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The extracellular matrix (ECM) is vital to normal cellular function and has emerged as a key
factor in cancer initiation and metastasis. However, the prognostic and oncological values
of ECM organization-related genes have not been comprehensively explored in lung
adenocarcinoma (LUAD) patients. In this study, we included LUAD samples from The
Cancer Genome Atlas (TCGA, training set) and other three validation sets (GSE87340,
GSE140343 and GSE115002), then we constructed a three-gene prognostic signature
based on ECM organization-related genes. The prognostic signature involving COL4A6,
FGA and FSCN1 was powerful and robust in both the training and validation datasets. We
further constructed a composite prognostic nomogram to facilitate clinical practice by
integrating an ECM organization-related signature with clinical characteristics, including
age and TNM stage. Patients with higher risk scores were characterized by proliferation,
metastasis and immune hallmarks. It is worth noting that high-risk group showed higher
fibroblast infiltration in tumor tissue. Accordingly, factors (IGFBP5, CLCF1 and IL6)
reported to be secreted by cancer-associated fibroblasts (CAFs) showed higher
expression level in the high-risk group. Our findings highlight the prognostic value of
the ECM organization signature in LUAD and provide insights into the specific clinical and
molecular features underlying the ECM organization-related signature, which may be
important for patient treatment.
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INTRODUCTION

Lung cancer remains the leading cause of cancer death worldwide, accounting for ~11.4% of all new
cancer cases and 18.0% of all cancer deaths (Sung et al., 2021). Non-small-cell lung cancer (NSCLC)
accounts for ~85% of lung cancers and has a poor 5-year survival rate. Lung adenocarcinoma
(LUAD) is the most common pathological subtype of NSCLC and accounts for ~40% of NSCLC
cases (Piperdi et al., 2014). Surgical resection offers only the possibility for a cure at present. However,
most LUAD patients are diagnosed at the metastasis stage. Although recent progress in targeted
therapy and molecular pathology has facilitated clinical therapy, the 5-year overall survival (OS) rate
of patients with LUAD remains low. To date, the tumor-node-metastasis (TNM) staging system is
the gold standard for assessing prognosis and evaluating treatment results (Greene and Sobin, 2008).

Edited by:
Ana Rita Carlos,

University of Lisbon, Portugal

Reviewed by:
Gerardo Antono Cordero,

University of Lisbon, Portugal
Jose Escandell,

Instituto de Biologia e Tecnologia
Experimental (iBET), Portugal

*Correspondence:
Xiaofeng Zhu

zhuxiaofeng@scu.edu.cn
Yong Peng

yongpeng@scu.edu.cn

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 09 February 2022
Accepted: 03 May 2022
Published: 30 May 2022

Citation:
Zeng Z, Zuo Y, Jin Y, Peng Y and Zhu X

(2022) Identification of Extracellular
Matrix Signatures as Novel Potential

Prognostic Biomarkers in
Lung Adenocarcinoma.

Front. Genet. 13:872380.
doi: 10.3389/fgene.2022.872380

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8723801

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fgene.2022.872380

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.872380&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/articles/10.3389/fgene.2022.872380/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.872380/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.872380/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.872380/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhuxiaofeng@scu.edu.cn
mailto:yongpeng@scu.edu.cn
https://doi.org/10.3389/fgene.2022.872380
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.872380


The high heterogeneity of LUAD leads to different outcomes
among patients with the same TNM stage. Hence, it is imperative
to develop individualized treatments and predict outcomes for
patients with LUAD.

The extracellular matrix (ECM) regulates development and
maintains tissue homeostasis (Mammoto and Ingber, 2010).
Tumors often present desmoplasia, which is characterized by
an alteration of ECM (Lu et al., 2012). Cancer-associated ECM
can actively contribute to its histopathology and behaviors
(Levental et al., 2009). For example, patients with pancreatic
cancer exhibit marked stromal desmoplasia, which is often
associated with tumor progression and poor outcome (Pandol
et al., 2009). Breast cancer patients with high expression of matrix
remodeling genes such as MMPs (Matrix Metalloproteinases)
and collagen cross-linkers often have poor prognosis (Erler et al.,
2006). Similarly, lung tumors showed ECM remodeling with high
levels of hydroxylysine aldehyde-derived collagen cross-links and
lower levels of lysine aldehyde-derived cross-links (Chen et al.,
2015). Given that ECM alterations can contribute to a series of
abnormalities, an ECM based individualized prediction of
survival for patients with LUAD needs to be achieved.

