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Abstract: We previously isolated a novel natural product, designated kohamaic acid A 
(KA-A, compound 1), as an inhibitor of the first cleavage of fertilized sea urchin eggs, and 
found that this compound could selectively inhibit the activities of mammalian DNA 
polymerases (pols). In this paper, we investigated the structure and bioactivity of KA-A 
and its chemically synthesized 11 derivatives (i.e., compounds 2–12), including KA-A - 
fatty acid conjugates. The pol inhibitory activity of compound 11 [(1S*,4aS*,8aS*)-17-
(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethyl-naphthalen-1-yl)heptadecanoic acid] was 
the strongest among the synthesized compounds, and the range of IC50 values for 
mammalian pols was 3.22 to 8.76 μM; therefore, the length of the fatty acid side chain 
group of KA-A is important for pol inhibition. KA-A derivatives could prevent human 
cancer cell (promyelocytic leukemia cell line, HL-60) growth with the same tendency as 
the inhibition of mammalian pols. Since pol β is the smallest molecule, we used it to 
analyze the biochemical relationship with KA-A derivatives. From computer modeling 

OPEN ACCESS



Molecules 2009, 14                            
 

 

103

analysis (i.e., docking simulation analysis), these compounds bound selectively to four 
amino acid residues (Leu11, Lys35, His51 and Thr79) of the N-terminal 8-kDa domain of 
pol β, and the binding energy between compound 11 and pol β was largest in the 
synthesized compounds. The relationship between the three-dimensional molecular 
structures of KA-A-related compounds and these inhibitory activities is discussed.  

Keywords: Kohamaic acid A (KA-A); DNA polymerase (DNA-directed DNA polymerase 
[E.C. 2.7.7.7], pol); Enzyme inhibitor; Cytotoxicity; Computer simulation.  

 

Introduction 

A novel sesterterpenic acid, kohamaic acid A (KA-A), was isolated from a marine sponge Ircinia 
sp. [1]. KA-A was first screened as an inhibitor of the first cleavage of fertilized sea urchin eggs [1], 
but we also found and reported that it inhibited the activities of DNA polymerases (pols) from the 
deuterostome branch in the phylogenetic tree, but not from plants, prokaryotes, or even protostomes 
such as insects and mollusks [2].  

Pol is associated with genomic DNA replication, repair and recombination in eukaryotic cells. 
Eukaryotic cells reportedly contain three replicative types; pols α, δ, and ε, mitochondrial pol γ, and at 
least twelve repair types; pols β, δ, ε, ζ, η, θ, ι, κ, λ, μ, and σ and REV1 [3]. The roles of the pols have 
not yet been fully established. Against this background, it is of interest that KA-A could only inhibit 
the activities of the deuterostome pols tested, including those of the sea urchin. 

Pols α and β have been isolated and characterized from sea urchins [4, 5]. The possible role of cell 
multiplication in sea urchin gastrulation has been somewhat neglected and its importance is in general 
considered secondary [6]; however, it is well known that DNA synthesis continues during gastrulation 
[7, 8] and that the cell number increases about three times between the hatched blastula and the prism 
stage [7]. It has also been reported that primary mesenchyme cells undergo mitotic divisions after they 
have been shed into the blastocoel [9]. This indirect evidence suggests that KA-A is useful for 
investigating the relationship between sea urchin pols and the cleavage of fertilized sea urchin eggs, 
and that KA-A may induce inhibition of the first cleavage of fertilized sea urchin eggs by inhibiting 
DNA replication [2]; subsequently, we succeeded in chemically synthesizing KA-A (compound 1) and 
its eleven derivatives (compounds 2–12) (Figure 1) [10].  

