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In extreme scale data processing systems, fault tolerance is an essential and indispensable part. Proactive fault tolerance scheme
(such as the speculative execution in MapReduce framework) is introduced to dramatically improve the response time of job
executions when the failure becomes a norm rather than an exception. Efficient proactive fault tolerance schemes require precise
knowledge on the task executions, which has been an open challenge for decades. To well address the issue, in this paper we design
and implement RiskI, a profile-based prediction algorithm in conjunction with a riskaware task assignment algorithm, to accelerate
task executions, taking the uncertainty nature of tasks into account. Our design demonstrates that the nature uncertainty brings not
only great challenges, but also new opportunities. With a careful design, we can benefit from such uncertainties. We implement the
idea in Hadoop 0.21.0 systems and the experimental results show that, compared with the traditional LATE algorithm, the response
time can be improved by 46% with the same system throughput.

1. Introduction

Nowadays we are witnessing extreme scale data processing
systems that employ thousands of servers to coordinately
accomplish jobs [1]. In systems of such a large scale, hardware
failure becomes a norm rather than an exception and the
fault tolerance becomes an indispensable part of the system
scheduling [2]. For example, in an early report inMarch 2006,
Google reported that at least one server would fail every day,
and each job would experience five failures. Besides, a single
failure on job could cause completion time to increase by up
to 50% [3, 4]. When the system scales, the problem becomes
even more severe.

In traditional approaches, the fault tolerance is provided
in a reactivemanner. Failed jobs are reexecuted until they suc-
ceed. As the systems scale up, this simple reactive scheduling
scheme becomes inefficient because the failures will become
increasingly more frequent. In the extreme case, job may be
executed forever due to continuous failures.

To well address this issue, a more promising approach
is the proactive fault tolerance scheme. For example, in
the MapReduce computational model [5, 6], the speculative
execution is employed. Speculative execution will monitor

the execution status of the subjobs (called tasks) and predict
the execution failures. Once a task is obviously slower than
the others (called straggler [6] or outlier [7]), a backup task
will be executed to ensure the successful execution of the task.
Similar proactive mechanisms are employed by other large
scale data processing systems such as Mesos [8], Dryad [9],
and Spark [10].

Speculative execution can dramatically reduce the exe-
cution time of tasks and bring great advantages on system
response time. It is, however, on the cost of system through-
put. To allow speculative executions, certain amount of the
system resources will be allocated to execute backup tasks
rather than new tasks, demoting the system throughput that
depends on the allocated resources. In other words, there is a
fundamental tradeoff between the overall system throughput
and the response time of individual tasks. A well designed
fault tolerance scheme should strike the best tradeoff between
the two objectives.

Efficient fault tolerance schemes raise great challenges to
the system designers. First, the optimal scheduling requires
the precise knowledge on the execution time for each task
[5, 6], which is very difficult, if not impossible in practice
[11]. Robust scheduling algorithms can tolerate the inaccurate
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Input: Task 𝑥, Node 𝑎;
Output: Prediction time [𝑡min, 𝑡max]; weighting scheme 𝑊𝑘;
(1) 𝑑 ← 0, Task 𝑧;
(2) for each Task 𝑦 in database profile do
(3) compute 𝑑 (𝑥, 𝑦);
(4) if 𝑑 (𝑥, 𝑦) > 𝑑 then
(5) 𝑑 ← 𝑑 (𝑥, 𝑦);
(6) 𝑧 ← 𝑦;
(7) end if
(8) end for
(9) 𝑇 (𝑧) ← [𝑡min, 𝑡max]
(10) Running Task 𝑥;
(11) 𝑇 (𝑥) ← 𝑡;
(12) compute 𝑅𝑖𝑗;
(13) while not the minimum ∑

𝑛

𝑖=1
∑
𝑛

𝑗=𝑖+1
(𝐿 𝑖𝑗

2
+ 𝑀𝑖𝑗

2
) do

(14) adjust weighting scheme 𝑊𝑘 = (𝑤𝑖, 𝑤𝑗, 𝑤𝑘, 𝑤𝑙, . . .);
(15) end while

Algorithm 1: Algorithm for task execution time prediction.

execution time information, but on the cost of the scheduling
optimality. The widely adopted virtualization technology
(e.g., [12]) makes the problem even more challenging.

Second, our later empirical experiments (in Section 3)
will demonstrate that the task execution time in such a large
scale is not a precise time but naturally contains uncertainties.
It can only be confined to a range of time even when the same
task is executed in the same environment.

Third, assuming the execution time is available for every
task, a slower task is not necessary the straggler because of
the different launch time of tasks [5]. The very nature of the
MapReduce environment makes trouble in finding correct
stragglers. The successful identification of stragglers requires
much more design intelligence [6].

To well address these challenges and provide an efficient
fault tolerance scheme, in this paper we propose a novel
approach that exploits the very nature of the MapReduce-
like large scale data processing systems. Our approach, called
RiskI, is inspired by two observations. First, in such extreme
scale data processing systems, jobs are periodically executed
and thus we can collect the history information of a task to
predict its future execution time. Second, the task execution
time is naturally uncertain, and thus we can explore the
risk management theory to assign tasks. For example, a
faster node in average is not necessary to be a better node
unless it can reduce the execution time for the whole job.
To summarize, the main contributions of this paper are as
follows.

First, we collect real traces from aMapReduce production
system and find the uncertain nature of task execution time
in such systems. We conduct comprehensive experiments to
investigate the impact factors of the task uncertainties.

