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Abstract: Peptide-based drugs are promising anticancer candidates due to their biocompatibility and
low toxicity. In particular, tumor-homing peptides (THPs) have the ability to bind specifically to
cancer cell receptors and tumor vasculature. Despite their potential to develop antitumor drugs, there
are few available prediction tools to assist the discovery of new THPs. Two webservers based on
machine learning models are currently active, the TumorHPD and the THPep, and more recently the
SCMTHP. Herein, a novel method based on network science and similarity searching implemented
in the starPep toolbox is presented for THP discovery. The approach leverages from exploring
the structural space of THPs with Chemical Space Networks (CSNs) and from applying centrality
measures to identify the most relevant and non-redundant THP sequences within the CSN. Such THPs
were considered as queries (Qs) for multi-query similarity searches that apply a group fusion (MAX-
SIM rule) model. The resulting multi-query similarity searching models (SSMs) were validated with
three benchmarking datasets of THPs/non-THPs. The predictions achieved accuracies that ranged
from 92.64 to 99.18% and Matthews Correlation Coefficients between 0.894–0.98, outperforming state-
of-the-art predictors. The best model was applied to repurpose AMPs from the starPep database as
THPs, which were subsequently optimized for the TH activity. Finally, 54 promising THP leads were
discovered, and their sequences were analyzed to encounter novel motifs. These results demonstrate
the potential of CSNs and multi-query similarity searching for the rapid and accurate identification
of THPs.

Keywords: cancer; tumor-homing peptide; in silico drug discovery; complex network; chemical
space network; centrality measure; similarity searching; group fusion; motif discovery; starPep
toolbox software

1. Introduction

Cancer is a group of diseases developed in different cell and tissue types, and cor-
responds to the second leading cause of death globally [1]. It is based on the abnormal
growth of cells due to an inherited genetic mutation or induced by the environment [2].
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Despite novel therapy development for cancer treatment, improving chemotherapeutic
drugs’ specificity towards cancer cells remains a challenge [2,3]. Additionally, cancer cells
are generating multi-drug resistance (MDR) [4]. Consequently, in the pharmaceutical in-
dustry, there is a need to develop new anticancer agents with a different mode of action to
tackle the current drug resistance of cancer cells without being cytotoxic to healthy ones [2].
To fill this gap, peptides have emerged as a potential therapeutic alternative against cancer.
From 2015 to 2019, 15 peptides or peptide-containing molecules were approved by the FDA
as drugs, demonstrating the growing interest of the scientific community [5].

Peptides have different biochemical and therapeutic properties than small molecules
and proteins, making them attractive to the pharmaceutical and biotechnological indus-
try [6,7]. Being smaller than proteins allows peptides to penetrate tissues more easily,
have low cost, more accessible synthesis, and do not require folding to be biologically
active [8]. In contrast to small molecules, they have a higher specificity and efficacy due to
representing the smallest functional part of a protein [9]. Moreover, they are not supposed
to interact with the immune system, are biocompatible, have tunable bioactivity, and have
low cytotoxicity due to their degradation products being amino acids [10–14]. Hence,
peptide-based drugs open a new door to an improved cancer diagnosis and treatment.

Tumor blood and lymphatic vasculature differ molecularly and morphologically from
normal lymphatic and blood vessels [15]. Tumor-homing peptides (THPs) take advantage
of this peculiarity. Thus, they are widely investigated as drug carriers and for imaging
purposes on oncology treatments and diagnosis [16]. The first-generation of THPs have
RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs. RGD peptides have the characteristic
of selectively binding to α integrins expressed in vascular endothelial cells of the tumor and
metastatic tumor cells, and NGR to aminopeptidase N (APN) receptors [17,18]. Although,
there are neither non-RGD nor NGR peptides that home tumor blood vasculature and
cancer cells by interactions with other receptors, such as the endothelial growth factor
receptor (EGFR) [19–23].

THPs are discovered by using in vitro and ex vivo/in vivo phage display technology,
which is time-consuming, expensive, and may not translate to humans due to differences
between the animal models and humans [24–26]. For these reasons, bioinformatics tools
such as databases and webservers are being employed for the accurate prediction of novel
THPs [26–28]. In this way, short sets of the most promising THPs become the candidates
for posterior experimental verification.

To date, the databases available for experimentally validated THPs are TumorHoPe
(includes 744 THPs) [27] and starPepDB (includes 659 THPs) [29], and the available TH ac-
tivity predictors are TumorHPD (https://webs.iiitd.edu.in/raghava/tumorhpd) (accessed
on 1 May 2021) [26], THPep (http://codes.bio/thpep) (accessed on 1 May 2021) [28], and
SCMTHP (SCMTHP (pmlabstack.pythonanywhere.com) (accessed on 5 January 2022) [30].
TumorHPD uses the supervised ML method Support Vector Machine (SVM) as a classifier
with three features: amino acid composition, dipeptide composition, and binary profile
patterns, achieving 86.56% as the highest accuracy [26]. The second ML method, THPep,
has a Random Forest (RF) classifier with three features: amino acid composition, dipeptide
composition, and pseudo amino acid composition, resulting in 90.13% of maximum overall
accuracy [28]. However, the datasets used for training and testing both ML models contain
peptides with highly similar sequences. On the other hand, SCMTHP is the most recently
reported method based on the scoring card method (SCM) [30]. It determines the propen-
sity scores for the amino acids’ and dipeptides’ composition accounting for THP sequences
and applies a threshold value to discriminate between THP and non-THPs. Nonetheless,
the performance of SCMTHP is similar to ML-based predictors, achieving a maximum
accuracy of 82.7%.

Recently, Marrero-Ponce et al. published a new software named starPep toolbox
(http://mobiosd-hub.com/starpep/) (accessed on 2 February 2021), which is aimed to
perform network analyses on the integrated graph database called starPepDB, which
include the most comprehensive and non-redundant database of antimicrobial peptides

https://webs.iiitd.edu.in/raghava/tumorhpd
http://codes.bio/thpep
http://mobiosd-hub.com/starpep/
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(AMPs) [29,31]. Here, we propose an alternative methodology to identify potential THPs
by combining network science with multi-query similarity searching against the AMPs of
starPepDB. We used the starPep toolbox software as the main bioinformatics tool and the
Chemical Space Network (CSN) to represent the chemical space of peptides as a coordinate-
free system. To the best of our knowledge, there are no reported studies where data mining
and screening is supported by network science to discover peptides for pharmaceutical
purposes [29]. Firstly, we built models of representative and non-redundant THPs using
centrality analysis and supervised retrospective similarity searching to perform the TH
activity prediction. The outstanding model, named THP1, predicted the TH activity of three
benchmarking datasets of THPs/non-THPs achieving accuracies between 92.64–99.18% and
Matthews Correlation Coefficient (MCC) between 0.894–0.98, demonstrating the feasibility
of this new methodology. Then, we performed a hierarchical screening for drug repurposing
using network-based algorithms implemented in the starPep toolbox, the best model THP1,
local alignments, and webservers to predict relevant activities related to the TH. Their
TH activity was optimized by generating random libraries, where the peptide undergoes
amino acid’s stochastic substitutions at different positions. Finally, a set of 54 potential
THPs from AMPs was proposed, where common motifs were identified.