In this report, we investigated the inhibitory activities of mammalian pols and human cancer cell 
growth for the development of anticancer chemotherapy drugs, because the inhibition of pols will lead 
to cell death, especially under proliferation conditions such as in cancer cells; therefore, inhibitors of 
eukaryotic pols should be considered as potential agents for cancer chemotherapy. We also discuss the 
molecular inhibition mechanism of pol β activity by KA-A derivatives.  
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Figure 1. Structures of kohamaic acid A and its derivatives. 
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Compound 1, kohamaic acid A (KA-A); compound 2, (5S*,9S*,10S*,13E)-labda-7,13-dien-15-ol; 
compound 3, (5S*,9S*,10S*,13E)-labda-7,13-dien-15-oic acid; compound 4, methyl 
(5S*,9S*,10S*,13E)-labda-7,13-dien-15-oate; compound 5, (5S*,9S*,10S*,13R*S*,13E)-labda-7-en-
15-oic acid; compound 6, (E)-3-methyl-5-(naphthalen-1-yl)-2-pentenoic acid; compound 7, 
(5S*,9S*,10R*,13E)-labda-7,13-dien-15-oic acid; compound 8, (1S*,4aS*,8aS*)-5-
(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalen-1-yl)pentanoic acid; compound 9, 
(1S*,4aS*,8aS*)-9-(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalen-1-yl)nonanoic acid; 
compound 10, (1S*,4aS*,8aS*)-13-(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalen-1-
yl)tridecanoic acid; compound 11, (1S*,4aS*,8aS*)-17-(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-
tetramethylnaphthalen-1-yl)heptadecanoic acid; and compound 12, (1S*,4aS*,8aS*)-21-
(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalen-1-yl)henicosanoic acid.  
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Results and Discussion 

Effects of KA-A derivatives on the activities of mammalian DNA polymerases α and β 

As briefly described in the Introduction, we found and reported that KA-A (compound 1) is an 
inhibitor of pols only from the deuterostome branch in the phylogenetic tree, including mammals [2]. 
The purpose of this study was to investigate the inhibitory mechanism more precisely using eleven 
chemically synthesized derivatives of KA-A (compounds 2–12), which were prepared as described 
previously [10]. The chemical structures of KA-A and its analogs are shown in Figure 1.  

First, the relative activities of calf pol α and rat pol β with two set concentrations (10 and 100 μM) 
of the test compounds are shown in Figure 2. Pol α and pol β were used as representative replicative 
pol and repair/recombination-related pol, respectively [11, 12]. As reported previously, KA-A dose-
dependently inhibited the activities of pols α and β, and the IC50 values were 7.6 and 8.4 μM, 
respectively [2]. In the synthesized compounds (i.e., compounds 2–12), compounds 2 to 8 were weaker 
inhibitors of pols α and β than KA-A, and the inhibitory effect of compound 9 was as strong as that of 
KA-A, whereas, compounds 10–12 were stronger inhibitors than KA-A, and compound 11 had the 
strongest inhibitory effect on pols α and β of all the compounds tested. The inhibition of pol α activity 
by the compounds showed the same tendency as that of pol β activity. KA-A derivatives, such as 
compounds 8 to 12, have a conjugated fatty acid in the KA-A molecule, and we previously reported 
that longer chain fatty acids inhibit the activity of eukaryotic pols; therefore, the fatty acid region of 
compounds 10–12 must be important for inhibition.  

 
Figure 2. Effects of kohamaic acid A derivatives (compounds 1–12) on the activities of 
mammalian DNA polymerases α and β.  
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Figure 2. Cont.  
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Each compound [10 μM, (gray bar) and 100 μM (black bar)] was incubated with calf pol α (A) and 
rat pol β (B). Pol activity was assayed as described previously [38, 39]. Enzyme activity in the 
absence of compounds was taken as 100 %. All data are shown as the means ± SEM of three 
independent experiments.  

 
Effects of KA-A derivatives on cultured human cancer cells 

 
Interest also focused on developing agents for cancer chemotherapy using these inhibitors. 

Replicative pols, such as pol α, are regarded as potential targets of anticancer drugs, because they play 
central roles in DNA replication, which is indispensable for the proliferation of cancer cells. KA-A 
derivatives could therefore be useful in chemotherapy, and we investigated the cytotoxic effect of KA-
A and its related compounds (i.e., compounds 1 to 12) against a human promyelocytic leukemia cell 
line, HL-60.  

