
nutrients

Review

Myostatin as a Biomarker of Muscle Wasting and
other Pathologies-State of the Art and
Knowledge Gaps

Jan Baczek 1,* , Marta Silkiewicz 2 and Zyta Beata Wojszel 3,4

1 Department of Geriatrics, Medical University of Bialystok, Doctoral School, Fabryczna 27,
15-471 Bialystok, Poland

2 Faculty of Medicine with the Division of Dentistry and Division of Medical Education in English,
Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; 35150@student.umb.edu.pl

3 Department of Geriatrics, Medical University of Bialystok, Fabryczna 27, 15-471 Bialystok, Poland;
beata.wojszel@umb.edu.pl

4 Department of Geriatrics, Hospital of the Ministry of Interior and Administration in Bialystok, Fabryczna 27,
15-471 Bialystok, Poland

* Correspondence: jan.baczek@umb.edu.pl; Tel.: +48-507-197-959

Received: 21 July 2020; Accepted: 8 August 2020; Published: 11 August 2020
����������
�������

Abstract: Sarcopenia is a geriatric syndrome with a significant impact on older patients’ quality
of life, morbidity and mortality. Despite the new available criteria, its early diagnosis remains
difficult, highlighting the necessity of looking for a valid muscle wasting biomarker. Myostatin,
a muscle mass negative regulator, is one of the potential candidates. The aim of this work is to
point out various factors affecting the potential of myostatin as a biomarker of muscle wasting.
Based on the literature review, we can say that recent studies produced conflicting results and
revealed a number of potential confounding factors influencing their use in sarcopenia diagnosing.
These factors include physiological variables (such as age, sex and physical activity) as well as a
variety of disorders (including heart failure, metabolic syndrome, kidney failure and inflammatory
diseases) and differences in laboratory measurement methodology. Our conclusion is that although
myostatin alone might not prove to be a feasible biomarker, it could become an important part of
a recently proposed panel of muscle wasting biomarkers. However, a thorough understanding of
the interrelationship of these markers, as well as establishing a valid measurement methodology for
myostatin and revising current research data in the light of new criteria of sarcopenia, is needed.
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1. Introduction

Sarcopenia, as currently defined by the European Working Group on Sarcopenia in Older People
2 (EWGSOP2), is a syndrome comprised of deterioration of muscle strength, quantity, quality and
performance [1]. It is a geriatric syndrome occurring with advancing age, with a prevalence (estimated
by earlier EWGSOP criteria) of 12.9% (95% confidence interval: 9.9–15.9%) among community-dwelling
older adults [2]. With its high prevalence and proved impact on disability and hospitalization risk,
quality of life and mortality, sarcopenia poses a major health issue for older people and a public health
burden [3–6]. The pathogenesis of this disorder comprises of various factors and mechanisms [7,8],
including genetic variability [9,10], cytokine activity [11–13], vitamin D, testosterone and growth
hormone deficiency [14–17], mitochondrial dysfunction and apoptosis [18–20], muscle disuse [15,21,22],
nutritional status [23,24], atherosclerosis [25,26] and diabetes [27,28]. Some authors distinguish primary
(or age-related sarcopenia), occurring in otherwise healthy, usually aged persons, from secondary
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sarcopenia, the result of chronic inflammatory statuses, diabetes, hormonal alterations, vascular
disturbances, renal, respiratory and/or cardiac failure and immobilization [29,30]. Furthermore,
sarcopenia remains intertwined and overlapping with other syndromes such as frailty [31,32] and
cachexia [33,34], and its development significantly worsens the prognosis of various diseases such
as heart failure [35,36], chronic kidney disease [37] and liver failure [38]. Muscle wasting in aging
(sarcopenia) shares many common metabolic pathways and mediators with body wasting (cachexia)
observed during cancer and other chronic diseases, such as multiple inflammatory organ-specific
disease or cardiovascular disease [39]. Both sarcopenia and cachexia are characterized by inflammation
and oxidative stress, where specific regulating molecules associated with wasting are either activated
or repressed, but they are distinct muscle wasting entities [40]. In cachexia, body wasting involves
not only muscle, but also adipose and bone tissue, therefore—apart from muscle loss—a marked
weight loss, anorexia, asthenia and anemia are observed. A degree of cachexia—usually reported as a
complication of chronic diseases—is inversely correlated with the survival time of the patient, and it
always implies a poor prognosis [41]. The Glasgow Prognostic Score (based on the assessment of
albumin and C-reactive protein (CRP) levels) or its modified version (including also complete blood
count) can be used to distinguish cachexia and secondary sarcopenia [42,43].

