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Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the
keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein
supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the
pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous
production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally
produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information

about microbial keratinases and important considerations in keratinase production are discussed.

1. Introduction

Keratin is one of the most abundant biopolymers in the world
[1]; it is a tough, fibrous, insoluble material that functions
as an outer coat of human and animal organs, to prevent
the loss of body fluids. Keratin is predominantly found in
tissues of reptiles, birds, amphibians, and mammals. The
structural component of feathers, hair, nails, horns, hooves,
bones, furs, claws, hides, bird beaks, skin, wool, scales, and
bristle is made up of keratin (Figure1). a-keratins (alpha-
helix) are usually found in the hair, wool, horns, nails, claws,
and hooves of mammals, whereas the harder 3-keratin (beta-
sheets) is found in bird feathers, beaks, and claws. Keratin is
also expressed in the epithelial cell types of digestive organs
(liver, pancreas, intestine, and gallbladder), which include
hepatocytes, hepatobiliary ductal cells, oval cells, acinar cells,
enterocytes of the small intestine, colon, and goblet cells [2].

Keratin is rich in sulfur compounds with disulfide bridges,
which imparts them with an insoluble nature. It also contains
a variety of amino acids, predominantly cystine, lysine,
proline, and serine. Keratin is hard, containing scleroprotein,
while it is unreactive against most chemicals and is not
digested by pepsin, trypsin, or papain [3]. Higher verte-
brates, including humans, cannot digest keratinous materials.
Keratin is a monomer that forms bundles of intermediate
filaments that are expressed in epithelial cells that have been
linked to human liver diseases. Structural details regarding
keratin filaments 5 and 14 for heteromeric assembly and
perinuclear organization have been reported ([4], Protein
Data Bank Accession code: 3TNU; Figure 2(a)). Among
different keratin filaments, K8 and K18 are important for
the protection of hepatocytes [2]. The representation of K18
caspase-cleavage sites during apoptosis has been described in
detail ([2], Figure 2(b)).


http://dx.doi.org/10.1155/2015/140726

Feather

Horn

Hair

BioMed Research International

Nail

Beak

FIGURE 1: Sources of keratin. Different sources such as feathers, hair, nails, horns, hooves, and beak are shown. The hosts for these sources
include human, bird, and animal. The hardness of these keratin materials is different in each case.
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FIGURE 2: (a) Crystal structure of K5 and K14 coil heterocomplex (PDB accession code: 3TNU). This is a heteromeric assembly and perinuclear
organization of keratin filaments. Regions from central-coiled domains of two filaments are interacting. (b) Representation of K18 caspase-
cleavage sites during apoptosis. Keratin network regulates apoptotic machinery and confers a caspase-activation. The primary caspase-targets
in epithelial cells are found in keratins type I family (reproduced from [2]).

The major sources of keratin accumulation, which cause
environmental problems, initiate from industries that use
keratin as the raw material. Poultry farms are also involved
in dumping of feather wastes (barbs and rachis). Indeed, 90%
of feathers are keratin, and millions of kilograms of feathers
are discarded to the environment annually [6]. The disposal
of feathers is also accompanied by natural falling of feathers
and hairs from birds during production, so it is necessary
to develop methods to reduce keratin accumulation. For
environmental remediation of keratin, an immediate step
that has easy processing set-up with lower cost is desired.
Microbial keratinase may meet these preferences, as ker-
atinophilic fungi, bacteria, and actinomycetes naturally reside
on keratin wastes. Here, we elaborated the currently available
information pertaining to microbial keratinase production.