As shown in Figure 3, 50 μM of compound 11 had the strongest growth inhibitory effect on HL-60 
cells of the compounds tested, compounds 12 and 10 were the second and third strongest, respectively. 
Cell growth suppression had the same tendency as the inhibition of mammalian pols α and β among 
the compounds, suggesting that KA-A derivatives are able to penetrate cancer cells and reach the 
nucleus, inhibiting pol activity (Figures 2 and 3). We therefore concentrated our efforts on  
(1S*,4aS*,8aS*)-17-(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8a-tetramethylnaphthalen-1-yl)heptadecanoic 
acid (11) in subsequent experiments.  
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Figure 3. Effects of kohamaic acid A derivatives (compounds 1–12) on proliferation of 
HL-60 cancer cells.  
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Each compound (50 and 100 μM each) was incubated with human cancer cells (i.e., promyelocytic 
leukemia cell line, HL-60). Cell proliferative growth was measured by MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay [41]. The growth rate of cancer cells 
in the absence of compounds was taken as 100 %. All data are shown as the means ± SEM of five 
independent experiments.  

 
Inhibitory effect of compound 11 on the activities of DNA polymerases and other DNA metabolic 
enzymes 

 
As shown in Table 1, compound 11 inhibited the activities of all the mammalian pols tested, and the 

range of the IC50 values was 3.22–8.76 μM. The inhibitory effect on human pol ε was the strongest of 
the mammalian pols tested. Given that the pol A family includes pol γ, the pol B family includes pols 
α, δ and ε, the pol X family includes pols β and λ, and the pol Y family includes pols η, ι and κ [13-
15], compound 11 could inhibit the activities of all families of mammalian pols and fish pols such as 
cherry salmon pol δ. On the other hand, the activity of plant pols such as cauliflower pol α, 
prokaryotic pols such as the Klenow fragment of E. coli pol I, Taq pol and T4 pol, and DNA metabolic 
enzymes such as calf primase of pol α, T7 RNA polymerase, T4 polynucleotide kinase and bovine 
deoxyribonuclease I (DNase I), were not influenced by compound 11. When activated DNA was used 
as the DNA template-primer instead of poly(dA)/oligo(dT)12-18, the inhibition modes of these 
compounds did not change (data not shown). These results suggest that compound 11 should be 
classified as an inhibitor of mammalian pols.  
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Table 1. IC50 values of compound 11 on the activities of various DNA polymerases and 
other DNA metabolic enzymes.  

Enzyme IC50 values (μM) 
Mammalian DNA polymerases  

Calf DNA polymerase α 4.21 ± 0.21 
Rat DNA polymerase β 5.50 ± 0.28 

Human DNA polymerase γ 8.76 ± 0.44 
Human DNA polymerase δ 4.89 ± 0.24 
Human DNA polymerase ε 3.22 ± 0.16 
Human DNA polymerase η 7.45 ± 0.37 
Human DNA polymerase ι 7.84 ± 0.39 
Human DNA polymerase κ 7.20 ± 0.36 
Human DNA polymerase λ 4.67 ± 0.23 

Fish DNA polymerase  
Cherry salmon DNA polymerase δ 4.30 ± 0.22 

Plant DNA polymerase  
Cauliflower DNA polymerase I (α-like) >200 

Prokayotic DNA polymerases  
E. coli DNA polymerase I (Klenow fragment) >200 

Taq DNA polymerase >200 
T4 DNA polymerase >200 

Other DNA metabolic enzymes  
Calf Primase of DNA polymerase α >200 

T4 Polynucleotide kinase >200 
Bovine Deoxyribonuclease I >200 

Compound 11 was incubated with each pol (0.05 units) and other DNA metabolic enzymes. One 
unit of pol activity was defined as the amount of enzyme that catalyzed the incorporation of 1 nmol 
of dNTP (i.e., dTTP) into the synthetic DNA template-primers (i.e., poly(dA)/oligo(dT)12-18, A/T = 
2/1) in 60 min at 37 °C under normal reaction conditions for each enzyme. Enzyme activity in the 
absence of the compounds was taken as 100%. Data are shown as the means ± SEM of four 
independent experiments.  