Early diagnosis of sarcopenia is crucial for the effectiveness of a possible intervention; however,
despite the new algorithm proposed by EWGSOP 2, it remains a difficult task. A feasible biomarker of
sarcopenia could become an essential tool facilitating and accelerating the diagnostic process, although
an applicable molecule is yet to be established. A valid biomarker should be characterized by high
sensitivity, specificity and predictive power [44]; however, finding a substance characterized by such
features is difficult given the pluricausal nature of sarcopenia. That is why, as proposed by Calvani et al.,
creating a panel of complementary biomarkers, instead of looking for a universal one, emerges as a
possible solution to this issue [45].

Myostatin, also known as growth differentiation factor -8 (GDF-8), is a chalone, a transforming
growth factor β (TGF-β) superfamily member acting as a negative regulator of muscle growth. It was
first reported by McPherron et al., who discovered that myostatin gene deletion led to hypermuscularity
in mice [46]. Similar effects were demonstrated in cattle, sheep, dogs and humans [47–50], which made
myostatin a point of interest in the agriculture industry and medicine. Myostatin is most abundant in
skeletal muscle; however, its expression was noted in cardiac muscle and in adipose tissue [51,52]. It is
synthesized as an inactive precursor protein and requires a two-step proteolytic cleavage to reach its
mature form. The first cleavage is made by furin family enzymes, which remove the signal peptide
producing latent myostatin complex found in the serum. This complex consists of mature myostatin
dimerized by disulfide bonds, which remain non-covalently bound with and inhibited by myostatin
propeptide. The second cleavage occurs in extracellular space and is made by bone morphogenetic
protein 1 (BMP1)/Tolloid matrix metalloproteinases, which separate active myostatin ligand from
the inhibitory N-terminal propeptide domain, allowing interaction with the receptor [53–55]. Active
myostatin dimerized by disulfide bonds binds with transmembrane activin type IIB receptor (ActRIIB),
which signals through activin receptor-like kinase 4 or 5 (ALK4 and ALK5) [53]. These kinases
phosphorylate SMAD family members 2 and 3 (SMAD2 and SMAD3), which form a complex with
SMAD4. This complex translocates into the nucleus and affecting transcriptional factors, such as the
myocyte-specific enhancer factor (MEF2), and the myoblast determination protein 1 (MyoD) inhibits
myoblast proliferation and differentiation [53,56–58]. Furthermore, myostatin modulates Akt pathway
activity, effectively inhibiting muscle hypertrophy through the mammalian target of rapamycin (mTOR),
and increasing muscle degradation via the forkhead box protein O1 (FoxO1) pathways [59]. Myostatin
was also found to signal via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
which, together with SMAD3 activation, could affect glucose uptake inducing insulin resistance [60,61].

Regarding the regulation of myostatin expression, various mechanisms affect its transcription
and translation. One of such mechanism is interaction with myostatin gene promoter. A research on
the 5’-terminal regulatory region of the myostatin gene revealed various agents possibly acting as
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transcriptional factors, such as myocyte enhancing factor 2 (MEF2), peroxisome proliferator-activated
receptor gamma (PPARγ), MyoD and NF-κB, as well as a mechanism for myostatin upregulation
by glucocorticoids [62]. Myostatin gene expression was also found to be affected by tumor necrosis
factor -α (TNF-α), hormones (such as insulin-like growth factor (IGF-1), angiotensin II and thyroid
hormones), nutritional supplementation, hyperammonemia, physical exercise and hypoxia [63–70].
Furthermore, myostatin was found to down-regulate its expression in a self-regulatory loop [71].
A novel mechanism regulating myostatin mRNA expression is associated with the activity of microRNAs
(miRNA) [48,68,72]. These non-coding RNAs were found to inhibit myostatin mRNA translation,
leading to muscle hypertrophy in sheep. Furthermore, miRNA expression was found to be affected by
essential amino acids and, indirectly, by myostatin itself, which demonstrates an important myostatin
regulation feedback mechanism [68,73]. More recent reports on various factors affecting myostatin
mRNA expression can be found in suitable paragraphs below. It is worth mentioning that changes in
myostatin mRNA expression do not always correspond with muscle protein, and the serum myostatin
level and the results of studies on this relationship seem contradictory [64,69,74,75]. That is why, in
this research, we focused on data regarding circulating myostatin concentration, as it affects myostatin
potential as a biomarker in a more direct and explicit manner. A more detailed description of myostatin
structure, mechanism and regulation can be found in several thorough reviews [76–78].

