persistence
time tp = 1min (see Figure 4A). This system behavior reflects
the fact that an optimal concentration of chemokines exists
for an efficient guidance of AM. The value of the optimal
concentration is determined by the interplay of several factors,
e.g., the secretion rate, diffusion coefficient and degradation rate
of the chemokine as well as the number of AM receptors and
their dynamics of binding, internalization and re-expression. For
example, a too high chemokine concentration is associated with
a low number of unbound AM receptors limiting the adaptation
of AM migration along the chemokine gradient. We further

analyzed this situation by computing the probability of directed
AMmigration for different secretion rates and for AMmigration
speeds v = 2µm/min and v = 4µm/min. The resulting
probability distributions are shown in Figure 5 as a function of
the geodesic distance of AM from the AEC associated with the
conidium. We found that optimal values of p(FPT > 6 h) in
Figure 4A correspond to probability distributions with a narrow
and peakedmaximum (see red curves in Figure 5). For a constant
diffusion coefficient, lower secretion rates were associated with
less prominent maxima in the probability distribution (see blue
curves in Figure 5), which in turn increased p(FPT > 6 h).
On the other hand, higher secretion rates were associated with
extended and flat maxima at relatively large geodesic distances
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FIGURE 5 | Probabilities of directed AM migration over the geodesic

distance from the AEC associated with the conidium. The mean and

standard deviation of the probability pdirected are shown in the absence of

chemokine degradation for the diffusion coefficient D = 60µm2/min with AM

directional persistence time tp = 1min. In (A) AM migrate with speed

v = 2µm/min and in (B) with speed v = 4µm/min. Averages and standard

deviations were determined using the probabilities of directed AM migration

that were drawn over the whole simulation time in all simulation runs. The

present results are compared to the probabilistic rule for directed migration

(solid black line) used in Pollmächer and Figge (2014).

from the boundary of the secreting AEC (see green curves in
Figure 5). It should be noted that the profiles of the determined
probability distributions are the results of various factors, such
as the chemokine concentration and the receptor dynamics of
AM. For example, in the case of high secretion rates, many AM
receptors were already bound to the chemokine at early time
points due to its relatively high concentration in the alveolus.
As a result, AM were guided to the AEC associated with the
conidium relatively early in time. However, the relatively high
concentration of chemokines also had the adverse effect that the
number of free AM receptors was decreased at distances close
to the secreting AEC. Consequently, fewer events of receptor-
ligand binding lead to relatively low probabilities for directed AM
migration and ultimately increased p(FPT > 6 h).

An overview of the relevant combinations of model
parameters for successful detection of the A. fumigatus
conidium by AM is given in Figure 6 for AM migration speed
v = 4µm/min (A) and v = 6µm/min (B). As in Pollmächer
and Figge (2014), we considered a parameter combination
to be successful, if the value of p(FPT > 6 h) was below five
percent. Interestingly, the ratio between the secretion rate and
the diffusion coefficient, sAEC/D, was found to subdivide the

parameter space into regimes of successful and unsuccessful
parameter combinations. For v = 4µm/min and tp = 1min,
successful detection occurred for sAEC/D ≥ 250µm−2 (see
Figure 6A). Moreover, with increasing directional persistence
time and/or migration speed of AM this threshold was
found to be systematically reduced. While the combinations
(v, tp) = (4µm/min, 2min) and (v, tp) = (6µm/min, 1min)
both shared the condition sAEC/D ≥ 75µm−2, for
(v, tp) = (6µm/min, 2min) this threshold sAEC/D was lowered
to the value 25µm−2. To summarize, we found that the
successful detection of the conidium by AM required the ratio
between the secretion rate and the diffusion coefficient to be
above a specific threshold, whereas the degradation rate had only
minor impact on the first-passage-time (see Figures 4, 6).

3.3.2. Gradient-based recruitment of AM increases

relevant parameter regimes
Next, we studied a modification of AM insertion into the
system at the boundaries, i.e., the alveolar entrance ring and
the pores of Kohn. Previously, AM entered the three-quarter
alveolus following a uniform random distribution over the length
of the line elements belonging to all boundaries (Pollmächer
and Figge, 2014). In the modified setup, we accounted for the
time-evolution of the chemokine gradients at the boundaries
by specifying probabilities for AM insertion according to the
respective gradient strengths. In other words, AM insertion is
more likely at boundaries with higher chemokine gradients (see
Section 2.4.3 for details).