2. Materials and Methods

The overall workflow of this report, shown in Figure 1, was based on two steps:
(i) generation/selection of the model of representative THPs from starPepDB in starPep
toolbox, and (ii) prediction of potential new THPs from AMPs. In the first step, some models
of representative THPs from starPepDB were built using different centrality measures to
rank the nodes and extract the representative and less similar sequences by applying local
alignment. Then, the best multi-query similarity searching model (SSM) was selected by
the classification performance and its ability to correctly retrieve THPs from benchmark
THPs databases by using group fusion (MAX-SIM rule) similarity searching.
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Figure 1. General overview of the experimental procedure.

In the second step, the model was used to perform similarity searching to repurpose
AMPs as THPs from starPepDB, and their TH activity was optimized using the TumorHPD
server. Additionally, sequence motifs were found from the set of potential THPs using
multiple sequence alignments [32–35], alignment-free methods [36], and PROSITE server
(https://www.genome.jp/tools/motif) (accessed on 15 July 2021).

2.1. StarPep Toolbox Software

The starPep toolbox uses FASTA files as inputs and includes the starPepDB. Peptides
are represented as nodes connected by an edge if they have any relationship. It can perform
querying, filtering, visualization of networks, scaffold extractions, single or multiple queries
similarity searching, and analysis of peptides by graph networks [29,31].

https://www.genome.jp/tools/motif
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Networks can be built based on the metadata of peptides or based on the pairwise
similarity measures calculated for their respective sequence. In metadata networks, nodes
are connected by a specific parameter in common, such as origin; the target against which
they are assessed; functionality; the database where they come from; the cross-reference; N-
terminus; C-terminus; or amino acid composition. In similarity networks, peptides are cod-
ified by descriptors, such as length, net charge, isoelectric point, molecular weight, Boman
index, indices based on aggregation operators, hydrophobic moment, average hydrophilic-
ity, hydrophobic periodicity, aliphatic index, and instability index [29,31,37]. Moreover,
networks are visualized using different layouts, such as Fruchterman–Reingold [38].

Networks can be clustered, and communities are optimized using the Louvain method [39].
Moreover, the centrality of each node can be particularly measured by harmonic, com-
munity hub-bridge, betweenness, and weighted degree. Centrality is crucial to perform
scaffold extractions because peptides are ranked according to their centrality score, and then
redundant sequences are removed, prioritizing the most central. Thus, scaffold extractions
depend on the type of centrality applied.

On the other hand, similarity searching, which is the basis of this study, is performed
using a set of queries against a target dataset, where different percentages of identity (or
similarity thresholds) can be applied. An identity score is a number between 0–1, and it
is calculated using the Smith–Waterman local alignment with BLOSUM 62 substitution
matrix [40]. Multiple queries similarity searching works using the group fusion model
explained in the following section.

2.2. Model Selection

The dataset of reported THPs was extracted from starPepDB in the starPep toolbox.
All 45120 peptides contained in starPepDB were filtered by the “Tumor Homing” query in
the metadata function, where 659 entries were obtained (SI1-A).

2.2.1. Network Analysis
Similarity Threshold Analysis

Network analysis of peptides was performed by building the CSN of 659 THPs in
the starPep toolbox. To choose the appropriate similarity threshold to build the network
of THPs, CSNs were built by varying in 0.05 the cut-off value from 0.10 to 0.90 (17 CSNs
in total). Some metrics were retrieved from each CSN using the starPep toolbox, such as
density, number of communities, modularity, and number of singletons.

By default, when CSN was built, nodes with higher than 98% of similarity were
removed using the local alignment Smith–Waterman algorithm. The similarity metric
used to establish the pairwise similarity relationships between nodes was the min–max
normalized Euclidean distance. Then, a centrality was calculated and those nodes with
0 as vertex degree were identified as outliers and then removed, leaving the giant (or
connected) components of the CSN, i.e., subgraph where all nodes are connected. In this
case, community hub-bridge centrality was calculated. However, any centrality measure
could have been calculated since singletons always have zero centrality. After that, the
network was clustered and the modularity optimized using the modularity optimization
algorithm based on the Louvain method [39].

The network was saved as a Graph ML file to be opened in Gephi [41] for subsequent
calculation of ACC. Finally, density, modularity, and ACC as a function of similarity
threshold were graphed in Origin to decide what similarity threshold is the best.

Network Characterization

CSN of the giant components derived from the application of the best similarity
threshold was characterized by the number of nodes, edges, outliers, density, number of
communities, and modularity. These parameters were obtained from starPep toolbox while
ACC, diameter (larger shortest path), average path length, and a total of triangles were
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drawn from Gephi. These parameters allow knowing the topology and structural patterns
of the CSN.

For network visualization, Force Atlas 2 was used as a layout algorithm where colors
represent different clusters, and node size means how central the node is according to the
community hub-bridge centrality. Network visualization aims to obtain an aesthetically
pleasing and understandable graph where nodes are not overlapped.

On the other hand, CSN of outliers was built with a cut-off of 0.30 to procure an
appropriate density; then, it was clustered. Moreover, a subsequent scaffold extraction was
applied based on hub-bridge centrality, and on 30% identity from local alignment.

The network of outliers was characterized according to the number of nodes, edges,
communities, density, modularity, average degree, ACC, diameter obtained before scaffold
extraction, and the number of nodes and edges obtained after scaffold extraction. For
network visualization, Fruchterman–Reingold was used as a layout algorithm; colors
represent different clusters while node size displays how central it is according to hub-
bridge measure.