Due to a high abundance in skeletal muscle and its function as a myokine, myostatin is posing as
a potential biomarker of muscle wasting and therapeutic opportunity for sarcopenia and cachexia.
The aim of this review is to verify myostatin’s potential as a serum biomarker in the light of the latest
studies, examine various knowledge gaps impeding its usage in diagnosing muscle wasting and also
to discuss new findings on this promising peptide and the opportunities they reveal.

2. Myostatin and Muscle Wasting

It has been long known that myostatin acts as myokine, negatively regulating skeletal muscle
mass. Although a number of novel research studies have been focused on the relationship between
serum myostatin and muscle mass and function, and thus, its potential as a biomarker, the results
seem unclear. Most studies indicate that a higher circulating myostatin concentration can be found
in patients with higher muscle mass [79–85], but a few research studies resulted in finding such an
association only in men [86,87], and some did not show any correlation with muscle mass parameters at
all [88–91]. A study on healthy, obese and metabolically unhealthy participants found a contradictory,
significantly negative correlation between muscle mass and serum myostatin, suggesting a major
influence of metabolic syndrome on circulating myostatin level [92]. Similarly, contradictory findings
have been made regarding the relationship between serum myostatin and muscle function. Some
studies found increased circulating myostatin concentrations in patients with better muscle function or
physical performance [80,81,83,84,87], and several indicated such a relationship to be more apparent
in the male population [85,93], while others did not show any clear correlation between those
parameters [82,88,89,92,94].

There are scarce reliable reference data comparing sarcopenic and robust patients with regard
to serum myostatin concentration. In their large cross-sectional study, Han et al., found that serum
myostatin level might be treated as a significant risk factor of pre-sarcopenia (defined as low muscle
mass regardless of muscle function) [95]. Similarly, Tay et al., found myostatin to be a significant risk
factor of sarcopenia, but only in the male population, and identified no significant difference in serum
myostatin between sarcopenic and non-sarcopenic patients [96]. Hofman et al., noticed no difference
in serum myostatin levels between sarcopenic and healthy elderly women [89]. One study found
higher myostatin gene expression in sarcopenic patients; however, circulating myostatin concentrations
were not measured [97]. Regarding muscle wasting in cancer cachexia, studies on patients with
lung, colorectal and medullary thyroid cancer demonstrated that plasma myostatin concentration was
decreased in patients with cancer cachexia compared to non-cachectic patients [81,98]. Furthermore,
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the serum myostatin level was found to be an independent predictor of overall survival in older
patients with solid metastatic tumors [99].

Recent studies on neuromuscular disorders, which result in muscle hypotrophy and wasting,
emerge as an example of myostatin used as a feasible biomarker. A study by Burch et al., indicates that
decreased serum myostatin levels in muscle pathologies are associated with disease progression [100],
which can be explained by the down-regulation of myostatin pathway in order to compensate for
muscle wasting or atrophy [101]. Further research present myostatin as a feasible biomarker for disease
progression, severity and treatment efficacy in mice and patients with myotubular myopathy [102],
as well as for estimating a therapeutic response to pharmaco-gene therapy in Duchenne muscular
dystrophy [103]. A similar mechanism emerges in idiopathic inflammatory myopathies. Vernerova et al.,
demonstrated that such disorders with decreased serum myostatin level associated with an increase
of circulating follistatin concentration pose as a possible compensatory mechanism attempting to
counteract muscle hypotrophy by inhibiting myostatin/ActRIIB signaling in such disorders [104].
All these novel findings greatly expand the understanding of myostatin in neuromuscular diseases
and prove its viability as a biomarker in these conditions. These results suggest that while both
neuromuscular diseases and sarcopenia are associated with changes in myostatin abundance, the
mechanism responsible for such variations is different. While, in a number of myopathies, myostatin is
downregulated in order to counteract muscle wasting and, thus, seems to be a feasible biomarker of
these disorders, in sarcopenia, the issue seems more complex. Serum myostatin level in muscle wasting
of the elderly poses as a result of myostatin expression regulation and decreased muscle mass, which
are influenced by other factors further discussed in this review. Such a variety of aspects affecting
circulating myostatin concentration is a possible explanation of the aforementioned data discrepancy.