Second, we define a similarity measure to quantify
the difference between executed tasks in system, based on
which we design a task execution time prediction algorithm
(Algorithm 1). Note that the output of the prediction is a
range of time with probability distribution rather than a
precise time.

Third, being aware of the task execution uncertainty, we
design a risk management based task assignment algorithm
and implement it on top of a Hadoop 0.21.0 production
system. We conduct comprehensive experiments to evaluate
the performance. Compared with the state-of-art scheduling
algorithm LATE [6], the job response time can be improved
by up to 46%with the same system throughput and compared
with the nativeMapReduce schedulingwith no fault tolerance
capability, the performance degradation of our scheduling is
neglected small.

The remainder of the paper is organized as follows.
In Section 2, we give a review of the related works on
performance prediction and task scheduling in distributed
systems. In Section 3, we first introduce the background
information of modern extreme scale data processing sys-
tem and motivation of this work. In Section 4, we present
our empirical study results revealing the very nature of
the task execution uncertainty. We present our design on
task execution time prediction and the risk management
based scheduling in Sections 5 and 6, respectively. We will
present the performance evaluation in Section 7 and draw a
conclusion with the future work directions in the last section.

2. Related Work
Fault tolerance and task assignments have been widely stud-
ied, especially in traditional distributed system [13]. Research
topics mainly include performance modeling and prediction
[11], task assignment [14], heuristic algorithm [15], resource
allocation [8], and fairness [16]. In our work, wemainly focus
on two aspects, namely, the performance prediction and task
assignment.

Performance modeling is a conventional way of predict-
ing the execution time of tasks in advance of executions [17].
The design philosophy is to have a comprehensive under-
standing on machine capabilities and application features
so that the execution behavior of the machines can be well
characterized. Snavely et al. [11] proposed a framework for
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performance modeling and prediction on large HPC system.
Their work focused on characterizing machine profiles and
application signatures. Prediction is made by a proper convo-
lution method. Modeling-based prediction works well under
the condition of comprehensive understanding the machines
and applications, complicated convolution method. These
factors above may have the effect on prediction accuracy.
Some works employed queuing network models [18–21] to
represent and analyze resource sharing systems. The model
is a collection of interacting services centers representing
system resources and a set of customers representing the
users sharing the resources. Another model is a simulation
model [22] and it is actually the most flexible and general
analysis technique. The main drawback is its development
and execution cost. Petri nets can also be used to answer
performance-related questions since they can verify the
correctness of synchronization between various activities of
concurrent systems [20, 23, 24].

Our work differs significantly from this literature as we
make our prediction based on historical execution record.
Because of considering a heterogeneous environment in
MapReduce, getting such information is much costly and
difficult. First, collecting and analyzing sufficient charac-
terizations of the ability of the machine are an inefficient
work. It needs to run low-level benchmarks for gathering
performance attributes. It may be applicable for HPC sys-
tem where the environment is homogeneous, but it is not
practical in practical heterogeneous environments. Second,
virtualization in computer makes some resource sharing
invisible. Third, capturing and analyzing application features
will introduce extra overhead. So, it is rarely possible to
employ modeling-based method to predict execution time of
task in MapReduce anymore.

Task assignment problem is also a very active research
area, especially in traditional distributed system [25–28].
Much of works leverage precise time prediction for schedul-
ing decision making [29, 30]. Other works concentrate on
the target of load balance [31, 32]. However, in heterogeneous
environment, the blind pursuit of load balance does not bring
better performance any more.

Real-time scheduling [29] is relative work. Most works
employ theworst time for scheduling tomeet the requirement
of real time and avoid the loss of uncertainty. Our work is
also related to coscheduling [30] in multicore system, par-
ticularly with processor heterogeneity. Jiang et al. proposed
a scheduling police based on prior knowledge that accurate
threads execution times were known to the system. With
this advanced knowledge, they can make better scheduling
decisions. In contrast, our scheduling has no such precise and
global information. Instead of making scheduling decisions
based on precise time estimation, we take into account the
fact that our prediction is a range of time.

Task assignment problem in MapReduce is still in the
beginning since MapReduce adopted a simple scheduling
police which is easy to implement. The master will assign
a task to a tasktracker without considering its ability and
possible execution time. It is only to lunch the task as
early as possible. Run-time stragglers have been identified
by past work. For the sake of reducing the response time of

job, LATE [6] schedules a duplicate task for the straggler,
which is named as speculative execution. However, since
no distinction is made between tasktrackers, LATE cannot
guarantee the speculative execution to be successful. So the
effect of speculative execution is by chance totally. Delay
scheduling [33] is another closed work we know of to our
own. They begin to distinguish the tasktrackers with data
locality. It schedules task as far as possible to the tasktracker
who meets the need of data locally. Mantri [7] uses the
progress rate instead of the task duration to remain agnostic
to skews in work assignment among tasks.

Our work is different from above as we recognized the
distinction of performance between working nodes. First,
we investigated how to estimate the response time for a
task on different working nodes. Instead of modeling-based
method, we make our prediction through learning from
experience. Second, since our prediction is a range of time
which combines with confidence interval, we employed the
method from risk of decision making to help us make
scheduling decisions.

3. Motivation

In this section, we provide some background information of
the MapReduce-like computing environments as the back-
ground information. We first describe the working mecha-
nism of the MapReduce and elaborate how the speculative
executionmechanismworks.With simple examples, we point
out the limitations in existing systems.