In Figures 6C–E it can be seen that gradient-based
recruitment of AM generally increased the regime of parameter
combinations for successful detection. At AM speeds of
4µm/min and 6µm/min the ratio of secretion rate to diffusion
coefficient was systematically reduced (see Figures 6D,E). In
contrast to the case where AM insertion was not gradient-based,
in the present case a successful detection was also achieved
at the migration speed of 2µm/min for specific parameter
combinations (see Figure 6C). Interestingly, for the AM
parameters (v, tp) = (2µm/min, 1min) the subdivision of the
parameter space into regimes of successful and unsuccessful
parameter combinations was not only determined by the ratio
sAEC/D. We checked that p(FPT > 6 h) has a dependence on
the secretion rate similar to the simulations in the absence of
gradient-based AM insertion (see Figure 4A). However, in the
present case the minimum of p(FPT > 6 h) reached values below
the five percent threshold for a limited range of the secretion rates
that gave rise to the triangular region (see Figure 6C, blue area).
The virtual infection model with gradient-based recruitment
underlines the importance of chemokine-induced AM insertion
points relative to the conidium position, as the results display a
beneficial effect for the immune response of the host.

4. Discussion

In this study, we implemented a hybrid agent-based model
(hABM) for A. fumigatus infection in human alveoli under
physiological conditions to decipher the properties of a
chemoattractant responsible for guiding alveolar macrophages
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FIGURE 6 | Evaluation of parameters related to the AM

chemoattractant based on the fraction of first-passage-times above

6h. (A,B) summarize the results from Figure 4, where AM insertion followed

a uniform random distribution over the length of the boundaries of the

three-quarter alveolus. The case v = 2µm/min was left out as all parameter

combinations lead to p(FPT > 6 h) ≥ 0.05. In (C–E) AM were inserted into the

alveolus following a gradient-based probability distribution over the line

elements belonging to the boundaries. The highlighted areas denote the

regimes of parameters leading to timely detection of the conidium for the

directional persistence times tp = 1min (blue area) and tp = 2min (yellow

area) of AM under different migration speeds v. The variable

#λ (p(FPT > 6 h) < 0.05) denotes the fraction of simulated degradation rates

that lead to p(FPT > 6 h) < 0.05 for a specific combination of parameters D

and sAEC.

(AM). The multi-scale simulations account for the dynamics at
the cellular and molecular level, as well as the kinetics of binding,
internalization and re-expression of chemokine receptors onAM.
To scan the parameter space for combinations of parameters that
ensure the timely detection of a conidium in the alveolus, we
performed more than a million simulations of virtual infection
scenarios in the experimentally relevant regimes. We were able to
show that successful detection of the pathogen by AM is governed
by the choice of five experimentally undetermined parameters:
migration speed v and directional persistence time tp of AM as
well as the secretion rate sAEC, diffusion coefficient D and the
degradation rate λ of the chemokine.

Simulations of the chemokine dynamics on the inner surface
of the alveolus with its peculiar boundary conditions were
performed using an efficient and accurate finite difference
method on Voronoi cells (Sukumar, 2003) to solve the reaction-
diffusion equation on an unstructured triangular Delaunay
grid with close-to-equidistant grid points. We first studied the
chemokine profile in steady state under varying conditions in
an empty three-quarter spherical alveolus. Our results show that,
depending on the diffusion coefficient of the chemokine, the time
until a steady state is reached can vary from several minutes for
D ≥ 2000 µm2/min to several hours for D ≤ 60 µm2/min. This
revealed that our previous study, where the chemokine dynamics
was simplified by a probabilistic rule, is limited to infection

scenarios in the limit of high diffusion coefficients (Pollmächer
and Figge, 2014). In contrast, using the present approach we are
in the position to study A. fumigatus infection from the onset of
chemokine secretion by alveolar epithelial cells (AEC) induced by
the conidium and extending over the time period of establishing
a concentration profile until the conidium is successfully found
by one of the AM.