Despite the fact that such inconsistencies in results might be discouraging for considering serum
myostatin as a valid biomarker of sarcopenia, we believe that it is important to research into possible
causes of such differences between studies. Even if myostatin does not prove a valid candidate
for a singular biomarker, it might become an important part of a panel of markers, as proposed by
Calvani et al. [45]. However, before incorporating myostatin into such a panel would be feasible, many
obstacles must be overcome, with discrepancies in results being the first one. That is why we would
like to discuss possible explanations of inconsistent results regarding serum myostatin levels below.

Primarily, there is a strong need to validate the methods used to measure serum myostatin
abundance. There is a significant sequence similarity between myostatin and growth differentiation
factor -11 (GDF-11), which caused conflicting results in the past, as some antibodies used in detection
methods bind both substances [105–107]. Although early issues with the specificity of assay methods
seemed to be resolved by the development of enzyme-linked immunosorbent assays (ELISA) [108,109],
results of novel research using this method still appear as unclear or even contradictory. A possible
explanation of this problem might be the fact that some assays detect both active and latent forms of
myostatin [109]. Similar observations led Bergen et al., to develop a new liquid chromatography with
a tandem mass spectrometry assay to assess serum myostatin abundance [85]. Their results showed
gender-specific serum myostatin changes with age as described below, as well as significantly lower
myostatin concentrations in sarcopenic women. In men, on the other hand, myostatin appeared as
a muscle mass homeostasis regulator, but not a major factor of sarcopenia. However, Bergen et al.,
defined sarcopenia using muscle mass deficiency only, which asks future studies to validate their
results using the latest EWGSOP criteria for diagnosing sarcopenia. Their results were partially
confirmed by the SomaScan aptamer technology measurement of samples from two large cohort
studies in which, however, sarcopenia was not assessed [110]. Further research investigated various,
specific myostatin measurement methods, such as immunoassays, immunoradiometric sandwich
assay, antibody-free assay and liquid chromatography-tandem mass spectrometry assay combined
with immunoprecipitation [111–114]. These new, specific assays could be used to clarify discrepancies
in earlier results, as well as serve as a validation tool for commercially available methods.
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Another issue lies in the necessity of a better understanding of the role of other myokines and
biochemical parameters in muscle mass and function regulation, as myostatin is not the only substance
that plays an important role in musculoskeletal growth, development and aging. It is worth emphasizing
that myostatin acts as a part of the activin A-myostatin-follistatin system. As we have mentioned above,
myostatin binds to the type IIB receptor (ActRIIB), whereas activin is thought to bind with greater
affinity to the type IIA activin receptor (ActRIIA), and both are involved in the regulation of muscle
mass. Follistatin, a single-chain glycosylated protein, is expressed in various tissues and antagonizes
both myostatin and activin A activity, influencing their effects on muscle mass [115,116]. Thanks to that,
and through stimulating myoblasts to express MyoD, myogenic factor 5 (Myf5) and myogenin, which
are myogenic transcription factors, it enhances muscle differentiation, which is a promising agent for
improving skeletal muscle healing after injury and muscle diseases [117]. The synthetic N-terminal
domain of follistatin-derived fragment peptide DF-3, found recently, effectively inhibited myostatin
injected intramuscularly and significantly increased skeletal muscle mass in mice. It is assumed
that DF-3 can act as a platform for the development of muscle enhancement based on myostatin
inhibition [118].

It is also crucial to establish the influence of insulin-like growth factor-1, testosterone and peptides
such as follistatin–related gene (FLRG) protein, GDF-11 (also known as bone morphogenetic protein 11,
BMP-11) and growth and serum protein-1 (GASP-1), on muscle mass, sex and age-related differences in
their effects, and their relationship with myostatin before it would be possible to assess the feasibility
of the latter as a biomarker. Despite multiple recent investigations, further studies are required to fully
understand myostatin modulation mechanisms [85,88,89,119–121]. In a study by Kalampouka, plasma
from older participants was found to reduce myoblast migration and diameter in vitro, in comparison
with plasma from younger individuals, despite no difference being detected in plasma myostatin
concentration, which demonstrates the importance of other substances and their role in age-related
muscle loss [122]. It is especially viable to establish such correlations considering a multi-parameter
panel of sarcopenia biomarkers, as mentioned before.