2. Keratinophilic Fungi

Keratinophilic fungi produce the proteolytic enzymes that are
capable of decomposing keratinic waste materials [7]. Several
keratinophilic fungi that live as parasites on keratinous
materials use keratin as their carbon and nitrogen sources,
multiply in an asexual manner, and produce conidia. During
the process of fungal colonization, boring hyphae are pro-
duced to drill into the keratin substrate. These keratinophilic
fungi include hyphomycetes and several other taxa [8];
hyphomycetes include both dermatophytic (e.g., Microspo-
rum species) and nondermatophytic (e.g., Chrysosporium
species and other genera) keratinophilic fungi [9]. The
dermatophytes are mainly from the genera Microsporum, Epi-
dermophyton, and Trichophyton. Keratinophilic species are
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usually identified by morphological features of their macro-
and microconidia, molecular methods, and using DNA
sequence analysis [10]. Keratinophilic fungi produce sulfide
for sulphitolysis and, during this process, the disulfide bonds
of cysteine, a major amino acid in keratinous materials, are
broken down, after which the proteolytic enzymes released
by the fungi can easily cleave the keratin. During the
degradation process, the products released are cysteine, S-
sulphocysteine, cysteine acid, cysteine, and inorganic sulfate,
and the presence of these products in the culture media
indicates the occurrence of true keratinophilic fungi. Fungi
that do not show this behavior during degradation are
considered nonkeratinophilic fungi. Keratinophilic fungi are
predominantly anthropophilic (human loving) or zoophilic
(animal loving). Many keratinophilic fungi have been isolated
from soil samples due to accumulation of keratin wastes in
the soils (geophilic). Soil samples from geophilic habitats
including public beaches, agricultural areas, public parks,
gardens, and elementary schools have been found to contain
keratinophilic fungi [11-15]. Most of these studies involved an
isolation technique known as keratin-baiting, in which hair
or feathers are used for the isolation of keratinophilic fungi
[11-15]. Keratinophilic fungi isolated in countries worldwide,
including Egypt, Spain, Australia, Palestine, Kuwait, India,
Iran, and Malaysia, have been described [8].

The common isolates of keratinophilic fungi from soils
include Microsporum gypseum, M. canis, M. fulvum, M.
nanum, Trichophyton terrestre, T. ajelloi, T. mentagrophytes, T.
interdigitale, T. verrucosum, T. equinum, T. rubrum, T. interdig-
itale, T. schoenleinii, T. simii, Chrysosporium keratinophilum,
C. pannicola, C. tropicum,C. indicum, C. anum, C. lobatum,
C. evolceanui, and C. indicum. Shadzi et al. [12] have col-
lected 330 samples from thirteen elementary schools and
seven public parks and identified 214 species, among which
Chrysosporium keratinophilum was the dominant organism,
being present with a frequency of 54.2%. Anbu et al. collected
10 and 12 soil samples from poultry farms and feather
dumping locations, respectively, and recovered 34 fungal
species belonging to 19 genera. Among these, six species
are dermatophytes belonging to five genera [13]. Kachuei
et al. [15] analyzed 800 soil samples from Isfahan province
of Iran and found that 588 belong to keratinophilic fungi,
representing 73.5% of the total isolates. Furthermore, they
recovered 16 species belonging to 11 genera. Similarly, 108
soil samples from St. Kitts and 55 samples from Nevis were
shown to consist of 49 and 38 samples, respectively, positive
for keratinophilic fungi. Additionally, M. gypseum was pre-
dominantly found in 15.7 and 40% of soils of these collections
sites, respectively, followed by Chrysosporium species [14].
Molecular identification of keratinophilic fungi revealed 411
isolates from 22 genera in public park soils from Shiraz, Iran
[9]. Another study revealed that 48 soils from Jharkhand,
India, contained 10 species of keratinophilic fungi belonging
to seven genera [8]. Similarly, 500 samples collected from
zoos and parks of Ahvaz were found to contain keratinophilic
fungi [16]. In another study, 54 soil samples from different
collection sites including gardens, schools, poultry farms,
rivers, hospitals, and garbage dumping sites were found to
contain 23 species of keratinophilic fungi from 11 genera.

The abundance of samples shown to contain keratinophilic
fungi was as follows: 65% gardens, 52% schools, 43% poultry
farms, 34% garbage, 30% hospitals, and 21% rivers [7]. Based
on the above studies, it is clear that keratinophilic fungi
are ubiquitous and present in all kinds of soils and that
they are dominant in areas where humans and animals live.
In addition to the above list, keratinolytic proteins from
keratinophilic fungi were reported by Yu et al. [17], Asahi et
al. [18], and Williams et al. [19].