2.2.2. Centrality Analysis

The most influential nodes were used to find the new potential THPs, and centrality
is the crucial parameter that provides this information. Thus, the four available centrality
types in the starPep toolbox (weighted degree, community hub-bridge, betweenness, and
harmonic) were calculated and normalized using the min–max method. Then, redundant
peptides were removed by applying the scaffold extraction procedure that is described
as follows: peptides were ranked based on the scores obtained after centrality calculation
and we used 30% similarity cut-off of local identity from the Smith–Waterman algorithm
to retrieve sets of sequences with a maximum of 30% similarity [40]. Subsequently, nodes
with 10% lower centrality than the most central node were removed in each metric. The
sets obtained after applying this process were named as 30 + 10%.

On the other hand, harmonic and weighted degree were calculated and normalized,
and redundant peptides were removed by applying the scaffold extraction procedure using
four different similarity cut-offs of local identity: 30, 40, 50, and 60%.

2.2.3. Similarity Searching Model for THPs Prediction

This study’s proposed method for discovering potential THPs was based on similarity
searching. For that reason, multiple query similarity searching models (SSMs) composed of
several queries representing the most important and less redundant nodes of CSN and a
similarity threshold were tested against datasets that contain well-known THPs/non-THPs
through similarity searching. The recoveries from the similarity searching were statistically
evaluated to select the best model for identifying potential THPs within the AMPs.

Query Datasets (Reference Sequences)

The retrieved sets after applying scaffold extractions at each centrality measure; the
two sets of outliers; combinations of outliers with sets obtained from centrality-based
scaffold extractions; and combinations between sets obtained from scaffold extractions
performed using different centrality metrics were used as queries (Qs). In total, we tested
22 sets of Qs, where twelve sets resulted from the application of the scaffold extraction
procedures as well as two sets of outliers, and eight sets resulted from the combination
between sets.

Target Databases

Three training datasets that consider well-known THPs and randomly generated
non-THPs [42] were used as the target or calibration for the recovery. THPep, TumorHPD,
and SCMTHP employed these datasets for training their methods [26,30,42].

• Main dataset: 651 experimentally validated THPs and 651 random non-THPs (SI1-B).
They were collected from TumorHoPe [27] and the literature [26].
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• Small dataset: 469 experimentally validated THPs and 469 random non-THPs (SI1-C).
They are peptides derived from the Main dataset with 4 to 10 aa residues.

• Main90 dataset: 176 THPs and 443 non-THPs (SI1-D). They are peptides from the Main
dataset with equal or lower than 90% of sequence similarity.

• Main and Small datasets were retrieved from Ref. [26], while Main90 from Ref. [27].

Group fusion

Group fusion is based on the variation in the query (reference peptide), but keeping
constant the identity measure [43]. Each peptide’s identity score is calculated from the
target dataset varying the Qs. The fusion group’s algorithm associates a fused score to each
target peptide, i.e., the maximum similarity (MAX-SIM) scores from all resulting identity
scores against the Qs. Therefore, considering peptide S from the target dataset, reference
peptide Q from the Qs, the identity score I(S,Q), and the MAX-SIM score obtained, the
algorithm assigns I(S,Q) as the fused score to peptide S. The local identities were calculated
with the Smith–Waterman, and is a number between 0–1, with 1 being the maximum
identity. The procedure is illustrated in Figure 2.
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Figure 2. Schematic representation of the group fusion and similarity searching processes. Q is a
peptide from a query dataset, n is the number of peptides contained in a query dataset, S is a peptide
from the target dataset (Main, Small, or Main90 dataset), m is the number of peptides included in the
target dataset (1302, 938, or 619, respectively). The similarity threshold is related to the percentage
of identity.

Retrospective Similarity Searching

Main Dataset was imported to starPep toolbox. The similarity searching was per-
formed using the “Multiple query sequences” option of the software and the Qs obtained
from 30 + 10% similarity cut-offs of local alignment and outliers. The group fusion is
applied by default during the similarity searching, and results were ranked according to
the fused score (MAX-SIM value). Subsequently, seven different percentages of identity
(similarity thresholds), 30, 40, 50, 60, 70, 80, and 90%, were tested, where peptides with
identities equal to or higher than the applied threshold were retrieved as predicted THPs.
Figure 2 illustrates how the similarity searching works.

The rescued nodes, i.e., predicted THPs, were statistically evaluated to validate the
prediction. Thus, it is possible to identify the two centrality measures and percentages of
sequence identity with the best performance.

Then, similarity searching was performed using only the sets of the best two centrality
measures as Qs: harmonic and weighted degree, and 30, 40, 50, 60, and 70% of identity.
In Small and Main90 datasets, only the sets of harmonic and weighted degrees were
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used as Qs, applying 40, 50, and 60% of identity for recovery. In total, 98 different SSMs
were evaluated.

2.2.4. Statistical Analysis

The ability of the SSMs to predict THPs was validated by the measurement of their
accuracy (Ac), kappa (κ), sensitivity (Sn), specificity (Sp), the precision of positives and
negatives (Ppos and Pneg, respectively), MCC, and false accept rate (FAR%) using the
following formulas.

Ac =
TP + TN

TP + TN + FP + FN
, (1)

κ =
Po − Pc
1 − Pc

, (2)

Sn =
TP

TP + FN
, (3)

Sp =
TN

TN + FP
, (4)

Ppos =
TP

TP + FP
, (5)

Pneg =
TN

TN + FN
, (6)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (7)

FAR% =
FP

FP + TN
× 100 , (8)

where, TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, FN is the number of false negatives, Po is the relative observed
agreement between the observers equal to the Ac, and Pc is the expected chance agreement
calculated by the formula Pc = (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TP+TN+FP+FN)2 .

Finally, the best 9 SSMs were compared and ranked using the Friedman test-based
analysis performed in KEEL [44]. The Friedman test identified the best model based on the
statistical metrics previously shown [45]. Moreover, it allowed us to compare the models
and determine if their difference was statistically significant and not due to chance. The
confusion or classification matrix of the best model was constructed. The best models were
compared with reported ML models used for THP prediction, TumorHPD, and THPep,
using the same three calibration datasets.

2.3. Identification of Potential THPs
2.3.1. Hierarchical Screening

Drug repurposing is an alternative methodology widely applied to discover drugs
because it reduces approval time for their clinical use [46,47]. Thus, firstly, we repurposed
AMPs from starPepDB as THPs.