Furthermore, given this multifactorial muscle condition determination and the potential
contribution of various substances to regulating their mass and function, it is important not to
base conclusions concerning the myostatin effects on univariate analyses only. It would be reasonable
to adopt the approach used by many researchers who, in order to produce reliable results and circumvent
the impact of serum myostatin changes with various parameters, adjusted myostatin concentration for
total body lean mass (which could clarify prior, contradictory results) [85,120], age [120], CRP [87] or
performed logistic regressions with many variables to assess the significance of myostatin as a predictor
of low muscle mass [86]. Normalizing myostatin levels for different characteristics of the population
subject to the study might provide robust data and a better understanding of this myokine; however,
deeper knowledge about the relationship of such parameters with serum myostatin is required. That is
why, in a further part of this paper, we would like to review novel findings on serum myostatin and its
association with physiological parameters such as age, sex, nutritional status and various pathologies
focusing on the influence of such correlations on the feasibility of this myokine as a biomarker of
muscle wasting.

3. Factors Affecting Myostatin Concentration

3.1. Age and Sex Differences

Contrary to earliest research [123], most recent studies show no correlation between serum
myostatin and age [81,86–89,121,122]. A study of intramuscular mRNA and protein expression showed
that although myostatin gene expression was higher in older adults, no difference in myostatin protein
content was found [74]. Results of three studies indicated that serum myostatin concentration rises
with age [79,84,94]. In their cross-sectional study, Bergen et al., used a new mass spectrometry-based
assay to show that circulating myostatin, acting as a homeostatic regulator of muscle mass in males,
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could be found in the highest concentration in young men, and decreased with age, while in women,
it increased as a function of age, acting as a possible mediator of sarcopenia [85]. Their results
were partially confirmed by two further studies. One, using similar methods and conducted at the
same research center, found serum myostatin to be decreasing with age in men, yet no significant
correlation with age was noted in women [119]. The second one was an analysis of samples collected
in two large cohort studies, and it found a decrease of serum myostatin with age in the general
population, with a trend for an increase in the female population and a decrease in male patients when
analyzed separately [110]. Subsequent studies gave conflicting results concerning sex differences in
circulating myostatin level, as it was found to be higher in men [79,84], women [121] or no difference
was found [88,93]. More aforementioned studies found sex differences in correlations of circulating
myostatin and muscle mass and function. These findings suggest that more research on factors affecting
intracellular myostatin protein abundance as well as other plasma myokines is needed to understand
the relationship between aging, myostatin and their gender–specific differences.

3.2. Physical Activity

Another factor that has to be taken under consideration when measuring serum myostatin
is physical activity of the patients. Results of most recent studies suggest that physical exercise
attenuates myostatin gene and protein expression in skeletal muscles directly after training [124–134],
while a decrease of physical activity achieved by daily step reduction increased myostatin mRNA
expression [135]. In most studies, serum myostatin levels were found to increase acutely after various
exercise types (ultramarathon, aerobic, resistance and high-intensity training) [136–141], and decrease
in the long term as a result of physical training [90,142–146]. Two studies noted an increase in circulating
myostatin concentrations as a result of various (strength training, balance training, stretching exercises,
walking recommendations) physical exercise over very long periods (6 and 12 months) [80,93].
These results demonstrate that physical training affects serum myostatin levels in various ways
depending on the time between training and measurement. The acute myostatin level incline was
found to begin immediately after the exercise and return to baseline after approximately 24 h; therefore,
it would be reasonable to recommend withdrawal from exercise training for a day before taking
blood samples from patients [137]. Further research on mechanisms in which physical exercise affects
myostatin expressions are required before it could be used as a valid biomarker.