3. Keratin-Degrading Bacterial Isolates

Similar to the isolates of fungi, lists of bacterial strains capable
of degrading keratins have been reported. Bacteria can grow
faster than fungal species and therefore have potential in
industrial applications. The advantages of fungi include easier
colonization of fungal hyphae into the harder keratin relative
to bacteria. The isolated bacterial strains known to degrade
keratin or produce the keratinase are primarily composed
of Bacillus; it includes B. subtilis and B. licheniformis [20],
although other bacteria including Gram-positive Lysobac-
ter, Nesterenkonia, Kocuria, and Microbacterium and Gram-
negative Vibrio, Xanthomonas, Stenotrophomonas, Chry-
seobacterium, Fervidobacterium, Thermoanaerobacter, and
Nesterenkonia can also degrade keratin ([21] and references
therein). Several other studies have investigated keratinase
produced by bacterial species [22-26]. Sapna and Yamini [27]
investigated the potential degradation of keratin by bacterial
strains recovered from the soil samples. Four isolates from
feather waste were recovered on milk agar plates and three
were identified as Gram-negative bacteria (Burkholderia,
Chryseobacterium, and Pseudomonas species) and one was
identified as Gram-positive strain (Microbacterium species)
[28]. Moreover, Korniltowicz-Kowalska and Bohacz [29]
reported that actinomycetes, Streptomyces group, namely, S.
fradiae, Streptomyces species All, S. pactum, S. albidoflavus,
S. thermoviolaceus SD8, and S. graminofaciens, as well as
Thermoactinomyces candidus, were capable of producing
keratinase.

4. Secretion of Microbial Keratinases

Keratinolytic enzymes are proteases known as keratinases
(EC 3.4.21/24/99.11) that can primarily be obtained from
fungi, actinomycetes, and bacteria [29]. Fungal keratinases
can be easily obtained by secretion, and their low cost makes
them preferable over bacterial keratinases in some cases,
even though the fungi grow slower and the recovery of
keratinase from fungi has been reported for several decades.
The availability of several strains that are capable of producing
keratinase makes the situation to select efficient keratinase
producers an important step. Screening microbial enzymes
is essential in the selection process, and the chosen enzymes
should be less expensive, eco-friendly, and efficient. Both
keratinophilic fungi and nonkeratinophilic fungi can produce
keratinases, but the difference is the rate of production,
which is higher in the former case. Several methods have
been proposed to screen proteolytic (including keratinolytic)
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FIGURE 3: Plate clearance assay for proteolytic activity. Secretion of proteolytic enzymes by Aspergillus species, Mucor species, and Mycelia
sterilia is shown as example. The 8% gelatin agar plates were prepared and a pinpoint inoculum was spotted at the center. The clear zone
around the colonies indicated the presence of proteolytic activity, which was due to the complete degradation of gelatin. Aqueous saturated
solution of ammonium sulfate was added on the surface of the agar for clear visualization.

enzymes, including keratin-baiting, plate screening, spec-
trophotometric methods, and sequence-based amplification.
Jeevana Lakshmi et al. [30] identified feather-degrading
bacteria using the 16S rDNA sequence. Among the aforemen-
tioned methods, the plate-clearing assay is one of the popular
methods due to displaying visual results, as well as being
less expensive and easier than other methods (Figure 3). The
keratin-baiting method is used for the initial screening and
isolation of keratinolytic species. In this method, any keratin
source can be the bait; hair and feathers are routinely in use
[11, 13]. Even though the pour plate method can be used to
isolate the keratinophilic microbes as an alternate, keratin-
baiting is also commonly applied because it enables the direct
selection of keratinophilic species on the substrate.

5. Optimized Conditions for
Microbial Keratinases

Once microbes are isolated, they can be further cultivated on
suitable artificial growth media under optimal conditions to
obtain excess production of keratinase. Sabouraud’s dextrose
is commonly used to grow keratinophilic fungi due to its
suitability [11, 13, 16]. Usually keratinophilic fungi will take
a longer time to degrade the keratin (in weeks). Using the
hair-baiting technique, Gugnani et al. [14] found that 4 to 8
weeks were required to observe keratinophilic fungal growth.