3.1. MapReduce Background. MapReduce is a typical rep-
resentative of the modern parallel computing environment
that provides extreme scale support. Hadoop is an open
source implementation of MapReduce. Besides MapReduce
and Hadoop, there are many other similar MapReduce-like
computing frameworks such as theMesos [8], Dryad [9], and
Spark [10]. All these frameworks share a common idea.

Roughly speaking, a computational system contains a
master node and a number of working nodes. The master
node splits the job to a number of nearly independent tasks
and assigns them to working nodes. As these tasks are
nearly independent, the parallelism can be fully exploited.
As illustrated in Figure 1, a computation job mainly has three
stages: the Map tasks for processing the raw data, the shuffle
stage is to transfer the intermediate value, and the Reduce
tasks that come out with the final results. Each working node
has a number of slots for running the tasks. When a task
finishes, the slot will be freed for the other task usage.

In extreme scale data processing systems, the traditional
reactive fault tolerance scheme becomes ineffective because
of the large number of failures and the long response.
And thus, MapReduce framework adopts a proactive fault
tolerance scheme. More specifically, when a task in execution
is much slower than other tasks in the same job, speculative
execution will be invoked to cope with this slowest task
(called straggler [6]). In fact, because there is little depen-
dence between tasks, the response time of a job is only
determined by its straggler. To reduce the job response time
and provide efficient proactive fault tolerance, we only need
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Figure 1: MapReduce computation framework that the job is split
to two kinds of tasks, Map and Reduce. Different tasks are nearly
independent so that different tasks can be executed in a parallel
manner.

to accelerate its straggler while not delaying the other tasks
too much so that new stragglers appear.

Speculative execution is based on a simple principle.
When the straggler is identified, a backup task will be
executed for the straggler, hoping the backup can be finished
earlier than the straggler. As long as one wins, that is, either
the original straggler or the backup one finishes, the otherwill
be killed. It is essential to trade the system resources (and thus
the overall throughput) to fuel the executions of individual
jobs.

3.2. Challenges. In practice, efficient speculative execution
faces many challenges. A crucial fact is that the backup
task is not necessary to be the winner (finishes earlier).
Speculative execution may fail, meaning that though the
backup is invoked, the original straggler finishes earlier
than the backup. When this happens, we in effect waste
the resource allocated to backup task but make no benefit
on response time. In other words, not all the speculative
executions are profitable. We thus argue that the efficiency
of the speculative execution highly depends on the wining
rate of the backup tasks, defined as the percentage of the
backup task that is finished earlier than the straggler. The
main objective of this paper then becomes to increase the
wining rate of backup tasks.

This is a very challenging issue in practice. First, stragglers
can only be identified when they have been executed for a
while, and thus the backup task starts always at later time.
The backup must be sufficiently faster than the straggler
to be the winner. This requires the accurate knowledge on
the execution time of both stragglers and backup tasks. In
literature, however, accurate prediction for task executions
has been an open challenge for decades in traditional parallel
systems. It is partially because, in traditional approaches [11],
it is assumed that we have the comprehensive understanding

of the machine capability and the job workload.This requires
a great deal of measurement efforts, which are prohibitively
high in a highly dynamic and heterogeneous environment
as we are in. The application of virtualization makes the
problem even challenging as resources become virtualized
in an invisible manner. The real capability of each machine
(virtual machine or virtual storage) is hard to measure.

Second, stragglers are difficult to identify. We are facing
the dilemma that, on one hand, we desire an early iden-
tification of the stragglers so that the backup tasks have a
larger improvement space and their wining becomes easier.
On the other hand, later identifications of stragglers are more
likely to be accurate as the stragglers may change during the
execution.

Third, optimal speculative execution requires the precise
execution time of tasks; for example, a task will be finished
in 15 seconds. Unfortunately, uncertainty is a nature in
MapReduce. The execution time of a task is within a range
of time even under the same computing environments.
Such an uncertainty is a double-blade sword. On the one
hand, there will be no optimal assignment schemes in prior
execution and thus to find the optimal one in advance
is impossible. On the other hand, recall that the straggler
determines the response time of jobs, and thus there will be
multiple assignment schemes that perform exactly the same
as the optimal assignment. In other words, even when our
assignment scheme is not the optimal one, the performance
may not be degraded. This property greatly eases the design
challenges. In later sections, we will show how to benefit from
this by applying the theory of decisionmaking under risk and
uncertainty.

4. Observation

In this section, we study the fundamental characteristics of
the task execution in MapReduce environments. We first
use experimental results to reveal the uncertainty nature
of task executions, and then demonstrate the repeatable
execution property of tasks. In the last, we will show that by a
simple similarity-based scheme the degree of execution time
uncertainty can be dramatically reduced.

4.1. Uncertainty of Task Executions. In this part, we use
experimental results to reveal the uncertainty nature of
the MapReduce. We configure a standard Hadoop system
version 0.21.0 (Hadoop is an open sourced implementation
of MapReduce) with four machines and run a WordCount
application [34]. In our experiments, 128 Map tasks and one
reduce task are executed and the results are presented in
Figure 2.