Since it was shown that AM require chemotactic cues
in order to timely detect the conidium before the start of
germination (Pollmächer and Figge, 2014), we here developed
the hABM to account for the spatio-temporal concentration
of chemokines in the alveolus. We implemented the receptor-
kinetics chemotaxis model of Guo et al. (2008) for AMmigration
on a grid with high spatial resolution to capture the spherical
alveolar surface with the pores of Kohn. The chemotaxis model
accounts for the binding of G protein-coupled receptors on
the surface of AM to the AEC-derived chemoattracting ligands
in the alveolar lining layer (surfactant). In general, eukaryotic
cells are able to sense spatial differences in receptor occupation
along the chemokine gradient by their relatively large size of
at least 10µm (van Haastert and Postma, 2007). In order to
sense shallow gradients in the chemokine concentration of 1–
5%, chemotactic cells are in addition able to sense temporal
differences in receptor occupation, which increases the signal-
to-noise ratio and implies higher probabilities of polarization
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directed along the gradient (van Haastert and Postma, 2007).
We extended the chemotaxis model of Guo et al. (2008)
by implementing AM sensing of the cumulated number of
newly bound receptors over directional persistence times. This
approach advances our previously applied phenomenological
chemotaxis model, which was based on a constant function
for the distance-dependent gradient strength (Pollmächer and
Figge, 2014). In the present study, AM were enabled to
sense dynamically changing local chemokine gradient strengths,
which implicitly contained morphological information, e.g.,
concentration gradients pointing away from boundary elements.
Simulations of the virtual infection scenario indicated that the
present AM chemotaxis model unifies the random migration
and chemotactic migration modes of our previous study in one
model. In particular, we showed that persistent random walk was
resembled for relatively low chemokine concentrations in the
alveolus.

The computation of the first-passage-time, i.e., the duration
until the conidium is detected by an AM for the first time,
revealed the relative importance of the parameters associated
with the chemokine distribution: the diffusion coefficient and
the rate of chemokine secretion by the AEC associated with
the conidium turned out to have a major impact, whereas
chemokine degradation played a minor role. In particular, we
found that the AEC secretion rate and the diffusion coefficient
had counteractive effects regarding the average concentration
of chemokines in the surfactant, i.e., decreasing the secretion
rate lowered the average concentration whereas decreasing the
diffusion coefficient increased it. Chemokines are diffusing in
the alveolar lining layer (surfactant), which shields AM from
the alveolar airspace, reduces surface tension and provides
immunoregulatory proteins (Herzog et al., 2008; Hasenberg
et al., 2013). In comparison with chemokine diffusion in
water, the relatively high viscosity of the surfactant (Alonso
et al., 2005) has the crucial effect to reduce the diffusivity
of chemokines and by that to lower the AEC secretion rate
required for the timely detection of the pathogen. We found
the ratio of the AEC secretion rate to the diffusion coefficient,
sAEC/D, to be the main indicator for the outcome of the
infection scenario. For specific values of the AM migration
speed and directional persistence time, this ratio subdivided the
parameter space into regimes of successful and unsuccessful
parameter combinations, whereas this separation was only
weakly depending on relevant degradation rates. The degradation
rate showed to have some impact in virtual infection scenarios
with relatively low diffusion coefficients, which was also the case
in the simulations associated with the steady state analysis. Thus,
decisive reduction of the chemokine amount available to AM
due to molecular degradation is only of importance for a highly
viscous surfactant. The specific morphology of human alveoli
plays an important role in this regard as chemokine reduction
was also a consequence of chemokine absorption at the pores
of Kohn and the alveolar entrance ring. A relative dominance of
chemokine decrease due to alveolar boundaries was determined
for relatively high diffusion coefficients, whereas relatively low
diffusion coefficients were accompanied with relatively high
chemokine degradation. This was attributed to reduced molecule

motion for reduced diffusion coefficients, thus, on average
molecules remained in the alveolus for a longer time period
before leaving through the alveolar boundaries. As observed in
our previous study (Pollmächer and Figge, 2014), AM required
a minimal migration speed of at least 4µm/min to discover
the fungal conidium before the onset of germination. However,
as shown in the present study, assuming a recruitment of AM
from neighboring alveoli that was based on the local chemokine
gradient, an average speed of 2µm/min was as well successful
for a specific subset of parameter combinations. This finding is
particularly interesting, because the actual AM migration speed
in the alveolus is not known today, but is typically expected to be
low (Hasenberg et al., 2013). Generally, our results show that the
communication between different types of host immune cells and
their reaction to threatening invaders needs to be finely tuned in
order to mount and orchestrate a fast and adequate response.