Kumar et al. [8] isolated keratinophilic fungi after 2 to 4 weeks
of incubation, while Mahmoudabadi and Zarrin [16] found
that 4 to 5 weeks are necessary to grow. In such cases, optimal
growth was found to occur at room temperature. It has also
been reported that keratinophilic fungi are able to degrade
40% of keratin after 8 weeks, while less than half (<20%) of
that amount can be degraded in the case of nonkeratinophilic
fungi [31].

It has been reported that most keratinophilic microbes
thrive well under neutral and alkaline pH, the range being
6.0 to 9.0 [32]. Most keratinophilic fungi are mesophiles,
although M. gypseum and some species of Chrysosporium
are thermotolerant ([29] and references therein). It has been
reported that temperatures of 28°C to 50°C favor keratinase
production by most bacteria, actinomycetes, and fungi, while
70°C favors its production by Thermoanaerobacter and Fervi-
dobacterium species [33-35]. Optimal keratinase production
by Chrysosporium keratinophilum occurs at 90°C and its half-
life is 30 min [36], whereas the thermophile Fervidobacterium
islandicum AW-1 has an optimum of 100°C and a half-life of
90 min [35].

The complete optimized conditions for microbial ker-
atinases production are described in detail elsewhere [37].
Under optimal condition, keratinophilic fungi, Scopulari-
opsis brevicaulis and Trichophyton mentagrophytes, result
in keratinase activity to the levels 3.2 and 2.7 Keratinase
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Unit (KU)/mL with the ability to degrade 79 and 72.2% of
chicken feathers, respectively [38]. Matikeviciene et al. [20]
have shown keratinase activity of 152 KU/mL after 24 h of
incubation using Bacillus species with optimal media. Higher
amounts of keratinase were reported by Kanchana [3] at
37°C for 72 h in medium containing feather meal and 0.025%
yeast extract at a pH 7.0 under submerged culture. Laba and
Rodziewicz [39] optimized the conditions for keratinolytic
feather-degrading ability of Bacillus polymyxa and B. cereus.
Additionally, Sivakumar et al. [40] recently optimized the cul-
ture conditions for the production of keratinase from Bacillus
cereus TS1. Using dimeric keratinase obtained from Bacil-
lus licheniformis ER-15 complete degradation was achieved
within 8h at pH 8 and 50°C. In this case, 25g of chicken
feathers was degraded with 1200 KU [41].

6. Purification of Keratinases

In addition to the higher keratinase production under
optimal conditions, purification of keratinase is necessary
for further industrial applications to hasten the efficiency
of keratinase action. Molyneux [42] attempted to isolate
keratinase from a bacterial source. In other cases, with the
purified keratinases, several sizes were reported in the appar-
ent molecular weight range of 27 to 200 kDa from different
strains of bacteria and fungi ([29] and references therein).
However, Kim et al. [43] reported recovery of keratinase with
a molecular weight of 440 kDa. Purified enzymes including
keratinases can be obtained using different methodologies.
The most common strategy is to purify the enzymes by pre-
cipitation followed by column chromatography. Keratinase
with a molecular mass of 35kDa was purified from feather-
degrading bacterium using ammonium sulphate precipita-
tion followed by ion-exchange (DEAE-Sepharose) and gel-
filtration (Sephadex G-75). The purified keratinase was found
to have thermotolerant and showed high specific activity
[44]. Using a similar strategy, Zhang et al. [45] purified
the alkaline keratinase from Bacillus species and identified
keratinase of 27 kDa using MALDI-TOF-MS. Anbu et al. [5]
isolated keratinase with a molecular weight of 39 kDa from
the poultry farm isolate, Scopulariopsis brevicaulis, and found
that this keratinase had a serine residue near the active site.
Keratinase with a size of 41 + 1kDa and activity under the
optimal conditions at pH 9.0 and 50°C was isolated from
Bacillus megaterium. This enzyme was also found to have a
serine active site and to be inhibited by PMSF [46]. Based on
the pH adaptation nature of the keratinase, the column matrix
and method of purification can be desired while varying the
elution profile (Figure 4). In addition, keratinase purification
can also be accomplished with greater efficiency by immuno-
precipitation when the appropriate anti-keratinase antibody
is available. Similarly, immunochromatography technique
can be implemented using anti-keratinase antibody for the
efficient purification of keratinase. Purified keratinases from
diverse species have displayed higher stability under varied
condition (Table 1).