Figure 2 shows that the execution time ranges from 39 s
to 159 s, with the average of 80 s. The standard deviation
(Std) is 27.42 s. Note that the MapReduce system will equally
split the Map tasks, and thus the workload of these 128
map tasks is nearly identical. We thus argue that uncertainty
is a nature in MapReduce. On the other hand, even if
identical tasks were executed in the identical machines or the
same task repeatedly running under the same environment,
the execution time is not identical but stable. Figure 4(a)
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Figure 2: Execution time of tasks. There are 128 map tasks in total
and each execution time of task was plotted.

shows the CDF of response time of the task which was
repeatedly running for 20 times in the same condition (we
choose two tasks from two different jobs). We can figure
that the execution time is also uncertain. By this nature, the
traditional model-based task execution prediction algorithm
is costly and will fail as the implicit assumption of this
algorithm is that a task will behave the same under the same
environment. However, we also find that the execution time is
stable, whichmeansmost time is within a small range of time.
So we argue that a reasonable prediction for the task should
be a range of time with probability distribution.

4.2. Repeated Execution of MapReduce Tasks. In MapReduce
environments, most of the jobs are batch for extreme scale
data processing. The spirit is that moving the program is
less costly than moving the data [5]. Consequently, the same
jobs are repeatedly invoked to process different data [35].
For example, Facebook, Yahoo!, and eBay process terabytes
of data and event logs per day on their MapReduce clusters
for spam detection, business intelligence, and various opti-
mizations. Moreover, such jobs rarely update. An interesting
observation here is that the executions of a job in the past can
be of great value for future.We can build profiles for each task
and refer such profile to predict the job future executions.

Besides the similarity between tasks of different jobs,
in some instance, similarity also exits in tasks of the same
job. Because the number of tasks may be more than the
number of slots, tasks may start and finish in “waves” [35].
Figure 6 shows the progress of the Map and Reduce tasks of a
WordCount job with 8GB data.The 𝑥-axis is the time and the
𝑦-axis is for the 34 map slots and 10 reduce slots. The block
size of the file is 64MB and there are 8GB/64MB = 128 input
splits. As each split is processed by a different map task, the
job consists of 64 map tasks. As seen in the figure, since the
number of map tasks is greater than the number of provided
map slots, the map stage proceeds in multiple rounds of slot
assignment and the reduce stage proceeds in 3 waves. From
the figure we can find that the tasks assigned to the same
working node have the close execution time. The similarity
exists between different waves on each node in map stage.

In Figure 2, we reorganize the execution time of tasks in
Figure 3 while, this time, tasks executed in the same machine
will be grouped together. Table 1 gives the maximal and
minimal average and Std of these tasks in each group. Com-
pared with that in the original configuration, the Std reduces
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Figure 3: Reorganized execution time of tasks. Tasks in the same
node were plotted together.

Table 1: Execution time statistics for 128 map tasks from job word-
count.

Avg. Std Max. Min.
Total 80 27.42 159 32
Node 1 108.61 18.46 159 80
Node 2 92.66 9.68 116 75
Node 3 73.61 5.61 84 63
Node 4 43.5 4.94 54 32

dramatically, for example, by 33% as from 27.42 to 18.46. This
is because the four machines have the different hardware
and tasks in different machines will experience the different
resource sharing conditions. Nevertheless, tasks in the same
machine will experience a more “similar” environment. This
shows that a simple approach, with the similarity of tasks
taken into account, can dramatically reduce the uncertainty.
Next, we will show how to exploit such similarity.

It should be pointed out that the execution environ-
ment we mentioned above includes two parts. Except from
the hardware configurations from different machines, tasks
which are running parallel on the same execution unit (as
known as tasktracker in Hadoop) can also affect execution
environment. Based on different configuration, one or more
tasks will run on the same tasktracker, which will cause
resource contention and impact on execution time.

4.3. Design Overview. Keeping the uncertainty and tasks
similarity nature in mind, in this paper we propose a novel
proactive fault tolerance scheme inMapReduce environment.
As illustrated in Figure 5, the design, named as RiskI, is
constituted of two components: (i) a profile-based execution
time prediction scheme and (ii) a risk-aware backup task
assignment algorithm. The basic idea is that we build a
profile for each executed task in history and refer the profile
of a similar task (in terms of its own property and the
environment) to predict a new task in execution. As the
uncertainty is a nature that cannot be completely avoided,
we design a risk-aware assignment algorithm that can benefit
from such an uncertainty by exploring the theory of decision
making under uncertainty. Our goal is to maximize the
assignment profiting and minimize the risk meanwhile.
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Figure 4: Execution time.
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Figure 5: RiskI has two main parts, a profile-based execution
algorithm for task execution time prediction and a risk-aware
backup task assignment algorithm used to make scheduling based
on range of time.

5. Execution Time Prediction

In this section, we will introduce how to leverage historical
information to predict the execution time for tasks. We first
present the architecture of the prediction algorithm and then
introduce the components, respectively. In the last, we use a
pseudocode to present details of the design.

5.1. Prediction Algorithm Architecture. The prediction of the
job execution is based on a simple idea. For each executed
task, we will maintain a profile to record its execution
information. When predicting a new task, we refer to these
historical profiles and look for the most similar task. Its
execution time will then be our prediction result. Notice
that due to the uncertainty nature of the job execution, the
output of our prediction is also a range of time, indicating the
maximum and minimum of the execution time, rather than
a single value.

The prediction algorithm mainly consists of four steps,
as illustrated in Figure 7. We first make a similarity search
and look for the most similar task in history. Tasks will then
be assigned and executed according to our predictions. As
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Figure 6: “Waves” in execution. Since the number of tasks is more
than task slots, tasks were executed in “waves.” In our example, there
are 9 waves in node 4 and 3 waves in node 1.

long as the execution is finished, we will adjust some critical
control parameters and maintain the profiles for the next
tasks. Noticing that there is no absolute the same between
tasks, the key in the prediction algorithm design is the
similarity of definition for any given two tasks that can yield
the best prediction results. Next, we will give details on these
steps.