 
Effect of interaction of nucleic acid, protein and compound 11 

 
To determine whether the inhibition resulted in binding to DNA or enzymes, the interaction of 

compound 11 with double-stranded DNA (dsDNA) was investigated based on the thermal transition of 
dsDNA with or without compound 11. The Tm of dsDNA with an excess amount of compound 11 
(200 μM) was measured using a spectrophotometer equipped with a thermoelectric cell holder. In the 
concentration range used, no thermal transition of Tm was observed, whereas ethidium bromide used 
as a positive control, a typical intercalating compound, produced clear thermal transition (data not 
shown). These results indicate that compound 11 does not intercalate to DNA as a template-primer, 
and the compound may directly bind to the enzyme and inhibit its activity.  
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Table 2. Effects of poly (rC), bovine serum albumin (BSA) or Nonidet P-40 (NP-40) on 
the inhibition of rat DNA polymerase β activity by compound 11.  

Compounds added to the reaction mixture Relative activity of pol β (%) 
Without compound 11  
None (control) 100 ± 5.0 
+ 50 μM poly (rC) 100 ± 4.6 
+ 200 μg/ml BSA 100 ± 8.9 
+ 0.05 % NP-40 100 ± 5.9 
+ 0.1 % NP-40 100 ± 8.5 
10 μM compound 11  
10 μM compound 11 15.5 ± 0.78 
10 μM compound 11 + 50 μM poly (rC) 15.2 ± 0.74 
10 μM compound 11 + 200 μg/ml BSA 15.9 ± 1.1 
10 μM compound 11 + 0.05 % NP-40 96.1 ± 7.6 
10 μM compound 11 + 0.1 % NP-40 100 ± 8.8 
100 μM compound 11  
100 μM compound 11 3.2 ± 0.16 
100 μM compound 11 + 50 μM poly (rC) 3.1 ± 0.15 
100 μM compound 11 + 200 μg/ml BSA 3.3 ± 0.19 
100 μM compound 11 + 0.05 % NP-40 62.5 ± 4.1 
100 μM compound 11 + 0.1 % NP-40 95.0 ± 7.6 

50 μM poly (rC), 200 μg/ml BSA, 0.05% NP-40 or 0.1% NP-40 were added to the reaction 
mixture. In the absence of compound 11, DNA polymerase activity was taken as 100%. Data are 
shown as the means ± SEM of four independent experiments.  

 
To determine the effects of a non-ionic detergent on the binding of compound 11 to rat pol β, 

Nonidet P-40 (NP-40) was added to the reaction mixture at a concentration of 0.05 or 0.1% (Table 2). 
In the absence of compound 11, the activity of pol β was not affected by the addition of NP-40, and we 
designated the activity in these cases as 100%. The inhibitory effect of compound 11 at 10 and 100 μM 
was completely reversed by the addition of 0.1% NP-40 to the reaction mixture. These results suggest 
that compound 11 can bind to and interact with the hydrophobic region of the enzyme protein. We also 
tested whether an excess amount of a substrate DNA analog, poly(rC) (50 μM), or a protein, BSA (200 
μg/ml), could prevent the inhibitory effects of compound 11. If the compound binds to the enzymes by 
non-specific adhesion, the addition of the nucleic acid and/or protein will be expected to reduce 
inhibitory activity. Neither poly(rC) nor BSA influenced the inhibitory effects on compound 11, 
suggesting that the compound can interact selectively or bind to a specific site on pol β and not to the 
substrate (i.e., nucleic acid). These results for compound 11 were obtained using mammalian pols 
other than pol β (data not shown).  