Mixture of sample containing keratinase

md |

FIGURE 4: Purification strategy for keratinases. Options with acidic,
neutral, and alkaline keratinases are shown. Peak profiles indicate
the individual proteins. Conventional purification strategies include
ammonium sulphate precipitation followed by ion-exchange and
gel-filtration. Other methods such as immunochromatography,
high-performance liquid chromatography, and fast protein liquid
chromatography are also involved in the purification of keratinases.

7. Acceleration of Microbial
Keratinase Production

Following the optimization of the basic conditions for kerati-
nase production and purification, it is necessary to accelerate
overproduction of keratinase. This can be accomplished by
recombinant DNA technology and statistical optimization.
Sequences for both the substrate-keratin and the enzyme-
keratinase have been proposed. The primary sequences of the
keratin involved in its recombinant production were found by
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TABLE 1: Keratinases from different species for various applications.
Species Optimal condition (pH) Aim(s) of study Reference
Fungi
Aspergillus oryzae 8.0 Purification and characterization [47]
Doratomyces microsporum 8.0-9.0 Comparative analysis (48]
Paecilomyces marquandii 8.0 Comparative analysis (48]
Trichophyton rubrum 8.0 Purification and characterization (18]
Microsporum gypseum 8.0 Secretion of keratinase [49]
Scopulariopsis brevicaulis 8.0 Dehairing process (5]
Myrothecium verrucaria 83 Feather degradation [50]
Chrysosporium keratinophilum 9.0 Stable keratinase [36]
Trichoderma atroviride 8.0-9.0 Feather degradation [51]
Bacteria

Clostridium sporogenes 8.0 Novel keratinolytic activity [52]
Microbacterium arborescens 7.0 Feather degradation [53]
Fervidobacterium islandicum 9.0 Feather degradation [35]
Kytococcus sedentarius 7.0-75 Feather degradation [54]
Stenotrophomonas maltophilia 7.8 Purification and characterization [55]
Kocuria rosea 7.5 Feather degradation [56]
Xanthomonas maltophilia 8.0 Purification and characterization [57]
Streptomyces thermoviolaceus 8.0 Feather degradation [58]
Bacillus pumilus 10.0 Purification and characterization [59]
Thermoanaerobacter keratinophilum 8.0 Isolation of keratinophilic species [34]
Hanukoglu and Fuchs (60, §1] and denoted by type.I and type YR 4 zk:RXz . Zk:RXZ
II. Later, several amino acids sequences for keratinase were 07 LT L
revealed. The amino acid sequence of keratinase from Bacillus = = )

licheniformis and other species is available in data bank ([62],
e.g., accession code AAB34259). Similarly, the full length
of keratin sequences from Homo sapiens has been reported
([63], accession code P04264). For the large-scale preparation
of keratinase, recombinant DNA technology would yield
a large amount of overexpressed enzyme. Recombinant or
other keratinases purified using conventional methods have
great potential for applications in industrial processes such
as dehairing. For example, Anbu et al. [5] have accomplished
dehairing using purified keratinase from the keratinophilic
tungi, Scopulariopsis brevicaulis (Figure 5).