In this study, we used four different LUAD cohorts, including
RNA sequencing (RNA-seq) and microarray data, to construct
and validate the ECM organization-related prognosis signature.
We further established a composite prognostic nomogram to
enhance clinical practice by integrating the ECM organization-
related prognosis signature with clinical characteristics (age and
tumor stage). In addition, the functional impact underlying the
ECM organization-related prognostic signatures was explored
between the high-risk and low-risk groups.

MATERIALS AND METHODS

Lung Adenocarcinoma Data Source
We systematically searched public gene expression data and
complete clinical annotation in TCGA and Gene Expression
Omnibus (GEO) databases. Four LUAD cohorts with both
expression data and clinical information (sex, age, TNM stage
and prognosis data) available were finally included in this study
(Supplementary Table S1), including TCGA-LUAD (443 LUAD
and 53 normal samples), two sets of RNA sequencing data,
GSE140343 (51 LUAD and 49 normal samples) and
GSE87340 (23 LUAD and 23 normal samples), and
microarray data GSE115002 (52 LUAD and 52 normal
samples) (Supplementary Table S2).

Data Preprocessing
For the high-throughput sequencing data from TCGA-LUAD
and GEO datasets (GSE140343 and GSE87340), raw read count
values were transformed into transcripts per kilobase million
(TPM) values, which are more similar to those generated from
microarrays. For the microarray data, the Agilent probe ID from
the microarray was annotated to gene symbols according to the
GPL13497 platform. For multiple probes that map to the same
gene, the mean expression value was calculated. The ensemble ID
for mRNAs from high-throughput sequencing data was

transformed to gene symbols via the biomaRt package
(Durinck et al., 2005). The final expression value for each
dataset was given in log2(TPM+1), and the batch effect in
each dataset was initially identified with box plot, then the
normalizeBetweenArrays function in limma (Ritchie et al.,
2015) was performed to remove batch effects in each dataset
in which the samples showed distribution of difference.

Differential Gene Expression Analysis
Between LUAD and Normal Samples
DESeq2 (Love et al., 2014) was used to perform DGE analysis
between LUAD and normal samples for each dataset. Genes were
selected as differentially expressed genes based on the statistical
threshold (|log2FoldChange| > 1 and adjusted p value < 0.05),
here log2FoldChange = mean(log2(LUAD)—mean(log2(normal
samples))). Then, the overlapping differentially expressed genes
of the four datasets were obtained, and Gene ontology (GO)
enrichment was performed on these genes with clusterProfile
package (Wu et al., 2021) in R.

Collection of ECM Organization Related
Genes
The GO enrichment results show ECM organization (GO:
0030198) was the top enrichment signature (Supplementary
Figure S1). ECM organization-related genes, defined as genes
related to a process that is carried out at the cellular level that
results in the assembly, arrangement of constituent parts, or
disassembly of external structures that lie outside the plasma
membrane and surround the entire cell, were collected from the
GO term (GO:0030198) in the AmiGO database (Carbon et al.,
2009). ECM organization-related genes shared among the eligible
LUAD cohorts were retained for further studies.

Identification of ECM Organization-Related
Prognostic Signatures
Univariate Cox proportional hazards regression analysis was first
performed on the expression matrix of ECM organization-related
genes to estimate the relationship between these genes and OS in
the LUAD samples of the TCGA-LUAD cohort. ECM
organization-related genes with a p value < 0.01 were selected
as potential prognosis-related genes. Then, the LASSO (least
absolute shrinkage and selection operator) penalty (Tibshirani,
1997) was performed with glmnet package (Simon et al., 2011) in
the discovery cohort to build an optimal prognostic signature
with the minimal number of ECM organization-related genes.
Tenfold cross-validation was conducted to tune the optimal value
of penalty parameter λ, which yielded the minimum partial
likelihood deviance. Then, a set of prognostic signature
candidates and their nonzero coefficients were identified. The
correlated variables were further removed, and finally
multivariate Cox proportional hazards regression analysis was
performed on the remaining ECM organization-related prognosis
signature candidates. A signature with a p value < 0.05 was
selected for the final candidates with independent prognostic
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potential. The genes that met the conditions were further
subjected to multivariate Cox proportional hazards regression
together with one or more potential signatures. Both the
univariate and multivariate Cox analyses were performed with
coxph function in survival package. And the final risk score for
the selected signature was calculated for each sample based on the
formula:

Risk score � ∑n

i�1Coefi × Ei

Where Coefi is the coefficient and Ei is the normalized
expression value of each selected signature by log2
transformation. The corresponding coefficients derived from
the TCGA-LUAD cohort were then used in the other three
validation datasets. Patients were dichotomized into high-risk
and low-risk groups using the best cutoff measured by receiver
operator characteristic (ROC) curves with pROC package (Robin
et al., 2011) for both training data and validation datasets (GEO
datasets). The performance of the signature model was evaluated
by time-dependent ROC curves with survivalROC package
(Heagerty et al., 2000). The performance of risk groups
determined by risk scores was assessed based on the overall
survival time difference between the high-risk and low-risk
groups. Kaplan–Meier curves were generated for survival rates,
with distance detection based on log-rank testing.

Development of a Composite ECM
Organization-Clinical Prognostic
Nomogram
The patients in the high-risk group of TCGA-LUAD cohorts were
further divided into three groups according to the risk scores, and
then multivariate regression analysis was performed on the risk
groups and clinical characteristics (age, sex, TNM stage and smoking
status). Based on the multivariate analysis results, we integrated age,
TNM stage and the ECM organization-related prognostic signature
to generate a composite prognostic model by applying a Cox
proportional hazard regression in the TCGA-LUAD cohort.
Then, a nomogram was generated for model visualization and
clinical application. The performance of the nomogram was
evaluated by time-dependent ROC analysis and calibration curves.

Immunohistochemical Analysis
Protein expression data were obtained from the Human Protein
Atlas (HPA) database, which is the largest and most
comprehensive database for evaluating protein distribution in
human tissues (Thul and Lindskog, 2018). The protein expression
of the selected prognostic genes related to ECM organization in
normal and lung cancer was determined using
immunohistochemical staining images. HPA064755 and
HPA005723 are antibodies for FGA and FSCN1 respectively.

Gene Set Enrichment Analysis
Based on the risk scores, the LUAD samples in TCGA-LUADdataset
were divided into high-risk and low-risk groups as mentioned above.
Then, DGE analysis between high-risk and low-risk group was
performed with DESeq2, and a pre-ranked list sorted by

log2FoldChange was generated to perform GSEA (Subramanian
et al., 2005), here log2FoldChange = mean(log2(samples of high-
risk group)—mean(log2(low-risk group))). TheMolecular Signatures
Database (MSigDB) is a collection of annotated gene sets for GSEA
software use (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
(Liberzon et al., 2015). Significant differences were demonstrated
in the hallmark gene sets of MSigDB (h.all.v7.2.symbols. GMT)
collection (Liberzon et al., 2015).

Weighted Correlation Network Analysis
In order to obtain the signature-related modules, WGCNA
(Langfelder and Horvath, 2008) was performed on LUAD
samples in TCGA-LUAD dataset. The gene module associated
with ECM organization-related prognosis was identified using
WGCNA according to the protocol and recommendations of the
WGCNA package. The top 5,000 most variant genes measured by
the median absolute deviation (MAD) were screened for WGCNA
performance. A scale-free topology fitting index R2 > 0.9 was set as
the threshold to construct the weighted gene coexpression network.
A biweight midcorrelation coefficient (r) ≥ 0.3 and p value < 0.05
were set as the thresholds for determining gene modules associated
with the prognostic signatures (Age, tumor stage, overall survival
time (day) and risk score).

Immune Heterogeneity Analysis
The presence of infiltrating stromal and immune cells in tumors
of TCGA-LUAD cohorts was estimated with estimate package
(Yoshihara et al., 2013). The population abundance of tissue
infiltrating immune and stromal cell populations was assessed
with MCPcounter package (Becht et al., 2016).