Pol β has the smallest molecular weight (i.e., 39-kDa) of all eukaryotic pols, and the three-
dimensional structure of pol β was determined [16, 17]; therefore, we focused on analyzing the 
biochemical and molecular mechanism of pol β inhibition by compound 11 in the latter part of this 
study.  
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Mode of inhibition of DNA polymerase β by compound 11 
 
Next, to elucidate the mechanism by which compound 11 inhibited pol β, the extent of inhibition as 

a function of substrate concentration was studied. In kinetic analysis of pol β, poly(dA)/oligo(dT)12-18 
(molecular concentration of primer 3’-ends) and 2'-deoxythymidine 5'-triphosphate (dTTP) were used 
as the DNA template-primer and 2’-deoxyribonucleotide 5’-triphosphate (dNTP) substrate, 
respectively. As shown in Table 3, double reciprocal plots (Lineweaver Burk plots) of the results 
showed that the compound 11-induced inhibition of rat pol β activity was competitive with respect to 
the DNA template-primer, because the apparent maximum velocity (Vmax) was unchanged at 111 
pmol/h, whereas 22.0 pmol/h of the Michaelis constant (Km) increased in the presence of 9 μM of 
compound 11. The inhibition mode was also competitive with respect to the dNTP substrate, and the 
Vmax for the dNTP substrate was unchanged at 62.5 pmol/h, and the Km for the dNTP substrate 
increased from 3.05 to 10.8 μM in the presence of 9 μM of compound 11. The inhibition constant (Ki) 
values, obtained from Dixon plots, were found to be 1.96 μM and 2.36 μM for the DNA template-
primer and dNTP substrate, respectively.  

Table 3. Kinetic analysis of the inhibitory effects of compound 11 on the activities of rat 
DNA polymerase β as a function of the DNA template-primer dose and the nucleotide 
substrate concentration.  

Enzyme DNA Substrate Compound 
11 (μM) 

Km a) 
(μM) 

Vmax a) 
(pmol / h) 

Ki b) 
(μM) Inhibitory mode a)

Pol β 

Template 0 6.74 111 1.96 Competitive 
-primer c) 3 8.77    
 6 12.7    
 9 22.0    
Nucleotide d) 0 3.05 62.5 2.36 Competitive 
substrate 3 4.03    
 6 5.81    
 9 10.8    

a) These data were obtained from Lineweaver Burk plot. b) These data were obtained from Dixon 
plot. c) poly(dA)/oligo(dT)12-18. d) dTTP. 

 
The inhibition of pol β by compound 11 had the same kinetic mode as that of other pol X family 

members, such as pol λ, i.e., competitive with respect to both the DNA template-primer and the dNTP 
substrate, suggesting that the compound can bind directly to both the DNA template-primer-binding 
site and the dNTP substrate-binding site, and may directly inhibit the DNA polymerization process. As 
the Ki values for nucleic acid were similar to those for the dNTP substrate, the affinity of compound 
11 and the enzyme-nucleic acid may be the same as that of compound 11 and the enzyme-nucleotide 
substrate.  
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Three-dimensional modeling of the interaction of KA-A derivatives with DNA polymerase β 
 
Further investigations of the three-dimensional structure of the binding site on pol β and the modes 

of binding of compound 11 are necessary. We previously reported the characteristics of binding 
between pol β and linear-long chain fatty acids (for example: C24-nervonic acid), which are 
components of KA-A derivative compounds 7–11, involved in the inhibition of pol β activity [18]. Pol 
β is the smallest known pol in animal cells with a molecular mass of 39-kDa, and its structure is highly 
conserved among mammals [19]. This protein has a modular two-domain structure, with apparent 
flexibility within a protease-sensitive region between residues 82–86, which separates the two 
domains, an N-terminal domain fragment (8-kDa), which retains binding affinity for single-stranded 
DNA (ssDNA), and a C-terminal domain fragment (31-kDa) with reduced pol activity (Figure 4A) [20, 
21]. The linear-long chain fatty acids bound to pol β at the N-terminal 8-kDa domain, where they 
competed with the DNA template-primer [18, 22]. One molecule of each of the agents in the fatty acid 
region competed with one molecule of DNA template-primer, and subsequently interfered with the 
binding of a DNA template-primer to one 8-kDa domain, indicating that the 8-kDa domain fragment 
bound to the fatty acids as a 1:1 complex. Biochemical and surface plasmon resonance (BIAcore) 
demonstrated that KA-A derivatives, including compound 11, bound selectively to the N-terminal 8-
kDa domain of pol β at a molecular ratio of 1 : 1, this compound inhibited ssDNA binding activity, 
and the binding of these compounds indirectly inhibited catalytic activity on the 31-kDa domain (data 
not shown).  