The specific chemokine and AM receptor that are involved
in the directed migration are not known today. It is well-
known that AM express, for example, the chemokine receptor
CXCR2 (Miller et al., 2003) that binds to the cytokine IL-8.
Moreover, the presence of complement proteins in the surfactant
yields the cleavage product C5a, and this anaphylatoxin is
a potential candidate for which AM chemoattraction was
observed (Farrell et al., 1990; Zipfel and Skerka, 2009). Resting
conidia of A. fumigatus activate the complement system entirely
by the alternative pathway (Kozel et al., 1989). Upon activation,
C3 is cleaved into C3b and C3a, with C3b opsonizing the
fungal surface and increasing uptake rates by macrophages (van
Lookeren Campagne et al., 2007). Furthermore, C3b induces
cleavage of C5 which leads to the production of the prominent
proinflammatory and chemoattracting cytokine C5a (Brakhage
et al., 2010). However, it is also known that resting A. fumigatus
conidia reduce the impact of the complement cascade by binding
complement regulatory proteins—such as factor H, FHL-1,
CFHR-1, C4BP and plasminogon—and by that reducing the
deposition of C3b molecules on their surface (Behnsen and
Hartmann, 2008). These data suggest that single conidia do
both trigger and counteract the complement cascade, such that
the mediated stimulus of chemoattraction and inflammation
is relatively weak and spatially confined. Nevertheless, it is
conceivable that these signals can be detected by the AEC
associated with the conidium and that this cell responds with
the secretion of the chemokines for AM recruitment. Supporting
evidence for this hypothesis is provided by a study of rat AEC of
type II: binding of C5a to these cells lead to increased expression
of the C5a receptor on the AEC surface and to the production
of macrophage inflammatory protein-2 as well as neutrophil-
chemoattractant-1 (Riedemann et al., 2002).

Our computational approach to investigate A. fumigatus
infection complements wet lab experiments. In vivo
measurements suffer from the circumstance that they can
only be carried out with high doses of conidia that do not reflect
the physiological condition of daily inhalation rates of a few
thousand conidia (O’Gorman and Fuller, 2008; Pollmächer
and Figge, 2014). The agent-based modeling approach allows
studying the early immune response, i.e., we modeled a setting
with those immune cells that are resident in alveoli and
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performed virtual infection simulations to low numbers of
conidia in a physiologically reasonable host-setting. Simulations
enabled narrowing down the experimentally relevant regime of
parameters to a subset of potential parameter combinations for
healthy individuals. These predictions may initiate further wet
lab investigations that should focus on quantitative aspects of
the early immune response, e.g., the relative contributions of
the complement system and the alveolar epithelial cells to the
daily challenge with A. fumigatus or the identification of the
specific chemokine for AM and the rate at which it is secreted
by AEC. Furthermore, if possible by sophisticated imaging
techniques in the future, it will be highly interesting to determine
values of AM migration speed and migration mode in their
natural environment to clarify their general role in the immune
response, e.g., as compared to neutrophil migration in the
alveolus (Mircescu et al., 2009).

In the context of studying fungal infections, image-based
systems biology is able to serve as a well-founded framework with
iterative cycles of exchange between experiment and theory and
involves imaging, quantitative characterization and modeling
of infection processes (Medyukhina et al., 2015). Methods for
image-analysis of fungal-host interactions (Mech et al., 2011;
Kraibooj et al., 2014; Brandes et al., 2015) and parameter-
free classification of cell-tracks (Mokhtari et al., 2013) have
been developed over the recent years and have paved the
way for the quantification and extraction of the information

contained in image- and video data. Furthermore, different
individual-based modeling approaches were successfully carried
out in combination with automated image-analysis to test
hypotheses and to draw predictions that might be tested in
future experimental research (Tokarski et al., 2012; Mech et al.,

2013; Hünniger et al., 2014). Experimental studies including
live-cell imaging in alveolar ducts would give the opportunity
to refine, to review and to extend the present virtual infection
model.
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