RESULTS

Overview of ECM Organization Related
Genes in LUAD
A total of 752 samples from four independent datasets (LUAD-
TCGA, GSE140343, GSE87340, GSE115002) were collected,
including 569 LUAD samples and 183 normal adjacent samples
(Supplementary Table S2). First, DGE analysis was conducted
between LUAD and normal samples across each dataset. Then,
GO enrichment was performed on the shared differentially
expressed genes, and the results showed that ECM organization
was the top enrichment signature (Supplementary Figure S1),
implying that ECM indeed plays an important role in LUAD
tumorigenesis and development. Therefore, we decided to explore
the prognostic potential of ECM organization-related genes. Then,
all related ECM organization (GO: 0030198) terms were collected,
344 (Supplementary Table S3) of which were present in all datasets.
The expression profiles of these genes between LUAD and normal
samples in each dataset are shown in Supplementary Figure S2.

Identification of ECM Organization-Related
Prognostic Signatures
Of 344 ECM organization-related genes, 54 were associated with OS
(Supplementary Table S4). The LASSO Cox regression algorithm
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was applied to perform feature selection (Figures 1A,B), and 13
ECM organization-related genes were retained. The expression
patterns of these genes were illustrated with GEPIA (http://gepia.
cancer-pku.cn/index.html) using LUAD samples from TCGA
compared to both TCGA and GTEx (Genome Tissue
Expression) normal samples (Figure 1C). The results suggested
that most of these genes were dysregulated in LUADs (n = 483)
compared with normal samples (n = 347).

Then, the correlated variable (FOXC2) was removed, multivariate
Cox proportional hazards regression analysis was performed on the
remaining related prognosis signature candidates, and the signature
with p value <0.05 was selected for the final candidates with
independent prognostic potential (Table 1). The genes that met
the conditions were further subjected to multivariate Cox
proportional hazards regression together with one or more

potential signatures. Three genes were ultimately used to establish
an ECM organization-related signature (Table 1). The
corresponding risk scores were computed for both the training
and validation datasets according to the following formula:

Risk score � 0.263 exp(COL4A6) + 0.0232 exp(FSCN1)
+ 0.0037 exp(FGA)

The patients in the TCGA-LUAD training set were divided into
high-risk and low-risk groups according to the best cutoff (risk score
cutoff = 3.284) measured by ROC curve analysis. Kaplan–Meier
survival analysis determined that patients with lower risk scores had
significantly longer OS than those with higher risk scores (p value <
0.00001; Figure 2A). ROC curves were utilized to evaluate the
predictive power, and the best area under the curve (AUC) was

FIGURE 1 | Identification of the ECM organization-related prognostic signature. (A) The changing trajectory of every single gene identified with univariate Cox
proportional hazards analysis. (B) The confidence interval at different value of λ. (C) The expression level of potential prognostic candidates in LUAD (GEPIA). These
genes were selected by Cox regression with LASSO. Dot plots profiling gene expression between LUAD (red dots) and normal adjacent lung tissues (green dots), with
each dot representing a sample. The TPM value was used to display the relative expression of these genes.
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TABLE 1 | Univariate and multivariate Cox analysis of 12 prognosis related ECM organization genes.

Genes Univariate analysis Multivariate analysis

HR p-value CI 95 HR p-value CI 95

B4GALT1 1.02 0.000173 1.009–1.03 - - -
FERMT1 1.065 0.000937 1.026–1.106 - - -
COL22A1 1.148 0.009639 1.034–1.275 - - -
COL4A6 1.264 0.000302 1.113–1.436 1.301 0.000249 1.130–1.498
CSGALNACT1 1.152 0.000158 1.07–1.24 - - -
FBN2 1.058 2.47E-05 1.031–1.086 - - -
FGA 1.003 0.0082 1.001–1.005 1.004 0.000462 1.002–1.006
FSCN1 1.022 5.86E-07 1.013–1.03 1.023 7.17E-08 1.015–1.032
ITGA6 1.019 0.00031 1.009–1.03 - - -
LOXL2 1.034 1.35E-07 1.021–1.047 - - -
LAMB1 1.036 5.28E-05 1.019–1.055 - - -
MYO1E 1.059 0.000406 1.026–1.094 - - -