The NMR structure of the N-terminal 8-kDa domain of pol β has been determined by Wilson, 
Mullen and their co-workers [22]. According to their results, the 8-kDa domain (residues 1–87) is 
formed by four α-helices, packed as two antiparallel pairs. The pairs of α-helices cross one another at 
50°, giving them a V-like shape. The 8-kDa domain contains a motif termed the "Helix-hairpin-Helix" 
(HhH). The protein residues involved in template DNA-binding have been identified by NMR using 
chemical shift changes [23]. The Helix-3-hairpin-Helix-4 motif and residues in an adjacent W-type 
loop connecting helix-1 and helix-2 form the ssDNA interaction surface [24]. Furthermore, it was also 
found that several mutants of the 8-kDa domain (F25W, K35A, K60A and K68A) showed impaired 
template DNA-binding activity [25]. The structure of the 8-kDa domain fragment with linear-long 
chain fatty acids has been determined by multi-dimensional NMR in more detail [18]. The interactions 
with the fatty acids were mapped to one face of the fragment by characterizing backbone 1H and 15N 
chemical shift changes. In the 8-kDa domain fragment with linear-long chain fatty acids, the structure 
that forms the interface included helix-1, helix-2, helix-4, a turn (residues from 48 to 51) and residues 
adjacent to an Ω-type loop connecting helix-1 and helix-2. Since the alkyl chain group of the fatty 
acids appears to bind to Leu11, His51 and Thr79 of the interface on amino acid sheets of the 8-kDa 
domain fragment and the carboxyl group interacts with the Lys35 site, the distance between the alkyl 
chain end and the carboxyl end might be important for tight binding. Only the shifted cross-peaks of 
Leu11 and Thr79 were significantly changed by the length of the carbon chain. Longer fatty acids 
could bind to the fragment more tightly.  
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Figure 4. Docking simulation of compound 11 with rat DNA polymerase β. 
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Figure 4. Cont. 
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(A) Interaction between compound 11 and rat pol β. The Cα-backbone, α-helix and β-sheet in pol 
β are shown in green, red and light-blue, respectively. (B and C) Interaction between compound 11 
and the 8-kDa domain of pol β. The amino acid residues of the 8-kDa domain are shown as stick 
models, and carbons, nitrogens, oxygens and sulfurs are in gray, light-blue, red and yellow, 
respectively. The calculations used an ESFF force-field in the Discovery program. Amino acid 
residues Leu11, Lys35, His51 and Thr79, which bind to linear-long chain fatty acids, are indicated. 
The molecular docking of compound 11 and the 8-kDa domain of rat pol β was modeled using the 
affinity program of Insight II modeling software (Accelrys Inc., San Diego, CA, USA, 1999). The 
carbons, hydrogens and oxygens of compound 11 are in gray, white, and red, respectively. The 
Protein Data Bank (PDB) codes of pol β and the 8-kDa domain are 1BPD and 1BNO, respectively. 
This figure is presented using PyMol (DeLano Scientific, San Carlos, CA, USA, 2002).  

 
Based on these results, the binding of KA-A derivatives containing fatty acid (i.e., compounds 7–

12) to the three-dimensional structure of rat pol β was simulated by utilizing the above information, 
and the interaction interface of these compounds on the amino acid sheets of the 8-kDa domain 
fragment was mostly the same as in linear-long chain fatty acids (for example: C24-nervonic acid). In 
the energy-minimized docking simulation, compound 11 was the strongest binding energy among the 
compounds tested, and the binding force (-106.53 kcal/mol) consisted of Coulomb force (-94.68 
kcal/mol) and van der Waals force (-11.85 kcal/mol) (Table 4). In the order of binding energy, these 
KA-A-related compounds ranked as follows: compound 11 > compound 12 > compound 10 > 
compound 9 > compound 8 > compound 7. This energy of KA-A derivatives containing fatty acids 
showed the same tendency as the inhibitory activity of pol β (Figure 2B).  
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Table 4. Binding energy of kohamaic acid A derivatives (compounds 7–12) and the 8-kDa 
domain of DNA polymerase β.  