5.2. Similarity Scheme. The similarity of two tasks can be
affected by many factors such as the number of read bytes
and the number of write bytes. In our work we apply all these
factors, while our method has the adaptive capability that,
for factors of little impact, they will be ignored automatically.
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Figure 7: Our prediction has four steps. Upon a new task is in
prediction, we firstly look for the most similar task in history and
then make a prediction based on similar task. Then, we wait for the
task running and record the running information and adjust weight
setting scheme.

This is done by applying an appropriate similarity scheme,
that is, how to obtain the similarity based on these factors.

In literature, there are several approaches to measure
the similarity that measures the similarity between tasks
in different aspects. For example, the weighted Euclidean
distance (WED) [36] measures the actual distance between
two vectors, the cosine similarity measures the direction
information, and the Jaccard similaritymeasures the duplica-
tion ratio. Considering the requirement of ourwork,we adopt
WED and leave more design options for future work.

Definition 1. Given two tasks 𝑋 and 𝑌 with their affecting
factor vectors 𝑥𝑗 and 𝑦𝑗 and a weight scheme 𝑤𝑗, the
similarity between the two tasks can be calculated as follows:

𝑑 (𝑋, 𝑌) =
2
√

𝑛

∑

𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑦𝑖)
2
, (1)

where 𝑛 is the number of affecting factors and 𝑤𝑗 is a weight
scheme that reflects the importance of the different affecting
factors on the similarity.

5.3. Weighting Scheme. Weighting scheme determines the
impact of the affecting factors on the similarity measure.
In practice, different machines may have different weighting
schemes because of the different hardware. For example, for
a CPU-rich machine, the IO may become the bottleneck
of the task execution and therefore IO-related factors are
more important, while IO-rich machines may desire CPU-
related factors. To well address the issue, we apply a quadratic
programming method to dynamically set the weighting.

Quadratic programming is a mature method for weight
scheme setting in machine learning [15]. Our aim is to
minimize the differences between the similarities calcu-
lated from our WED and the real differences obtained

Table 2: A rough weight scheme for job wordcount.

Factors Weight
Job name
Work node
Input size 34.5%
Environment

Task 1 (randomwrite) 33.6%
Task 2 (wordcount map) 15.8%
Task 3 (BBP) 14.1%

Others 2%

by comparing the real execution time. Supposing there
are 𝑛 task records in the node and each has 𝑞 affecting
factors, the constrains in the problem can be presented
in formulas (2) and (3), in which 𝑆𝑖𝑗𝑘 is the similarity on
the 𝑘th attribute between task 𝑖 and task 𝑗, ∑

𝑞

𝑘=1
𝑆𝑖𝑗𝑘𝑊𝑘 is

the similarity between task 𝑖 and task 𝑗 calculated using
formula (1), and 𝑅𝑖𝑗 is the real similarity between task 𝑖 and
task 𝑗 calculated by real execution time. 𝐿 𝑖𝑗 is the value by
which the calculated similarity is less than the real similarity,
and 𝑀𝑖𝑗 is the value by which the calculated similarity is
greater than the real similarity:

Minimize:
𝑛

∑

𝑖=1

𝑛

∑

𝑗=𝑖+1

(𝐿
2

𝑖𝑗
+ 𝑀
2

𝑖𝑗
) (2)

Subject to:
𝑞

∑

𝑘=1

𝑆𝑖𝑗𝑘𝑊𝑘 + 𝐿 𝑖𝑗 − 𝑀𝑖𝑗 = 𝑅𝑖𝑗

(𝑖, 𝑗 = 1 . . . 𝑛, 𝑖 < 𝑗)

(3)

𝑅𝑖𝑗 = 1 −

min {




𝑡 − 𝑡max





,




𝑡min − 𝑡





}

max {𝑡, 𝑡avg}
, (4)

where 𝑡 is the real execution time and the prediction time
is [𝑡min, 𝑡max]. 𝑡avg presents the average time of prediction.

As there is no comprehensive analysis of the complexity
of quadratic programming problems, our analysis only can
indicate how large this quadratic programming problem can
be, but not the actual complexity of the problem. From the
above formalization, the quadratic programming problem
has 𝑛 ∗ (𝑛 − 1) + 𝑞 variables and 𝑛 ∗ (𝑛 − 1) constraints.

The general factors used in calculating similarity include
job name, node name, input size, workload, output size, and
the parallel task that is running on the same node. We figure
a rough weight scheme for job wordcount in one node. We
showed it in Table 2. From the table we can see that the factor
input size and IO-heavy task like randomwrite influence the
execution time most.

6. Risk-Aware Assignment

In this section, we introduce our risk-aware assignment
algorithm that attempts to benefit from the uncertainty of
task executions. We first characterize the unique features
and design overview of task assignment with uncertainty
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Figure 8: Flowchart of risk-aware assignment.

and then present the theory of decision making under
uncertainty, which is the theoretical foundation for our risk-
aware assignment. At last, we introduce our assignment
algorithm based on the theory.

6.1. Design Overview. Themethod is presented as follows: in
the first step, by comparing the average execution time of
all the running tasks and the passed running time, we find
out the straggler; in step two, we check out all the available
work nodes and make the execution time prediction; in step
three, wemake the execution time prediction for the straggler
running on the available node, in step four, with the help of
the theory of decision making under risk, the most expected
profiting assignment was chosen for speculative execution.
If the new assignment can guarantee the speculative success,
the original task can be killed. Figure 8 is a flowchart of our
risk-aware assignment design. The main challenge is how to
leverage theory of risk decision to help us assign task.