1. Pipeline Prospective Screening. First, AMPs without reported TH activity and toxicity
with a sequence length between 3 and 25 residues were filtered from the chemical
space of starPepDB. Secondly, the “Scaffold extraction” option removed AMPs with
higher than 95% sequence similarity by local alignment. Thirdly, multiple query
similarity searching was performed using the best SSM (THP1), obtained in the
previous section, to explore the chemical space of non-THPs, non-toxic, and non-
redundant peptides with a length of 3–25 aa, using 60% as similarity threshold. In the
recovered set, peptides with a similarity score of 1 were removed.

2. Activity Prediction. Peptides with reported tumor-homing activity in the literature
were removed since the main objective of this study was to identify novel THPs. Then,
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theoretical activities of virtual hits were predicted using webservers TumorHPD [26],
THPep [28], AntiCP [48], CellPPD [49], ToxinPred [50], and HemoPI [51], to corrobo-
rate their potential as THPs and prioritize those that do not harm healthy cells. The
activities of interest were tumor homing, anticancer, cell-penetrating, toxicity, and
hemolysis. The SVM thresholds used were 0.30 in servers TumorHPD, AntiCP, and
CellPPD, and 0 in server ToxinPred.

3. Redundancy Reduction by Network Analysis. CSN of hits was built, clustered, and the
modularity was optimized using the Louvain method in the starPep toolbox. Then,
harmonic and weighted degree centralities were calculated to perform a scaffold
extraction using a 60% identity as the threshold.

4. Visual Mining. The neighborhood of well-known THPs of each potential THP was
visualized using the starPep toolbox. CSN of 659 THPs in starPepDB was built
using 0.60 as cut-off, clustered, and optimized modularity. Hits obtained in the
previous step after scaffold extraction were embedded into the CSN of 659 THPs
to study the neighborhood of each peptide. Hence, the 3 nearest neighbors from
659 THPs directly attached to each hit were visualized. If 2 peptides shared the same
2 or 3-nearest neighbors, one of them was prioritized, choosing the one with better
predicted activities.

2.3.2. Tumor-Homing Activity Optimization

Lead hits detected from hierarchical virtual screening were AMPs from starPepDB with
a natural or designed activity different from tumor homing. That is the reason why their
tumor-homing action should be enhanced. Lead hits were optimized by punctual amino
acid mutations using the “Designing of Tumor Homing Peptides” module of TumorHPD
(https://webs.iiitd.edu.in/raghava/tumorhpd/peptide.php) (accessed on 10 September
2021), and the procedure is shown in Figure 3. Both lead and mutated sequences were
shortened into fragments of 5, 10, and 15 residues in length using the same server.
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The optimized sequences showing a higher tumor-homing activity score than parent hits
were analyzed by CSN in the starPep toolbox using 0.60 as the similarity threshold to build
the network. In addition, tumor homing, toxicity, hemolytic, anticancer, and cell penetrability
were predicted using servers listed below: THPep (http://codes.bio/thpep), TumorHPD
(https://webs.iiitd.edu.in/raghava/tumorhpd) (accessed on 25 September 2021), AntiCP
(https://webs.iiitd.edu.in/raghava/anticp2) (accessed on 25 September 2021), CellPPD (https:
//webs.iiitd.edu.in/raghava/cppsite1) (accessed on 25 September 2021), ToxinPred https:
//webs.iiitd.edu.in/raghava/toxinpred (accessed on 25 September 2021), and HemoPI https:
//webs.iiitd.edu.in/raghava/hemopi (accessed on 25 September 2021). Redundant sequences
with higher than 50% similarity were removed by scaffold extraction.

The optimized sequences and parent hits were merged, and the corresponding CSN
was built using 0.50 of cut-off and clustered. Next, harmonic centrality was calculated.
Each cluster was analyzed separately to prioritize the most central, potent, non-toxic, and

https://webs.iiitd.edu.in/raghava/tumorhpd/peptide.php
http://codes.bio/thpep
https://webs.iiitd.edu.in/raghava/tumorhpd
https://webs.iiitd.edu.in/raghava/anticp2
https://webs.iiitd.edu.in/raghava/cppsite1
https://webs.iiitd.edu.in/raghava/cppsite1
https://webs.iiitd.edu.in/raghava/toxinpred
https://webs.iiitd.edu.in/raghava/toxinpred
https://webs.iiitd.edu.in/raghava/hemopi
https://webs.iiitd.edu.in/raghava/hemopi
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non-hemolytic lead THPs. Finally, the heat map and histogram of pairwise sequence
identity of lead compounds were constructed to explore their structural diversity.

2.3.3. Motif Discovery
Multiple Sequence Alignments

As the resulting potential THPs were hard-to-align sequences because of their short
length and variability, they were grouped into seven clusters according to the neighbor-
hood in the CSN. Given that two peptides underrepresented clusters 1 and 5, they were
fused in a cluster labeled 1–5. Thus, peptide clusters (2–4, 1–5, and singletons) were
aligned independently using multiple sequence alignments (MSA), publicly available at
https://www.ebi.ac.uk/Tools/msa/ (accessed on 28 September 2021). Four different MSA
algorithms were applied with their default parameters to determine consensus motifs
within each cluster: (1) Clustal-Omega v 1.2.4 [32], (2) MAFFT (Multiple Alignment us-
ing Fast Fourier Transform) v7.487 with the iterative refinement FFT-NS-i option [33],
(3) MUSCLE (Multiple Sequence Comparison by Log-Expectation) v3.8 [34], and T-Coffee
(Tree-based Consistency Objective Function for Alignment Evaluation) v1.83 [35].

The resulting MSAs were employed to extract the conserved motifs by considering the
consensus sequences estimation from the programs Jalview v2.11.1.4 [52], EMBOSS Cons
v6.6.0 (https://www.ebi.ac.uk/Tools/msa/emboss_cons/) (accessed on 28 September
2021), and Seq2Logov2.1 (http://www.cbs.dtu.dk/biotools/Seq2Logo/) (accessed on 28
September 2021) [53].

Alignment-Free Method

Peptides were analyzed in STREME [36] (Sensitive, Thorough, Rapid, Enriched Motif
Elicitation) to discover fixed-length patterns (ungapped motifs) that were enriched with
respect to a control set generated by shuffling input peptides [52]. The analyses were
performed via its webserver (https://meme-suite.org/meme/tools/streme) (accessed on
28 September 2021), by considering both total peptides and by each cluster. The motif
width was set between 3–5 amino acids length. STREME applies a statistical test at p-value
threshold = 0.05 to determine the enrichment of motifs in the input peptides compared to
the control set.