The production levels of any given enzyme can also be
improved severalfold using statistical modeling studies. There
are different formulations of statistical calculations with basic
formulae that have been described. Some basic models for
optimization are given in Figure 6, which shows a response
surface methodology perturbation plot and mixture trace
plot. One of the basic models, the Box-Behnken design, is
related to experimental variables by the response equation:

Y= (X, X5, X500, X)) (1)

A second-degree quadratic polynomial is then used to repre-
sent the function by

k-1 k
+ ) YRXX;+e.

i=1,i<j j=2

The variables and other parameters have been described pre-
viously in detail [64]. Using a statistical optimization model,
Harde etal. [65] optimized the keratinase production of Bacil-
lus subtilis NCIM 2724. These authors used one-factor-at-a-
time optimization and an orthogonal array design. Recently,
Shankar et al. [66] used response surface methodology,
for the optimization of keratinase production by Bacillus
thuringiensis. Using this design experiment, they compared
the actual experimental and predicted calculated values and
found that pH 10 and 50°C with 1% mannitol were ideal
for keratinase production from B. thuringiensis. Similarly,
Ramnani and Gupta [67] optimized the medium composition
for the production of keratinase from B. licheniformis RGl
using response surface methodology. In another study, B.
cereus was used for the study to optimize keratinase pro-
duction [68]. Using the Box-Behnken design experiments,
Anbu et al. [5] optimized the activity of purified keratinase
from Scopulariopsis brevicaulis and achieved 100% activity
with 5mM CaCl, at pH 8.0 and 40°C. Similarly, production
of keratinase by Scopulariopsis brevicaulis and Trichophyton
mentagrophytes has also been optimized using Box-Behnhen
design experiments by Anbu et al. [38, 69].
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FIGURE 5: Dehairing using microbial keratinase (2 KU/mL) produced by Scopulariopsis brevicaulis (source from [5]). The purified keratinase
was sprayed on the flesh side of the skin and then folded and incubated for 30 days. Every 3 days of interval, the dehairing ability was examined.

(@ (®)

FIGURE 6: Basic strategy for statistical optimization of keratinase. (a) Response surface methodology perturbation plot; (b) mixture trace
plot. Response surface methodology is a collection of statistical techniques for designing experiments, building models, and evaluating the
effective factors. It is an efficient statistical technique for optimization of multiple variables to predict best performance conditions with

minimum number of experiments.

8. Sensing Keratinases or other biomolecules and their interactive analyses with

binding partners can be accomplished using biosensors.
In the above sections, various aspects regarding the condi-  Bjosensors consist of a physicochemical detector and a
tions necessary for keratinase to degrade keratin are pro-  biological component, enabling binding events to be trans-

vided. However, detection strategies are also important for  duced, thereby allowing detection of very small amounts
future applications of keratinase. Detection of keratinase  of target biomolecules (keratinase). Sensors are broadly



classified as electrochemical, electrical, optical and mass-sen-
sitive, chemiluminescence, fluorescence, quantum dot-based,
colorimetric, and mass spectroscopic detections. Different
sensing surfaces can be adopted for the detection of ker-
atinases. Developing sensing strategies for the detection of
keratinase favors the analysis of keratinase from mixtures of
a given sample.

Generally, gold- or silica-based sensing surfaces have
been used to analyse the biomolecules [70-77]. To capture
keratinase on these surfaces, appropriate tags can chemi-
cally modify keratinase. Thiol-modification of keratinase can
enable its attachment onto the surface of gold or modification
of the sensing surface with the COOH-terminal for ultimate
attachment to amines on keratinase. Similarly, in the case of
silica, surfaces must be chemically modified using amino-
coupling agent followed by suitable tags, which can couple
an amino group on the keratinase. In short, both gold and
silica can be modified to capture keratinase, or keratinase can
be modified for specific sensing surfaces as reported in other
cases [70, 77]. Diverse keratinases from different species have
been reported (Table 1) and these keratinases could be active
at different pH and stable, indicating the suitability for various
sensing systems.

9. Perspectives

Keratin, which is one of the most abundant hard materials in
soil, is difficult to degrade under natural conditions. However,
microbial degradation is an easier and less expensive method
for conversion of these products to useful end products.
Several methods to improve keratinase production have been
suggested, and keratinase has been overexpressed, success-
tully purified, and applied to several industrial applications.
In addition, additional developments have been implemented
in keratinase research recently [78, 79]. However, there is
currently no highly sensitive system available for the detec-
tion of keratinases. In addition, use of recombinant keratinase
chimeras has the potential to generate efficient keratinase
and needs to be improved. Development of more efficient
methods for the production and detection of keratinase will
hasten its application to industries and environmental waste
management.
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