3.3. Nutritional and Metabolic Status

The nutritional status is a noteworthy factor affecting serum myostatin abundance. Recent studies
demonstrated that circulating myostatin levels are decreased in girls with anorexia nervosa [147] and
increased in obese patients [148]. However, Tsioga et al., found no correlation between body mass and
serum myostatin among obese patients [149]. This result could be partly explained by a subsequent
study by Carvalho et al., which demonstrated that among obese patients, only metabolically unhealthy
ones (defined as presenting ≥3 criteria for metabolic syndrome combined with insulin resistance) are
characterized by higher circulating myostatin levels, in comparison to healthy lean individuals [92].
The same study found that myostatin levels are correlated with the number of metabolic syndrome
criteria met, insulin levels and insulin sensitivity. Other studies confirmed the association of serum
myostatin with dysglycemia; the circulating myostatin concentration was found to be higher in
prediabetes and the highest in type 2 diabetes mellitus in comparison with healthy controls [150], and it
was correlated with fasting plasma glucose, HOMA-IR (Homeostatic Model Assessment for Insulin
Resistance), the area under curve for insulin during the oral glucose tolerance test, insulin sensitivity
index and serum immunoreactive insulin levels [148,150,151]. Contradictory results were produced
in research by Garcia-Fontata et al., which showed lower blood myostatin concentration in patients
with type 2 diabetes [152]. Furthermore, myostatin expression in muscles and adipose tissue was
demonstrated to be influenced by dysglycemia and insulin sensitivity [134]. Higher serum myostatin
levels were found in pregnant (16–20 gestational week) women, who later developed gestational
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diabetes mellitus, indicating a possible usage of myostatin as a gestational diabetes biomarker [153].
As mentioned before, earlier research found that myostatin might induce insulin resistance via NF-κB
and SMAD3 [60,61], and recent animal studies on myostatin function and mechanism brought insight
into its role in adipogenesis, communication between adipose tissue and skeletal muscles as well as
neural control over insulin sensitivity [154–156], yet many aspects remain unknown, and are awaiting
in-depth studies. Nevertheless myostatin was pointed out as a potential candidate contributing to
sarcopenic obesity that should be addressed in clinical trials with myostatin-inhibitors [157].

3.4. Inflammation and Injuries

It is worth mentioning that a significant negative correlation between myostatin and CRP was
reported [81,82,84,87]. In one of those studies, a regression analysis stratified for the baseline CRP was
conducted, resulting in a significantly steeper dependence curve between myostatin and hand-grip
strength in patients with CRP <10 mg/L than in patients with CRP >10 mg/L, suggesting that
inflammatory status impacts the performance of myostatin as a biomarker of muscle strength [87].
In his study, Akerfeldt points out the postsurgical decrease of serum myostatin level in acute phase
reaction in patients with elective orthopedic surgery and elective coronary bypass surgery, with no
differences between these groups [158]. A prospective study carried out by Wallner et al., focused
on the role of myostatin in burn-associated muscle wasting, and showed decreased concentration
of serum myostatin in the acute phase of burn injury and a reverse effect in the chronic phase [159].
Due to its potential role in the aforesaid disorder, myostatin could be investigated regarding the
prediction of the long-term muscle strength, as well as the therapy improving condition of patients
after severe burn injuries. Research by Zhao et al., proved that serum myostatin levels are higher in
patients with knee osteoarthritis [160]. A novel finding made by Su et al., demonstrated in vivo that
overexpression of myostatin induces robust expression of TNF-α in rheumatoid arthritis synovial
fibroblasts, leading to chronic synovitis [161]. This study shows a possible crucial role of myostatin in
the pathogenesis of rheumatoid arthritis, and sets a ground for further investigations on the matter of
possible myostatin-target therapies of the disorder mentioned. In another research on rheumatoid
arthritis in remission, serum myostatin was found to decrease in comparison to heathy controls [162].
The research results described above highlight the influence of injuries and inflammation on serum
myostatin levels and the importance of inflammatory parameters when considering myostatin as a
biomarker of muscle wasting in patients with inflammatory diseases.

3.5. Heart

Myostatin became a point of interest in cardiology as a potential muscle wasting biomarker, since
cardiac cachexia is a complication of chronic heart failure with dramatically high mortality rates [163].
Despite early studies on myostatin indicating an increase of its serum concentration in heart failure
(HF) [164,165], research by Furihata et al., found lower serum concentration of myostatin along with
higher levels of its inhibitor—follistatin—in patients with HF [83]. Such unexpected results might arise
from the fact that 70% of tested patients performed exercise training during the study. A subsequent
examination produced findings consistent with early data, demonstrating higher myostatin myocardial
expression in HF (although only in females) [166]. Another research work by Chen et al., found
serum myostatin to be higher in chronic HF patients than in healthy controls, higher in non-survivors
than in survivors and higher in patients with moderate and high N-terminal pro B-type natriuretic
peptide (NT-proBNP) [167]. The same study demonstrated that high circulating myostatin is a risk
factor of chronic HF rehospitalization and an independent predictor of mortality. Myostatin was
also found to correlate with troponin I peak in patients with acute myocardial infarction, possibly
reflecting the extent of damage to the myocardium [168]. Research on patients referred for phase II
cardiac rehabilitation indicated no influence of such procedure on serum myostatin level; however,
patients with congestive HF were excluded from this study, highlighting the necessity of examining the
effect of cardiac rehabilitation on circulating myostatin levels in HF [169]. As demonstrated before by
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Lenk et al., induction of myostatin expression in HF is possibly mediated by inflammatory cytokines,
such as TNF-α, via a p 38 mitogen-activated kinases (p38MAPK)-dependent pathway and NF-κB [64].