Motif Search in PROSITE

Peptides were queried by the Motif Search tool (https://www.genome.jp/tools/
motif/) (accessed on 28 September 2021) and integrated into the GenomeNet Suite (https:
//www.genome.jp/) (accessed on 28 September 2021). PROSITE Pattern and PROSITE
Profile libraries were only considered for the motif search.

3. Results and Discussion
3.1. Model Selection
3.1.1. Network Analysis
Similarity Threshold Analysis

Out of the set of 659 THPs retrieved from starPepDB, 627 peptides (SI1-A-I) were fil-
tered with lower than 98% similarity by local alignment. The adequate similarity threshold
was chosen before building CSN with the 627 peptides. This step is non-trivial since it
is the parameter that defines the topology and network features [54]. Hence, the appro-
priate cut-off for building the CSN was determined based on the variability of network
parameters such as density, modularity, ACC, and singletons at different cut-off similarity
values. Graphml files corresponding to the 17 CSNs are available at SI2. Table S1 shows the
obtained parameters at each cut-off.

The graph of density, modularity, and ACC as a function of the similarity threshold is
shown in Figure 4. The density is lower at a higher similarity threshold. ACC follows the
same pattern until the 0.65 similarity threshold. By contrast, modularity increases as the
similarity threshold increases, while the clustering is optimized.

https://www.ebi.ac.uk/Tools/msa/
https://www.ebi.ac.uk/Tools/msa/emboss_cons/
http://www.cbs.dtu.dk/biotools/Seq2Logo/
https://meme-suite.org/meme/tools/streme
https://www.genome.jp/tools/motif/
https://www.genome.jp/tools/motif/
https://www.genome.jp/
https://www.genome.jp/
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threshold of 627 THPs CSN.

A well-defined network needs a compromise among the density, modularity, and ACC
parameters, but also accounts for the number of outlier nodes because they are atypical
peptides with particular properties. Networks with very low density display too many
outliers (see Table S1), while networks with very high density show a massive connection.
In both cases, information is lost and interpretation becomes difficult. According to the
literature, the best density percentages are generally around 1% or 2.5% because they
generate high modularity but allow an adequate understanding of the network [54]. As
modularity indicates the existence of community structures, the ideal value must show an
equilibrium between a non-clustered network and an artificially clustered network due to
the high modularity value. In this sense, the selected similarity threshold was 0.60, where
CSN shows the best trade-off among network parameters and connectivity: 2.3% of density,
0.47 of modularity, 0.428 of ACC, and 99 outliers (15.8% of overall nodes). Therefore, the
giant components of the network were 528 nodes (SI1-A-II).

Network Characterization

Some parameters such as density, number of clusters, modularity, average degree,
ACC, and diameter were calculated and shown in Table 1 to get an overview on the giant
component and outliers of the CSNs, which are represented in Figures 5 and 6, respectively.

Table 1. Global network properties of CSN of 528 nodes and outliers.

Set * Nodes Edges Density Clusters Modularity Average
Degree ACC Diameter Nodes

after Sc. **
Edges

after Sc. **

THPs 528 4452 0.023 10 0.47 16.864 0.428 8 - -
Outliers 99 2691 0.891 3 0.13 54.364 0.733 3 34 384

* Density, number of clusters, and modularity were calculated in the starPep toolbox, while average degree, ACC,
and diameter were calculated in Gephi. ** Sc.: Scaffold extraction.
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Additionally, the degree of distribution of the giant components is shown in Figure 7. It
gives some information about the structure of the CSN. In this case, the distribution degree
is concentrated in the nodes with low vertex degrees. However, it has a tail associated with
the nodes with higher vertex degrees in a lower proportion. The nodes with higher degrees
correspond to the most central nodes, which, as can be corroborated in Figure 5, are in
the minority.
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Outliers are relevant THPs because they present characteristics regarding 528 nodes
that make up the giant component; so, they are unique or atypical sequences. CSN of
the 99 singletons (SI1-E) was built using 0.30 of similarity threshold (Figure 6a). Then,
sequences with higher similarity than 30% by local alignment were removed based on
hub-bridge centrality ranking, where 34 outliers (SI1-E-I) with unique sequences were
obtained (Figure 6b).

3.1.2. Centrality Analysis and Similarity Searching

Centrality is the crucial parameter to build the model that will be proposed to identify
THPs. It allows the identification of the most influential sequences of the giant components.
SI3 (Excel file) shows the normalized centrality measurements of 528 THPs. On the other
hand, outliers are nodes with unique properties that enrich the influential sequences
model. Therefore, both sets from centrality measurements and sets of outliers represent
the chemical space of THPs and will be used as queries to perform the similarity searching
against the target datasets. In total, 98 different SSMs were generated based on 22 query
sets (FASTA files available at SI4) and similarity thresholds between 0.3 and 0.9.

The predictions and performance of the 98 SSMs are shown in SI5 and SI6-A, respec-
tively, where active and inactive labels indicate predicted THPs and non-THPs, respectively.
In general, it is observed that the performance of query datasets followed the following
tendency of relevance: weighted degree > harmonic > hub-bridge > betweenness > sin-
gletons (outliers). However, the combination of query datasets from different centrality
types overperforms the sets selected with only one centrality measure. The addition of
the outliers set improved the performance of the combination sets since it generates the
complete representation of the chemical space of THPs. Moreover, better performance was
obtained using 40, 50, and 60% identity in the similarity searching.

The performance of the best nine SSMs to predict activity in Main, Small, and Main90
datasets are shown in Table 2, Table 3, and Table 4, respectively, where H is the set obtained
when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.
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Table 2. Statistical analysis for the performance of the best 9 SSMs on the target Main dataset.

Query Set * Nodes % Id Ac Correct
Class

Incorrect
Class κ Sn Sp Ppos Pneg

H + sing 467 40 0.933 1215 87 0.866 0.877 0.989 0.988 0.89
50 0.935 1218 84 0.871 0.877 0.994 0.993 0.89
60 0.935 1218 84 0.871 0.874 0.997 0.996 0.888

W + sing 469 40 0.934 1216 86 0.868 0.879 0.989 0.988 0.891
50 0.936 1219 83 0.873 0.879 0.994 0.993 0.891
60 0.937 1220 82 0.874 0.877 0.997 0.997 0.89

H + W + sing 479 40 0.942 1226 76 0.883 0.894 0.989 0.988 0.903
50 0.944 1229 73 0.888 0.894 0.994 0.993 0.904
60 0.945 1230 72 0.889 0.892 0.997 0.997 0.903

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

Table 3. Statistical analysis for the performance of the best 9 SSMs on the target Small dataset.