FIGURE 2 | The prognostic value of the ECM organization-related three-gene signature. (A) Kaplan–Meier OS curves with difference detection by log-rank test for
patients from training data (TCGA-LUAD). Patients were divided into two groups according to the best cutoff measured by ROC curve. (B) Prognostic value of the ECM
organization-related three-gene signature evaluated by time-dependent ROC curves (1-, 3- and 5-year) in TCGA-LUAD datasets. The AUC for 1-year survival was 0.72.
(C–E) Kaplan–Meier OS curves with difference detection by log-rank test for patients from three validation datasets, GSE87340 (C), GSE140343 (D) and
GSE115002 (E).
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0.72 for 1-, 3-, and 5-year OS (Figure 2B). Consistently, patients in
three validation datasets were divided into two groups with different
cutoffs estimated by ROC curves (GSE87340: risk score cutoff =
3.260; GSE140343: risk score cutoff = 27.873; GSE115002: risk score
cutoff = 73.171), and patients with lower risk scores had significantly
longer OS (GSE87340: p value = 0.014; GSE140343: p value = 0.05;
GSE115002: p value = 0.1; Figures 2C–E).

Identification of Composite Prognostic
Nomogram
In addition to the ECM organization-related signature, clinical
characteristics such as age and TNM stage might also be

TABLE 2 | Multivariate Cox analysis of clinical characteristics and risk groups.

Factor HR CI 95 p-value

Age 1.03 1.01–1.1 0.004
Gender (male vs. female) 0.85 0.55–1.3 0.45
Tumor stage
II vs. I 2.91 1.77–4.8 < 0.001
III vs. I 3.63 2.18–6.0 < 0.001
IV vs. I 3.73 1.84–7.6 < 0.001

Risk group
High first vs. Low 2.96 1.71–5.1 < 0.001
High second vs. Low 2.04 1.05–3.9 0.035
High third vs. Low 3.06 1.75–5.3 < 0.001
smoke status (Non-smoking vs. Smoking) 1.31 0.68–2.5 0.423

The p-value with bold means the outcome is statistically significant.

FIGURE 3 | Identification of the composite prognostic nomogram. (A)Composite nomogram prediction of 1-, 3-, and 5-year OS. (B) Time-dependent AUC of ROC
curves for the nomogram, signature model and clinical data at different time points in the TCGA-LUAD dataset. (C) Calibration curves of observed and predicted
probabilities for the nomogram in the TCGA-LUAD dataset.
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independent prognostic signatures (Table 2), which implies their
complementary value. These clinical variables were integrated with
the 3-gene signature to further improve the prognostic accuracy using
the coefficients generated from themultivariate Cox regressionmodel
in the TCGA-LUAD cohort and derived a composite prognostic
model. A nomogram was then established for model visualization
and clinical application (Figure 3A). The composite nomogram
performed better than both the ECM organization-related
prognostic signature model and clinical model (Figure 3B). The
calibration curve detected an optimal prediction between the
nomogram prediction and actual observation (Figure 3C).

Expression and Clinical Features
Underlying the ECM Organization-Related
Prognostic Signature
LUAD samples in the TCGA-LUAD cohort were pooled to explore
the expression and clinical features of the ECM organization-related
prognostic signatures. The distribution of the survival status and

expression profile of COL4A6 (collagen type IV alpha 6 chain), FGA
(fibrinogen alpha chain) and FSCN1 (fascin actin-bunding protein 1)
between the high-risk and low-risk groups is presented in Figure 4A.
All three of these genes were risk-associated genes, as they showed
higher expression levels in patients with higher risk scores. COL4A6
was lower in LUAD samples than in normal samples (Figure 4B),
and the other two genes showed higher RNA expression in LUAD
samples, as well as the protein expression level (Figures 4B,C).
However, the expression levels of all three markers showed an
increasing tendency during the tumor TNM stage (Figure 4D).
Patients with advanced tumor stage (stage III and stage IV) were
significantly enriched in the high-risk group (Figure 4E). COL4A6
(collagen type IV alpha 6 chain) is a member of the COL4A family, a
major component of the basement membrane (BM), which may be
involved in tumor angiogenesis and progression (Socovich and
Naba, 2019). Ikeda et al. showed that COL4A6 was also
downregulated in colorectal cancer compared with normal
colorectal tissues and it might remodel the epithelial BM during
cancer cell invasion (Ikeda et al., 2006). However, the expression

FIGURE 4 | Identification of the expression and clinical features underlying the ECM organization-related prognostic signature. (A) The distribution of survival status
and expression profile of the three prognostic-associated ECM organization genes for the TCGA-LUAD dataset sorted by signature risk score in ascending order. (B)
The expression level of the three signature genes in LUAD (GEPIA). (C) Immunohistochemical analysis of the protein expression of FGA and FSCN1 in LUAD and normal
lung tissues in the HPA database. (D) Expression level of three signatures in different TNM stages of LUAD. (E) Histogram showing the distribution of TNM stages
between low-risk and high-risk groups.
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level of COL4A6 slightly increased with TNM stage, which may
imply its different roles in the tumor environment and needs to be
further explored.