In recent years, a number of studies were conducted on circulating and cardiac myostatin in
cardiomyopathies of various origins. Myostatin was found to be upregulated in myocardial cells
of patients with dilated cardiomyopathy, but not with ischemic cardiomyopathy [170], and higher
in abundance both in myocardium and in serum [171]. Fernandez-Sola et al., demonstrated cardiac
myostatin upregulation in hearts with cardiomyopathy of hypertensive, alcoholic, valve and coronary
origins [172]. Furthermore, Fernlund et al., discovered no difference regarding circulating myostatin
concentration in the serum of young patients with hypertrophic cardiomyopathy in comparison to
healthy controls, despite lower myostatin levels in patients at risk of this disorder, which indicates a
potential role of myostatin in the development of hypertrophic cardiomyopathy [173].

Ju et al., the found serum myostatin level to be significantly higher in patients who developed
cor pulmonale as a result of chronic obstructive pulmonary disease (COPD) in comparison with
both COPD patients without diagnosed cor pulmonale as well as with healthy individuals [174].
They also managed to find a significant correlation of serum myostatin with plasma BNP levels
and right ventricle dysfunction parameters, such as tricuspid annular plane systolic excursion
(TAPSE) and right ventricular myocardial performance index (RVMPI). Subsequent studies confirmed
those observations [175,176]. Despite new studies on animals demonstrating an anti-hypertrophic
and anti-autophagic effect of myostatin on a heart (mediated by 5’AMP-activated protein kinase
(AMPK)/mTOR and miRNA-128/PPARγ/NF-κB pathways) [177], as well as its ability to induce
interstitial fibrosis in the myocardium via transforming growth factor beta-activated kinase 1 (TAK1) and
p38 pathway [178], more research is needed in order to fully understand its role in the pathophysiology
of heart disorders.

3.6. Kidneys

There are many premises indicating that renal function may play a potential role in myostatin
serum abundance. A significant negative correlation of serum myostatin level with kidney function
in chronic kidney disease and in autosomal dominant polycystic disease was noticed, even at early
stages of kidney failure [133,179,180]. It seems unclear how chronic hemodialysis (HD) and its method
affect serum myostatin levels. Contrary to research by Koyun et al., presenting an elevated serum
myostatin level in chronic hemodialysis patients compared to healthy controls [91], two other studies
showed no difference between these groups [181,182]. Esposito et al., noticed a significant decrease of
plasma myostatin (associated by the authors with improvement of malnutrition status) after online
hemodiafiltration (HDF) with no changes after bicarbonate hemodialysis (BHD) [181], while further
studies showed a significant and comparable decrease of plasma myostatin levels after HD and
HDF, and HDF and BHD, accordingly [84,182]. These discrepancies indicate the need for in-depth
studies on this matter. It is worth mentioning here that Delanaye et al., found a significant correlation
between myostatin and one-year mortality in patients on hemodialysis, which could be explained
by the association of this myokine with muscle status and risk of sarcopenia in those patients [84].
As demonstrated by Wang et al., myostatin level changes in chronic kidney disease could result from
the upregulation of inflammatory cytokine, TNFα, through activation of the NF-κB pathway, while
myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems via Akt and FoxO3
pathways [183].

3.7. Gynecological Disorders

In their research, Carrarelli et al., found that myostatin expression and concentration was
significantly higher in adenomyotic tissues than in healthy endometrium [184]. Results of a subsequent
study indicated that myostatin and its receptors expression rise significantly in deep infiltrating
endometriosis and endometrial adenocarcinoma in comparison to control endometrium, which suggests
a potential role of myostatin in the aforementioned disorders [185]. A study on the expression of
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myostatin in preeclampsia revealed elevated levels of myostatin in the plasma of women who later
developed this disorder, which can suggest the potential usage of plasma myostatin as biomarker
in preeclampsia [186]. A prospective study by Tsigkou showed that high expression of myostatin
mRNA is significantly correlated with the upregulation of matrix metalloproteinase 14 mRNA in
uterine leiomyoma and the associated high expression of those two with the intensity of dysmenorrhea
in the disease mentioned [187]. This novel finding sets the ground for further research on the role
of myostatin in uterine pain perception and indicates the necessity of investigating the impact of
myostatin expression in various neoplasms on the circulating myostatin level.