Query Set * Nodes % Id Ac Correct
Class

Incorrect
Class κ Sn Sp Ppos Pneg

H + sing 467 40 0.917 860 78 0.834 0.838 0.996 0.995 0.86
50 0.916 859 79 0.832 0.836 0.996 0.995 0.858
60 0.914 857 81 0.827 0.832 0.996 0.995 0.855

W + sing 469 40 0.92 863 75 0.84 0.844 0.996 0.995 0.865
50 0.92 863 75 0.84 0.844 0.996 0.995 0.865
60 0.919 862 76 0.838 0.842 0.996 0.995 0.863

H + W + sing 479 40 0.928 870 68 0.855 0.859 0.996 0.995 0.876
50 0.928 870 68 0.855 0.859 0.996 0.995 0.876
60 0.926 869 69 0.853 0.857 0.996 0.995 0.875

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

Table 4. Statistical analysis for the performance of the best 9 SSMs on the target Main90 dataset.

Query Set * Nodes % Id Ac Correct
Class

Incorrect
Class κ Sn Sp Ppos Pneg

H + sing 467 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993
50 0.99 603 6 0.976 0.983 0.993 0.983 0.993
60 0.992 604 5 0.98 0.983 0.995 0.989 0.993

W + sing 469 40 0.98 597 12 0.952 0.966 0.986 0.966 0.986
50 0.984 599 10 0.96 0.966 0.991 0.977 0.986
60 0.987 601 8 0.968 0.966 0.995 0.988 0.986

H + W + sing 479 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993
50 0.989 602 7 0.972 0.983 0.991 0.977 0.993
60 0.992 604 5 0.98 0.983 0.995 0.989 0.993

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

It can be noticed that the best statistics were achieved using the query composed of the
union of harmonic and weighted degree, both using 60% similarity cut-off of local alignment
during scaffold extraction, and the 99 outliers sets, comprising in total 479 query sequences.
Moreover, 60% was the best percentage of identity where there was a compromise for all
statistical parameters. All statistical parameters showed values higher than 0.88.

The best nine SSMs were compared and ranked using the Friedman test by comparing
multiple statistical metrics from each SSM on the three target datasets (details in SI6-B).
The best SSM was the set CSN-TH-0.60Sc-479-H+W+s-0.6-583 (479Q_0.6), named THP1,
showing excellent statistical metrics (>0.85) for the model (shown in Tables 2–4). It is
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composed of the union of nodes with an identity lower than 60% from the global centrality
harmonic with those obtained from applying weighted degree and the set of 99 outliers
(479 nodes). The best percentage of identity used to search similarity was 60%. The
confusion matrices of THP1 are shown in SI6-C. It can be seen that the prediction of the
model was not at random as the MCC was much greater than zero [55].

Finally, the Friedman test of the THP1 versus the reported models used in TumorHPD [26]
and THPep [28] servers revealed there is a significant difference between the models, being
that the performance of the similarity searching methodology is superior (details in SI6-
C and SI6-D). Figure 8 shows the ranking scores from the test, where THP1 is the first
ranked method. Finally, Table 5 compares between the model on the three benchmarking
datasets. The MCC of predictions using THP1 improved by an average of 28.76% over
ML-based models.

Antibiotics 2022, 14, x FOR PEER REVIEW 14 of 24 
 

 

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the 

weighted degree was calculated, and sing is the set of 99 outliers. 

It can be noticed that the best statistics were achieved using the query composed of 

the union of harmonic and weighted degree, both using 60% similarity cut-off of local 

alignment during scaffold extraction, and the 99 outliers sets, comprising in total 479 

query sequences. Moreover, 60% was the best percentage of identity where there was a 

compromise for all statistical parameters. All statistical parameters showed values higher 

than 0.88. 

The best nine SSMs were compared and ranked using the Friedman test by compar-

ing multiple statistical metrics from each SSM on the three target datasets (details in SI6-

B). The best SSM was the set CSN-TH-0.60Sc-479-H+W+s-0.6-583 (479Q_0.6), named 

THP1, showing excellent statistical metrics (>0.85) for the model (shown in Table 2, Table 

3 and Table 4). It is composed of the union of nodes with an identity lower than 60% from 

the global centrality harmonic with those obtained from applying weighted degree and 

the set of 99 outliers (479 nodes). The best percentage of identity used to search similarity 

was 60%. The confusion matrices of THP1 are shown in SI6-C. It can be seen that the pre-

diction of the model was not at random as the MCC was much greater than zero [55]. 

Finally, the Friedman test of the THP1 versus the reported models used in Tu-

morHPD [26] and THPep [28] servers revealed there is a significant difference between 

the models, being that the performance of the similarity searching methodology is supe-

rior (details in SI6-C and SI6-D). Figure 8 shows the ranking scores from the test, where 

THP1 is the first ranked method. Finally, Table 5 compares between the model on the 

three benchmarking datasets. The MCC of predictions using THP1 improved by an aver-

age of 28.76% over ML-based models. 

 

Figure 8. Ranking scores obtained in the Friedman Test. Friedman statistic (distributed according 

to chi-square with 2 degrees of freedom): 11.166667. P-value computed by Friedman Test: 0.00376. 

Table 5. Comparison between the best SSM THP1 and the state-of-the-art ML model to predict 

tumor-homing activity of benchmarking datasets. 

Dataset Method Ac (%) Sn (%) Sp (%) MCC 

Main 

TumorHPD 86.56 80.63 89.71 0.7 

THPep 86.1 87.07 85.18 0.72 

THP1 94.47 89.25 99.66 0.894 

Small 
TumorHPD 81.88 73.13 90.92 0.65 

THPep 83.37 81.24 85.81 0.67 

Figure 8. Ranking scores obtained in the Friedman Test. Friedman statistic (distributed according to
chi-square with 2 degrees of freedom): 11.166667. P-value computed by Friedman Test: 0.00376.

Table 5. Comparison between the best SSM THP1 and the state-of-the-art ML model to predict
tumor-homing activity of benchmarking datasets.