Function Analysis of Genes Correlated With
ECM Organization Related Prognostic
Signature
Given that ECM plays an important role in cancer progression, we
subsequently evaluated the mRNA expression profile influenced by
the ECM organization-related prognostic signatures. We first
preranked the genes according to their fold changes between
high-risk and lower-risk groups calculated by DESeq2, then we
performed GSEA (Subramanian et al., 2005). The results indicated
that proliferation, metastasis and immune hallmarks, such as E2F
targets, G2M checkpoint, Myc targets, EMT and TNFα signaling via

NFKBwere significantly enriched in LUAD samples with higher risk
scores. In contrast, metabolism hallmarks, such as bile acid
metabolism and fatty acid metabolism were enriched in LUAD
samples with lower risk scores (Figure 5A).

Furthermore, we used WGCNA to obtain the signature-related
modules according to the approximate scale-free features. The top
5,000 most variant genes measured by the median absolute deviation
(MAD) were screened for WGCNA performance. We chose five as
the optimal soft threshold power to calculate the adjacency matrix,
which was the lowest threshold to enable the scale-free R2 to reach 0.9
(Supplementary Figure S3).We then construct a cluster dendrogram
with an adjacency matrix. Six color modules (yellow, blue, green,
brown, turquoise and gray) were identified (Figure 5B). Genes that
could not be included in any module were placed in the gray module.

Module-trait relationships between eigengenes of selected
traits and modules were evaluated. The blue module was

FIGURE 5 | Functional analysis of genes correlated with the ECM organization-related prognostic signature. (A) GSEA of the hallmark gene set for risk groups
based on pre-ranked fold change between high-risk and low-risk groups calculated by DESeq2. (B) Clustering dendrogram of the top 5,000 variant genes with
dissimilarity based on the topological overlap together with assigned module colors. (C) Module-trait relationships. Each row represents a module eigengene, each
column corresponds to a clinical trait, and each cell contains the corresponding correlation (upper number) and p value (lower number). (D) GSEA of the hallmark
gene set of genes in the blue module.
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highly significantly associated with the high-risk group (|R| > 0.3)
(Figure 5C). Functional enrichment analysis of genes in the blue
module, pre-ranked according to DESeq2 analysis between the
high-risk and low-risk groups mentioned above, was performed
to explore the biological functions. The results suggested that the
E2F targets, G2M checkpoint, and myc targets were significantly
enriched in genes of the blue module (Figure 5D). These findings
implied that the ECM organization-related prognostic signature
reflects the expression alteration of genes involved in multiple
cancer hallmarks in LUAD.

Immune Heterogeneity Underlying the ECM
Organization-Related Prognostic Signature
The tumor microenvironment encompasses host stromal cells and
noncellular components, including the ECM. Then, we explored the
relationship between the tumor microenvironment status and the
ECM organization-related signature to characterize their immune
heterogeneity. The stromal and immune scores, representing stromal
and immune cell infiltration status in tumor tissue, respectively, were
estimated for each sample of LUAD in the TCGA-LUAD cohort.

The results suggested that there was no difference in stromal and
immune scores between low-risk and all high-risk samples, while
stromal and immune scores decreased as risk scores increased in the
high-risk groups (Figure 6A). The MCPcounter algorithm detected
no difference in certain cells except for fibroblasts (Supplementary
Figure S4), and patients with higher risk scores had a higher
percentage of fibroblasts in tumor samples, especially in the high-
first and high-second groups (Figure 6B).

Fibroblasts are the major components of the tumor
microenvironment in most solid tumors, and activated cancer-
associated fibroblasts (CAFs) play important roles in cancer
development via their secretion of acellular components, such as
ECM (Socovich and Naba, 2019). IGFBP5, one factor can be secreted
by CAFs (Weigel et al., 2014), was significantly higher in all high-risk
groups (Figure 6C). CAFs can also secrete the cytokines
cardiotrophin-like cytokine factor 1 (CLCF1) and interleukin 6
(IL6) to directly stimulate the growth of tumor cells (Vicent et al.,
2012). Indeed, CLCF1 and IL6were significantly elevated in the high-
risk groups (Figures 6D,E). These results indicated that the activation
of fibroblasts in the tumor environment of LUAD likely contributes to
the worse prognosis of patients with LUAD in the high-risk group.