3.8. Pharmaceutics

Not only natural physiological substances and pathological processes, but also various drugs can
influence the expression and level of myostatin in muscles and serum. Many recent studies suggest
the potential impact of treatment with various substances (such as acetaminophen, losartan, insulin,
denosumab, dapagliflozin or glucocorticoids) on the serum myostatin level.

Earlier observations indicated that acetaminophen or ibuprofen consumption combined with
resistance training promoted muscle mass and strength [188]. COX-inhibiting drugs, such as
acetaminophen, impacted the adaptive response of skeletal muscle to resistance exercise through
altering the cellular mechanisms and suppressing the early response of the mammalian target of
rapamycin complex 1 (mTORC1) activity, but also the subtle alterations in myostatin and myogenic
factor 6 (MYF6) expression induced by acetaminophen were observed [189].

It is well known that angiotensin II (AngII) plays a critical role in cardiac remodeling and promotes
cardiac myocyte hypertrophy. Myostatin is increased in a hypertrophied and infarcted heart. AngII
enhanced myostatin protein and mRNA expression in cultured rat neonatal cardiomyocytes in a
time-dependent manner [65]. Blocking the angiotensin II type I receptor (AT1R) with losartan before
acute heavy-resistance exercise resulted in greater suppression of myostatin messenger RNA compared
to placebo [190]. It is, therefore, expected that long-term intervention with this drug may promote
muscle growth.

It was suggested that increased production of myostatin could play a critical role in glucocorticoids-
induced muscle atrophy [191]. Although Wang and co-workers’ study revealed that dexamethasone
significantly decreased (p < 0.05) protein synthesis rates while increasing the abundance of myostatin,
they confirmed also that the latter is not the main pathway associated with the suppression of muscle
protein synthesis by glucocorticoids. They demonstrated that dexamethasone induced the upregulation
of myostatin in a time-dependent manner in an in vitro study [192]. The authors suggested that the
myostatin signaling pathway is associated with glucocorticoid-induced muscle protein catabolism at
the beginning of exposure only, and it was in line with the previous studies in vivo [193]. It was also
observed recently that different synthetic glucocorticoids can lead to different muscle effects affecting
secondarily different signaling mechanisms.

It is well known that insulin has anabolic effects on skeletal muscle, but knowledge on the
molecular mechanisms underlying this effect and on the myostatin role in humans is still not consistent.
In the recent in vitro study, the infusion of insulin during euglycemic-hyperinsulinemic clamp (EHC)
raised the expression of myogenic growth factors, myogenin and myogenin differentiation protein,
and reduced the expression of muscle hypertrophy suppressor, myogenic regulatory factor 4 (MRF4),
whereas the expression of myostatin did not change [194]. Contrary to those findings in the acute
insulin intervention, the long-term insulin glargine treatment inhibited activation of myokines (IL-6,
IL-15, fibronectin type III domain-containing protein 5 (FNDC5), the precursor of irisin, and myostatin)
in rats [195]. Also, other glucose-lowering medications can influence serum myostatin levels and
muscle condition. In the study by Yamakage at al., dapagliflozin add-on therapy in patients with
type 2 diabetes reduced myostatin levels significantly, and they maintained skeletal muscle mass [196].
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Summarizing, it is important to thoroughly assess the influence of different therapies on circulating
myostatin concentrations before using it to diagnose muscle wasting in patients receiving the
aforementioned medications.

4. Conclusions

Recent studies, as reviewed above, show that myostatin deserves the attention it received from
the scientific community in the past decade, as it could prove to be a viable biomarker of muscle
wasting and a useful predictor of mortality in various conditions. One of its main weaknesses lies in
low potential specificity, as a number of different factors affect its serum concentration (Figure 1). Yet,
myostatin might become an important part of a muscle wasting biomarker panel that could compensate
its weaknesses using other, more specific substances. However, before the incorporation into such a
panel could become feasible, further research needs to provide deeper knowledge on the mechanism
and modulation of myostatin, a better understanding of the way various conditions affect its serum
expression and reliable methods of measuring its abundance in blood. Furthermore, myostatin’s ability
to predict sarcopenia has to be revised using the latest EWGSOP2 criteria. This goal requires a high
level of effort from the academic community. It could, however, result in a powerful tool of early
sarcopenia diagnosis, which, especially in patients with co-morbidities such as heart failure, would
enable early intervention and mortality reduction. The road to using myostatin as a biomarker in the
diagnosis of sarcopenia and muscle wasting seems long, but it is worth taking.
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