Dataset Method Ac (%) Sn (%) Sp (%) MCC

Main
TumorHPD 86.56 80.63 89.71 0.7

THPep 86.1 87.07 85.18 0.72
THP1 94.47 89.25 99.66 0.894

Small
TumorHPD 81.88 73.13 90.92 0.65

THPep 83.37 81.24 85.81 0.67
THP1 92.64 85.71 99.5 0.861

Main90
TumorHPD 89.66 83.64 80.68 0.74

THPep 90.8 91.8 87.97 0.77
THP1 99.18 98.3 99.54 0.98

3.2. Identification of Potential THPs
3.2.1. Hierarchical Screening

Starting from the 45120 AMPs contained in starPepDB, and after applying the previ-
ously explained filters and performing the similarity searching, 43 lead hits were retrieved
(SI7-A). Figure 9 shows the step-by-step hierarchical virtual screening. Until today, these
repurposed sequences have not reported any tumor-homing activity.
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3.2.2. Tumor-Homing Activity Optimization

A library of 180 sequences (SI7-B) was obtained from the optimization of 43 hits in
TumorHPD. They have a higher TH score, lower toxicity, and hemolytic activity than the
originals. Mutations enriched the sequences with W and C residues. Mainly G and V
residues from the originals were mutated to W, while R and K were to C. Studies report
the presence of W contributes positively to the intracellular translocation of peptides [56].
Additionally, it was reported that W enhances the stability of peptides in serum and
salt [57].

Forty-one peptides from the library were prioritized by studying their CSN, where 50%
scaffold extraction by local alignment was accomplished. The sequences were clustered
and ranked according to the global harmonic centrality to perform the scaffold extraction.
Only the most central sequences with a similarity among them lower than 50% were kept.
Forty-one sequences have higher predicted TH activity by TumorHPD than the original
peptides, with scores between 0.39 and 1.92. Furthermore, they are anticancer and have
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less toxicity and hemolytic activity. 12 out of 41 sequences come from fragments of original
sequences of 5, 10, and 15 lengths; 15 resulted from four punctual mutations from the
originals; and 14 from fragments of mutated sequences of 5, 10, and 15 lengths. Two out of
forty-one peptides, CNGRCGGKLA and WCAMS, are part of reported THPs, validating
the novel methodology to discover potential THPs. CNGRCGGKLA is the N-end of the
CNGRCGGKLAKLAKKLAKLAK peptide containing the NGR TH motif and a disulfide
bridge that gives stability. CNGRCGGKLAKLAKKLAKLAK binds to CD13 of tumor cells
acting as ACP and THP [58]. At the same time, WCAMS is the C-end of the KLWCAMS
peptide that homes mouse B16B15b melanoma [59].

We selected the most promising 13 sequences from the 43 lead hits and these were
combined with the 41 optimized hits. In total, we proposed 54 peptides (SET 1, FASTA
file in SI7-C) with a diverse molecular structure, low toxicity, and hemolytic activity, with
most of them also showing potential anticancer activity (SI7-D). Among the 54 lead hits,
only one sequence has the well-known NGR motif. Therefore, SET 1 is composed of new
structural entities within the known structural space of the THPs.

The sequence diversity of SET 1 was evaluated using all vs. all global alignment where
pairwise sequence identities were explored. As shown in Figure 10, the 54 lead hits present
a structure singularity sharing pairwise identities with 30%.
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3.2.3. Motif Discovery

As a consequence of the structural diversity of SET 1, the discovery of motifs ac-
counting for the TH activity is not a straightforward task. In this sense, sensitive multiple
sequence alignment (MSA) tools and alignment-free (AF) approaches (e.g., STREME) were
applied to unravel new TH motifs.

The resulting 54 lead THPs were mapped onto CSN space to identify putative commu-
nities and make possible the application of MSA algorithms for motif identification. These
networks communities were considered clusters containing related peptides. Finally, six
clusters were conformed with 14, 10, 8, 4, 10, and 8 members, respectively (SI7-E). The last
cluster grouped the singletons (peptides identified as atypical in the CSN).

Clustal-Omega [32], MAFFT [33], MUSCLE [34], and T-Coffee [35], which are MSA
algorithms developed after the classical ClustalW, were applied, so that they can deal with
hard-to-align sequences shown in each cluster, and thus to detect any conserved signature
or motif. Since each MSA has implemented a different algorithm to improve alignment
quality, their consideration for the estimation of consensus regions helped us identify TH
motifs by using the Jalview, EMBOSS Cons and Seq2Logo programs (SI8). As the EMBOSS
Cons, gives a more legible output, only displaying high scored amino acids/positions
(capital letters), less scored but positive residues (lower-case letters), and non-consensus
positions (x), were selected as the primary source to set consensus/conserved regions. The
non-consensus positions were estimated using default parameters by visual inspection of
the corresponding positions in the Jalview program [52] and the Seq2Logo [53]. Table 6
depicts the consensus motifs, unraveled by each MSA algorithm.

Table 6. Discovered motifs by Multiple Sequence Alignment (MSA).

No Motif EMBOSS Consensus Cluster Cluster Size Frequency * MSA Method

1 wwW
wwW

2 14 1/(1)
CLUSTALW-O

xxW MAFFT

2 C[fl][rg][vl]rW CxxxrW
3 10 0/(0)

MAFFT

3 C[gpi][gs]cR CxxxR MUSCLE

4 [rkl]GLC

RGlc

4 8 0/(0)

CLUSTALW-O

kGLC MAFFT

xGLc MUSCLE

5 c[wp]kG
cwkG

1+5 4
0/(0)
0/(0)
0/(1)

CLUSTALW-O
MUSCLE

cxkG T-Coffee

6 Not Found Non-consensus 6 10 0/(0)

CLUSTALW-O
MUSCLE
MAFFT
T-Coffee

7 l[rp][cw]c lxxc Singletons 8 0/(0) MUSCLE

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).

None of the motifs found by MSA have been reported as TH motifs (Table 6). However,
one of the motifs from No. 3 CxxxR, CGGCR, contains the CXXC motif, which is the active
site of thioredoxin (Trx), a relevant protein in mammalian cells that acts as an antioxidant
and participates in programmed cell death inhibition and cell growth, commonly used
as a target for cancer treatments [60,61]. Moreover, CWKG (No. 5) is contained in a
nanoscale molecular platform used as a drug delivery system in chemotherapy to enhance
the conjugation of mitomycin C to the carrier [62].