6.2. Theory of Risk Decision. Since our prediction is a range
of time, how to compare two ranges of time is another issue
to help decision making. A direct method is comparing the
average time of two ranges, and the distance of two average
values is the time profit or time loss. The average time works
well in the condition where time profit is uniformed per unit
of time. However, this assumption is broken in MapReduce.
As we mentioned in Section 3, because of the existence of
straggler, the time profit is only related to the last finish time,
but care nothing about the time before last finish time. In
other words, may be some tasks would finish faster, it is still
helpless for the execution time of the job, because the job
would be finished after all the tasks were executed. Under
this condition, time profit is different per unit time and the
decision making under risk was introduced.

In many fields, risky choice and the selection criterion
are what people seek to optimize. There are two parts

included in risk of decision making, risk assessment and
risk management. Risk assessment is in charge of evaluating
risk or benefit and risk management takes responsibility
for taking appropriate actions to control risk and maximize
profit. Expected value criterion is also called Bayesian princi-
ple. It incorporates the probabilities of the states of nature,
computes the expected value under each action, and then
picks the action with the largest expected value. We can
calculate the potential value of each option with the following
equation:

𝐸 (𝑋) = ∑

𝑥

𝑃 (𝑥)𝑈 (𝑥) , (5)

where 𝐸(𝑋) stands for the expected value. The
probability 𝑃(𝑥) of an event 𝑥 is an indication of how
likely that event is to happen. In the equation, 𝑈(𝑥) denotes
the profit and loss value of 𝑥. The summation range includes
every number of 𝑥 that is a possible value of the random
variable 𝑋.

6.3. Profit Function and Unique Feature. First, the function
𝑃(𝑥) is easy to get from historical statistic. As mentioned
before, 𝑃(𝑥) is the probability of the occurrence of state 𝑥. In
our case, 𝑃(𝑡𝑖, 𝑡𝑗) represents the probability that the real exe-
cution time falls in the area between [𝑡𝑖, 𝑡𝑗]. This probability
can learn from statistic information in history. For example,
the output of prediction is a set 𝑇 = {𝑡min, 𝑡𝑖, . . . , 𝑡𝑗, 𝑡max} in
which the 𝑡𝑖 was sorted by its value. Since the prediction is a
range of time with a probability distribution, we can exploit
the probability distribution to compute the 𝑃(𝑡𝑖, 𝑡𝑗) with the
following equation:

𝑃 (𝑡𝑖, 𝑡𝑗) =






[𝑡𝑖, 𝑡𝑗]⋂𝑇







|𝑇|

, (6)

where |𝑇| is the number of elements in the set𝑇 and |[𝑡𝑖, 𝑡𝑗]⋂

𝑇| is the number of elements falling into range [𝑡𝑖, 𝑡𝑗].
Next, we will take an example to explain our definition for

profit function 𝑈(𝑥). As shown in Figure 9(a), the execution
time of task is a nature uncertainty and the assignment
scheme should be aware of the potential risks. In Figure 9(b),
because of the existence of straggler, the time profit is only
related to the last finish time which was denoted as 𝑡𝑠. Under
this condition, time profit is different per unit time and is
divided into two parts which are part one [𝑡𝑖, 𝑡𝑠] and part
two [𝑡𝑠, 𝑡𝑗] and we plotted them in Figure 9(c). The profit
function 𝑈(𝑥) can be calculated as

𝑈(𝑡𝑖, 𝑡𝑗) = {

avg (𝑡𝑖, 𝑡𝑠) − 𝑡𝑠 [𝑡𝑖, 𝑡𝑠]

avg (𝑡𝑖, 𝑡𝑗) − 𝑡𝑠 [𝑡𝑠, 𝑡𝑗] ,

(7)

where avg(𝑡𝑖, 𝑡𝑠) is the average time of [𝑡𝑖, 𝑡𝑠] and avg(𝑡𝑖, 𝑡𝑗) is
the average time of [𝑡𝑖, 𝑡𝑗].

Let 𝑇 denote an assignment option. Let𝑇1 and 𝑇2 denote
two ranges of time divided by 𝑡𝑠. The expected profit can be
calculated as

𝐸 (𝑇) = 𝑃 (𝑇1)𝑈 (𝑇1) + 𝑃 (𝑇2) 𝑈 (𝑇2) . (8)
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Input: available Nodes 𝑁 = (𝑛1, 𝑛2, 𝑛3, . . .);
(1) Finding the straggler task 𝑠 by prediction;
(2) for each available node 𝑛𝑖 in 𝑁 do
(3) Make prediction 𝑇 = [𝑡min, . . . , 𝑡𝑖, . . . , 𝑡max];
(4) Compute profit 𝑃𝑖 ← 𝐸(𝑇);
(5) Record the maximal 𝑃𝑖 and node 𝑛;
(6) end for
(7) if remaining time 𝑡left > the worst reexecution time 𝑡max then
(8) kill task 𝑡𝑎𝑠𝑘 ⋅ 𝑘𝑖𝑙𝑙 (𝑠);
(9) end if
(10) assign backup task 𝑇𝑎𝑠𝑘𝑎𝑠𝑠𝑖𝑔𝑛 (𝑠, 𝑛);

Algorithm 2: Algorithm for risk-aware assignment.
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Figure 9: An example for different time profit per unit. The time
profit is divided into two parts. So we considered separately these
two parts.