Compound 
Energy (kcal/mol)

Coulomb van der Waals Total 
7 -12.81 -6.89 -19.70 
8 -4.48 -7.79 -12.27 
9 -56.61 -9.44 -66.05 
10 -65.42 -10.20 -75.62 
11 -94.68 -11.85 -106.53 
12 -66.14 -17.23 -83.37 

The 8-kDa domain of rat DNA polymerase β (residues 2–88, PDB code; 1BPD) with each KA-A 
derivatives (compounds 7–12) is indicated. Binding energy was calculated by the flexible docking 
procedure in the affinity program within the Insight II modeling software (Accelrys Inc., San 
Diego, CA, USA).  

 
The molecular lengths of these compounds are shown in Table 5. Since compound 11 was the 

strongest inhibitor of pol β in compounds 7–12, the molecular length of compound 11 (i.e., 17.47 Å) 
might best fit the pocket of the 8-kDa domain.  

Table 5. The molecular length and wide of three-dimensional structure of kohamaic acid A 
derivatives (compounds 1–12).  

Compound Length (Å) Wide (Å) 
1 (kohamaic acid A) 16.76 6.45 

2 11.96 6.45 
3 12.08 6.45 
4 13.92 6.45 
5 11.42 6.45 
6 11.28 5.10 
7 11.51 6.45 
8 11.57 6.45 
9 17.47 6.45 
10 22.31 6.45 
11 26.69 6.45 
12 31.61 6.45 

The energy-minimized three-dimensional molecular structures of KA-A and its derivatives 
(compounds 1–12) were prepared using Insight II (Accelrys, San Diego, CA, USA), and the 
maximum length and width of the compounds were measured.  

 
Therefore, docking simulation of compound 11 and the 8-kDa domain of pol β is shown in Figure 4, 

and the compound 11 binding interface of the 8-kDa domain having the same pocket (i.e., the crevice 
between helix-1 and helix-2) as linear-long chain fatty acids (Figure 4A). This result suggested that 
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Lys35, which is a hydrophilic amino acid in "region II", bound to the carboxyl group of compound 11, 
and Leu11 and His51, which are hydrophobic amino acids in "region I", bound to the bicyclic core part 
of compound 11 (Figure 4B). Prasad et al. reported that DNA template [i.e., p(dT)8] binding activity 
was impaired in site-directed mutants of Phe25, Lys35, Lys60 or Lys68 [25]. Region II containing 
Lys35, shown in Figure 4B, appears to have an important role in the effect of compound 11. This 
compound probably competes with the DNA template-primer at residue Lys35 and binds to the site, 
which subsequently inhibits ssDNA-binding activity in the 8-kDa domain. In region I shown in Figure 
4B, Leu11, His51 and Thr79 are different from other DNA-binding sites (i.e., Phe25, Lys60 and 
Lys68), suggesting that the hydrophobic moieties of the alkyl chain and bicyclic core part in 
compound 11 do not disturb the binding of the DNA template-primer, and these hydrophobic amino 
acids in region I must be important for binding to the compound by hydrophobic force. In this docking 
simulation, the carboxyl group of compound 11 and the residue of Lys35 made a hydrogen bond (pink 
arrow in Figure 4C). The carboxyl group in compound 11 is thought to be important for the inhibition 
of pol β, because the compound modified from the carboxyl group to a methyl ester could not inhibit 
activity (data not shown). The distance between the Lys35 hydrophilic region and Leu11 and His51 
hydrophobic regions fits the length of the U-shaped compound 11, and intercalated smoothly into the 
pocket between helix-1, 2 and helix-3, 4; therefore, both the three-dimensional molecular length and 
the carboxyl end of KA-A derivatives are important for both fitting to bind the pocket and the 
inhibitory activity of DNA polymerization and ssDNA binding on the 8-kDa domain of pol β. The 
three-dimensional structural binding analysis between the 8-kDa domain fragment of pol β and 
compound 11 will be measured using the multi-dimensional (1H-15N HMQC) NMR for further study.  