On the other hand, the AF approach STREME was used to find unaligned patterns
ranging from 3–5 aa length within the overall 54 peptides and each peptide cluster. STREME
has been recently reported as the most accurate and sensitive algorithm among its com-
peting state-of-the-art partners [36]. Unlike previous algorithms [63–65], STREME uses a
position weight matrix (PWM) to count position matches efficiently for a motif candidate
against a Markov model built up from shuffling the same input set (control sequences).
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Table 7 displays the enriched motifs, discriminating the 54 lead peptides against the control
sequences. The same search was also performed by considering each cluster content. Motifs
appearing in more than 20% of the query sequences are listed according to their statistical
significance (score).

Table 7. Discovered Motifs by STREME.

No Motif Cluster Cluster Size Matches in
Positive Seqs.

Matches in
Control Seqs. Sites (%) Score Frequency *

1 WRP

2 14

7 1 50 1.6 × 10−2 5/(5)

2 WVL 5 1 35.7 8.2 × 10−2 0/(0)

3 WS[YR] 3 0 21.4 1.1 × 10−1 1/(1)Y

4 WWWM 3 0 21.4 1.1 × 10−1 0/(0)

5 CFRV

3 10

3 0 30 1.1 × 10−1 1/(1)

6 HWK 2 0 20 2.4 × 10−1 0/(0)

7 PRW 2 0 20 2.4 × 10−1 3/(3)

8 CN[WG]

4 8

3 0 37.5 1.0 × 10−1 34/(32)G

9 WARG 3 0 37.5 1.0 × 10−1 0/(0)

10 GIC 2 0 25.0 2.3 × 10−1 5/(4)

11 WKG 1-5 4 3 1 75.0 2.4 × 10−1 0/(0)

12 KNKHK
6 10

3 0 30.0 1.1 × 10−1 0/(0)

13 PSHL 3 0 30.0 1.1 × 10−1 0/(0)

14 LRLRI
Singletons 8

2 0 25.0 2.3 × 10−1 1/(1)

15 CC[CQ] 3 1 37.5 2.8 × 10−1 0/(0)

16 LSP
All

sequences 54

11 1 20.4 3.4 × 10−3 3/(3)

17 WSYG 7 0 13.0 8.2 × 10−3 0/(0)

18 WRPW 5 0 9.3 3.2 × 10−2 2/(2)

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).

One of the motifs discovered by STREME had been reported as tumor-homing, WRP
interacting with VEGF-C [66,67]. Other found motifs have been reported but not as TH,
such as WRPW, PRW, WKG, and PSHL. WRPW is the binding site of the 7 Enhancer of
split E(spl) basic helix–loop–helix (bHLH) protein and the hairy protein to the corepressor
protein Groucho-TLE via WD40 domain [68]. PRW is part of a biocatalyst, which is
conjugated to a lipid by an ester or amide bond [69]. WKG is a ribosomally synthesized
and post-translationally modified peptide [70] and PSHL is a tetrapeptide that affects HIV-1
protease (PR) [71].

Lastly, 54 lead THPs were queried against PROSITE’s pattern and profile databases
using the search engine Motif Search of the GenomeNet suite [72]. Only two query peptides,
which are shown in Table 8, had significant matches with motifs found in gonadotropin-
releasing hormones (GnRH) and bombesin-like peptides.

Table 8. Motifs found in PROSITE.

No Motif Found Hit Peptide Accession Match with Signature Related Seqs. Frequency *

1 QHWSYGLRPG starPep_07237 PS00473 Q[HY][FYW]Sx(4)PG
Gonadotropin-

releasing
hormones

67 1/(1)QHWSY

2 WARGHFM starPep_10020 PS00257 WAxG[SH][LF]M Bombesin-like
peptides 36 0/(0)

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).
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These two peptide signatures and their receptors are involved in neuroendocrine
signaling pathways associated with physiological states and tumors. GnRH is the hypotha-
lamic decapeptide that plays a crucial role controlling women’s reproductive cycle. GnRH
binds to specific receptors on the pituitary gonadotrophic cells, but it also is expressed in
other reproductive organs, e.g., ovaries, and tumors derived from the ovaries. It has been
shown GnRH is involved in ovarian cancer regulation proliferation and metastasis either
by the indirect signaling pathway or direct interaction with the GnRH receptors placed at
the surface of ovarian cancer cells [73].

Bombesin-like peptides were initially discovered from frog skin, where they are
secreted from cutaneous glands as a means of communication and defense. They were later
found to be widely distributed in mammalian neural and endocrine cells represented by the
neuromedin B (NMB) and the gastrin-releasing peptide (GRP), respectively. Bombesin-like
peptide receptors are G-protein-coupled and have seven membrane-spanning domains,
so they are involved in signal transduction pathways [74]. Growing evidence shows that
bombesin-like peptides and receptors play essential roles in physiological conditions and
diseases. An abnormal expression of bombesin receptors has been observed in several
types of tumors, which has motivated the development of more specific and safer bombesin
derivatives for tumor diagnosis and therapy [75].

The motif search by using different approaches may render a diversity of outcomes.
However, some hits shared by different search approaches can support the reliability
of the findings. For example, one motif found by the PROSITE search, WSY, was also
encountered by STREME, an algorithm that works regardless of database and sequence
similarity. Some of the motifs estimated by MSA algorithms were also identified by the
AF approach STREME, such as WWW and WKG. All motifs were searched against TH
databases, TumorHoPe, and starPepDB to discriminate the possible new signatures from
the existing ones. New motifs appear at very low frequency within THPs (last column of
Table 6–8), except CNG found by STREME, which appears 34 times in TumorHoPe and 32
in starPepDB. However, CNG has not been reported as a TH motif.

4. Conclusions

In this study, a novel methodology based on network science and similarity searching
was introduced to explore the chemical space of THPs and discover potential THPs from
known AMPs. Statistically, the strategy’s performance transcended current supervised
ML approaches used in THP predictions, demonstrating the potential of this approach.
Hence, in silico predictions using the model based on representative THPs, in conjunction
with TumorHPD and THPep servers, gave a high reliability to discover potential THPs. As
a result, 54 lead compounds were repurposed as potential from AMPs. In the set, novel
motifs with promising tumor-homing activity were proposed.

The good performance of the methodology for predicting peptide activity based on
similarity searching and network science suggests its application for the prediction of
other endpoints in peptides, e.g., antibacterial activity, toxicity, hemolytic, or anticancer.
Our models and pipeline are freely available through the starPep toolbox software at
http://mobiosd-hub.com/starpep (accessed on 2 February 2021).
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