FIGURE 6 | Identification of immune heterogeneity underlying the ECM organization-related prognostic signature. (A) Differential expression of immune stromal
score and immune score among different groups. The high-risk group was further divided into three groups according to the risk scores. The asterisks represent the
statistical p values (pp < 0.05; ppp < 0.01). (B) Differential expression of fibroblasts among different groups. (C–E) Different expression levels of factors secreted by the
CAFs IGFBP5 (C), CLCF1 (D) and IL6 (E).
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DISCUSSION

Lung cancer remains the leading cause of cancer death worldwide.
The high morbidity rate of lung cancer is due to tobacco smoking,
genetic alteration, and outdoor and indoor air pollution (Hamra
et al., 2014). Although recent progress in targeted therapy and
molecular pathology has enhanced clinical therapy, the 5-year OS
rate of LUAD patients remains low (Qi et al., 2016). Hence, further
understanding of the molecular mechanisms underlying
tumorigenesis and progression of LUAD may enhance the overall
prognosis and treatment of this tumor.

The ECM is an important noncellular component that plays
essential roles in the development and progression of cancer.
Originally believed to be more of a static unit that maintains tissue
integrity, it was later recognized that the ECM is vital to normal
cellular function and has emerged as another key factor of cancer
initiation and metastasis (Alexander and Friedl, 2012; Lu et al., 2012).
In this study, we first constructed a three-gene ECM organization-
related prognostic signature to predict the prognosis of stratified
patients with LUAD. The identified signature was integrated with
clinical features, including age and TNM stage, to establish the
composite prognostic nomogram, which serves as a statistical tool
with great clinical applications to more accurately assess the overall
probability of specific outcomes for individual patients with LUAD.

COL4A6 is a risk-related gene in the three-gene signature model,
and it is amember of the COL4A family, which is amajor component
of BM. BM acts as a physical barrier for prohibiting invasion and
metastasis (Zeng et al., 2020). We found that COL4A6 was
downregulated in LUAD, while the expression level of COL4A6
slightly increased with TNM stage. Downregulation of COL4A6
could change BM constituents, making it possible for invasion or
metastasis of tumor cells. However, given the robust prognostic
potential of COL4A6, the impact of its increased expression on
TNMstagemay reveal the dynamics of ECM remodeling. Our results
provide some open questions to be addressed: why did COL4A6
show lower expression in LUAD but increased expression with TNM
stage? Does it play different roles in LUAD and normal lung tissues?

The functional impact underlying the ECM organization-
related prognostic signatures was finally explored between the
high-risk and low-risk groups, and fibroblasts were significantly
infiltrated in the tumor tissue of LUAD patients with higher risk
scores. Within the tumor stroma, not only cancer cells but also
resident fibroblasts, which differentiate into cancer-associated
fibroblasts (CAFs), modify the ECM. The ECM serves as a
reservoir for a number of growth factors and cytokines, which
are crucial for cell differentiation and proliferation (Taipale and
Keski-Oja, 1997; Hynes and Naba, 2012). The factors (IGFBP5,
CLCF1 and IL6) reported to be secreted by CAFs indeed showed
significantly higher expression in the high-risk group, suggesting
that fibroblasts in the tumor microenvironment of LUAD likely
contribute to the poor outcome in LUAD patients.

However, there are limitations in this study. First, the limited
sample number in the validation datasets made it impossible to
evaluate the prognostic value in each validation dataset. Second,
further in vitro and in vivo experiments regarding these prognostic-
related ECMorganization genes are required to validate our findings.

In conclusion, our study highlights the prognostic value of
ECM organization-related genes in LUAD and reveals an ECM
organization-related prognostic signature for further improving
the prognosis prediction of patients with LUAD with definite
TNM stage. The functional impact underlying the signature was
also explored. Our findings provide a basis for understanding the
roles of these genes in ECM organization and indicate the
potential clinical implications of these genes in LUAD.
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