If 𝐸(𝑇) > 0, 𝐸(𝑇) would be a better option since it is
likely more close to reduce the completion time of a job.
If there are more options for backup task assignment, the
max 𝐸(𝑇) would be the best choice.

A special case is that 𝑡max is less than the best time of
straggler, as shown in Figure 9(d). In this case, the straggler
can be killed immediately to release resources.

The detailed algorithm is shown in Algorithm 2. We first
compare the average execution time of all the running tasks
and the passed running time and then we find out the
straggler. And then we check out all the available work nodes
and make the execution time prediction. In step three, we
make the execution time prediction for the straggler running
on the available node. In step four, with the help of theory
of decision making under risk, the most expected profiting
assignment was chosen for speculative execution. If the new
assignment can guarantee the speculative success, the original
task can be killed.

Table 3: Our testbed used in evaluation.

VMs Map slots Reduce slots VM configuration
Node 1 0 1 1 core, 2G RAM
Node 2 4 0 4 core, 2 G RAM
Node 3 4 4 4 core, 2 G RAM
Node 4 4 4 4 core, 2 G RAM
Node 5 1 1 4 core, 2 G RAM
Total 13 10 17 core, 10G RAM

7. Evaluation
We have conducted a series of experiments to evaluate the
performance of RiskI and LATE in a variety combination of
different job size. Since the environmental variability may
result in high variance in the experiment result, we also
performed evaluations on different heterogeneous environ-
ment configuration. We ran our first experiment on a small
private cluster which has 5 working nodes and a master.
Our private cluster occupies two whole Dell PowerEdge
R710 machines. Each machine has 16 Xeon E5620 2.4GHz
CPUs, 12GB DDR3 RAM, and 4 × 2.5𝑇 disks. We use Xen
virtualization software to manage virtual machines. Table 3
lists the hardware configurations of our testbed. We installed
our modified version of Hadoop 0.21.0 to cluster and the
block size was configured as 64MB. Different numbers of
task slots were set to each node according to diversity of VM
configurations.

7.1. Performance on Different Job Size. To identify the pre-
dominance of RiskI, we first ran some simple workloads. In
this configuration, all jobs were set with one size in a round.
We performed evaluation on three different types of job size,
which are small, medium, and large, respectively. The small
job only contains 2 maps, the medium job has 10 maps, and
the large job has 20 maps. We chose Bailey-Borwein-Plouffe
(BBP) job for evaluation and there are 20 jobs in total with
arrival interval 60 s.

Figure 10(a) shows a CDF of job execution time for large
jobs. We see that about 70% of the large jobs are significantly
improved under our scheduling. Figure 10(b) illustrates the
corresponding running details, including the total number
of speculative executions, those succeeded and being killed.



10 The Scientific World Journal

0 400 800 1200 1600

1

0.8

0.6

0.4

0.2

0

Time (s)

CD
F

LATE
RiskI

(a) Large jobs

200

150

100

50

0

RiskI

Failed
Succeeded
Killed

LATE

(b) Statistics of speculative execution for large jobs, including
backup task failed, succeeded, and killed

100 250 400 550 700

1

0.8

0.6

0.4

0.2

0

Time (s)

CD
F

LATE
RiskI

(c) Medium jobs

1

0.8

0.6

0.4

0.2

0

Time (s)

CD
F

LATE
RiskI

90 93 96 99 102

(d) Small jobs

Figure 10: CDFs of execution times of jobs in various job sizes. RiskI greatly improves performance for all size of jobs, especially for large
and medium jobs.

From Figure 10(b), we can find that RiskI has two main ben-
efits on scheduling. First, with the help of estimation, we are
able to cut off some unnecessary speculative executions, thus
release more resources. Since most speculative executions
were failed in LATE, the total speculative executions were
reduced from 181 to 34 in RiskI. Second, the successful ratio
of speculative increased. In our scheduler only 6 speculative
executions failed out of 34 and the success ratio is 81%.

Figures 10(c) and 10(d) plotted the results on medium job
size and small job size. The performance on large job size is
distinguished from those on smaller jobs because the small
jobs cause less resource contention for low system workload.

7.2. Performance onMix Job Size. In this section, we consider
a workload with more complex job combination. We use
Gridmix2 [37], a default benchmarks for Hadoop cluster,
which can generate an arrival sequence of jobs with the input
of a mix of synthetic jobs considering all typical possibility.

In order to simulate the real trace for synthetic workload,
we generated job sets that follow the trace formFacebook that

Table 4: Distribution of job sizes.

Job size # Map # Reduce # Jobs % Jobs
Small 2 2 19 38%
Medium 10 5 19 38%
Large 20 10 12 24%
Total 468 253 50

were used in the evaluation of delay scheduling [33]. Delay
scheduling divided the jobs into 9 bins on different job size
and assigned different proportion, respectively. For the sake
of simplicity, we generalize these job sizes into 3 groups, small,
medium, and large, respectively. Jobs in bin 1 take up about
38% in that trace and we assign the same proportion to the
small jobs. We grouped bins 2–4 as medium jobs which also
hold 38% in total. The rest of bins are grouped into large
jobs with about 24% amount. Table 4 summarizes the job size
configuration.
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Figure 11: The Gridmix job has 50 jobs in total. The first 13 jobs are medium size. The jobs from 14 to 23 are small. The small job and large
job are alternate arrived from job 26 to job 40. The large jobs appear consecutive form job 41 to job 45 and the last 5 jobs are medium.

Table 5:The configuration details for BBP, including start digit, end
digit, and the workload per map task.

Job size Start Digit ndigit Workload/map
Small 1 25000 156283174
Medium 1 55000 151332558
Large 1 70000 122287914

Except for the job size proportion, arrival interval is also
very important in generating a job arrival trace, since it may
lead to different schedule behaviors and subsequently affect
system throughput. In our experiment, we set the arrival
interval to 60 s and 120 s. Figure 11 gives the generated job
sequences.

Finally, we ran the workload described above under
two schedulers: LATE (Hadoop default scheduler FIFO) and
RiskI. We submitted each job by only one user.

7.2.1. Result for BBP. Our detailed configuration of BBP jobs
was shown in Table 5. Figure 12 plotted the execution time of
each job with interval 60 s.

For ease of analysis, we divided the job sequence into 5
parts. The first part is from job 1 to job 13, where the jobs are
medium. The second part is from job 14 to job 23. The jobs
in the second part are all small. Job 24 to job 50 is the third
part mainly consists of small and large jobs. The last 10 jobs
are equally divided into two parts and the jobs are large and
medium.

In the first part M, the response time of jobs is accumu-
lated from the beginning, because the workload is becoming
heavier gradually. The resource contention led to more
stragglers and more speculative executions. More resources
were used for backup task. The following jobs had to wait
until resources were released. However, because of lack of
delicate design of scheduling, most backup tasks failed. The
system sacrificed the throughput but did not get benefit.
From Figure 12(b) we can see that there are 48 backup tasks
and only 19 succeeded. Compared to LATE, RiskI cut the
number of backup task from 48 to 13. The static result was

plotted in Figure 12(c). Many invalid speculative executions
are avoided and saved the throughput. Since some backup
tasks are certainly finished earlier, we killed the first attempt
of task immediately in order to save resources. As a result,
only 2 backup tasks failed. The same conditions occurred in
the left 4 parts.

However, the situation is a little different when the job
arrival interval is 120 s. We also plotted the execution time
of each job with interval 120 s in Figure 13. There are little
different exits in the first 4 parts. The reason is that the
system workload is light because each job has 120 s before
the next job arrives. The system has much free resources
for backup task running. We can see from Figure 13(b) that
no backup task succeeded in the first two parts. Even if the
backup task failed, it will not cause any loss. But in RiskI, no
backup task was launched for speculative execution which
was plotted in Figure 13(c). Because none of them would
succeed, most differences lied in the part L where we reduced
the speculative execution count from 39 to 12 and only 1
speculative execution failed.

As a result, our scheduler performs much better in
interval 60 than interval 120.

7.2.2. Result for Streamsort. We evaluated the job of stream-
sort by running configured gridmix2 also. But we have to
modify the Hadoop 0.21.0 for different arrival interval. The
performance of sort is also improved better when workload
is heavy since RiskI not only shortened the response time
of job, but also killed some tasks to release resource earlier.
When workload is light, our scheduler only takes advantage
of reducing job response time.

Another conclusion is that the average performance of
BBP is better than sort. The main reason is that, compared to
BBP, prediction of task for streamsort has longer range which
means more uncertainty.

7.3. Impact of Heterogeneous Degree. We change the testbed
and Hadoop configurations to evaluate RiskI in different
execution environments. We run our experiments in two
other different environments. The original environment
above is denoted as testbed 1. And the new environments
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Figure 12: Details of execution information with interval 60. (a) is static of execution time for each job. (b and c) are statistics of speculative
execution count in different parts.

were denoted as testbeds 2 and 3. The testbed 3 is 4
times more heterogeneous than testbed 2 and 8 times
than testbed 1. We measure heterogeneity by its number
of virtual machines on the same physical machine. The
result was shown in Figure 14. When the environment is
more heterogeneous, RiskI perform degrades much less than
LATE.

7.4. Stable of Prediction. Since we make our prediction by
searching similar executions of task in history, we have to
demonstrate that the similar executions have stable response
time. It is obvious that stable response time will make our
prediction significant. Otherwise, our prediction is helpless

for scheduling. Therefore, we did the following experiments
to proof our prediction.

First, we selected a four-slot work node which implies
at most four tasks that can run on the node in parallel.
And then we investigated the task running time under all
the possible execution conditions. These conditions consist
of various combinations of tasks which are selected from
wordcount, randomwrite, and Bailey-Borwein-Plouffe. So
there are 9 conditions in total. Figure 15(a) shows our results
on running time of task from BBP job that the task ran 20
times in every environment. We can see that the execution
time is relatively stable in a range time. For further analysis,
Figure 4(a) shows the CDF of response time distribution
between the longest time and the shortest time in one
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condition. It demonstrated that most times are centralized
distribution. The result of task from wordcount is shown
in Figures 15(b) and 4(b). The conclusion can be also
certified.

We showed the prediction evolution with the execu-
tion times increased in Figure 16. We selected two con-
ditions where the prediction is most stable and most
unstable. The evolutionary process of prediction is plot-
ted.

8. Conclusion

We propose a framework named RiskI for task assignment
in a fault tolerance data processing system. We suggest that,
by finding the most similar task in history, profile-based

method can predict the execution time with a range of time.
Then it makes risk-aware assignment for task to seek more
profit while reducing the risk introduced by uncertainty.
Extensive evaluations have shown that RiskI can provide
good performance in all conditions. And RiskI performs
much better when the system puts upmore heterogeneity.We
believe that the performance of RiskI will improve further if
we understand the behavior of system and find better similar
algorithm.
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