Although the polymerase active site of pol β is homologous to other pols, it structure is unique to 
family X pols [3]. These results suggested that other pols from alternate families (e.g., families A, B 
and Y) might have similar binding sites even though they do not have an equivalent domain.  

Drug design will be possible by investigating the tightness of the binding between the KA-A 
derivatives and pol β. Based on information available from NMR analysis, computer simulation of the 
conformational changes in pol β with or without newly designed KA-A related compounds will be 
useful for this purpose.  

We have been screening for new pol inhibitors to use for analyzing the structure and function of 
mammalian pols to understand their precise roles in vivo, and to develop drug design strategies for the 
development of cancer chemotherapy agents. These inhibitors are not only molecular tools for 
analyzing pols, but are also potentially useful for cancer chemotherapy. Subsequently, we found that 
KA-A (compound 1) was a potentially useful agent [2], and synthesized KA-A derivatives 
(compounds 2 – 12) [10]. The inhibitory effect of compound 11 on both mammalian pol activity and 
human cancer cell growth was strongest of all compounds tested (Figures 2 and 3), and this compound 
inhibited enzyme activity at an IC50 of 4.21 μM for pol α and 5.50 μM for pol β (Table 1). This 
compound showed markedly stronger inhibitory effects on pol α than aphidicolin (IC50 = 40 μM) (data 
not shown). We should also emphasize that compound 11 is a 4-fold stronger pol β inhibitor than 
dideoxyTTP, a potent inhibitor of pol β [26]. Due to their strong inhibitory effects, these KA-A 
derivatives could be useful as pol inhibitors.  

In this report, we explained the structure-function relationship in the inhibition of pols by synthetic 
derivatives of KA-A, and elucidated the molecular mechanism of the inhibitory action of these 
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compounds on pol activity and mammalian cell proliferation. In compound 11, not only the fatty acid 
region but the bicyclic core part might have an important role in the inhibition of pol activity. The 
molecular mechanism of the inhibition seemed to be dependent on the fatty acid chain length.  

In this study, we discussed the pharmaceutical potential of KA-A derivatives such as compound 11 
as inhibitors of mammalian pol and human cancer cell growth. This will be a useful approach to 
finding and developing future therapeutic drugs.  
 
Experimental  
 
General 

 
Except for natural KA-A (compound 1), all derivatives (compounds 2–12) were synthesized in a 

non-enantioselective manner [10]. The chemical structures of the compounds are shown in Figure 1. 
Nucleotides and chemically synthesized DNA template-primers, such as poly(dA) and oligo(dT)12-18, 
and radioisotope reagents such as [3H]-dTTP (43 Ci/mmol) were purchased from GE Healthcare Bio-
Science Corp. (Buckinghamshire, UK). All other reagents were of analytical grade and were purchased 
from Nacalai Tesque, Ltd. (Kyoto, Japan).  

 
Enzymes 

 
Pol α was purified from calf thymus by immuno-affinity column chromatography as described by 

Tamai et al. [27]. Recombinant rat pol β was purified from E. coli JMpβ5 as described by Date et al. 
[28]. The human pol γ catalytic gene was cloned into pFastBac. Histidine-tagged enzyme was 
expressed using the BAC-TO-BAC HT Baculovirus Expression System according to the supplier's 
manual (LIFE TECHNOLOGIES, MD, USA) and purified using ProBoundresin (Invitrogen Japan, 
Tokyo, Japan) [29]. Human pols δ and ε were purified by the nuclear fractionation of human 
peripheral blood cancer cells (Molt-4) using the second subunit of pols δ and ε-conjugated affinity 
column chromatography, respectively [30]. Recombinant human pols η and ι tagged with His6 at their 
C-terminal were expressed in SF9 insect cells using the baculovirus expression system, and were 
purified as described previously [31, 32]. A truncated form of pol κ (i.e., hDINB1DC) with 6 x His-
tags attached at the C-terminal was overproduced using the BAC-to-BAC Baculovirus Expression 
System kit (GIBCO BRL, MD, USA) and purified as described previously [33]. Recombinant human 
His-pol λ was overexpressed and purified according to a method described previously [34]. Fish pol δ 
was purified from the testis of cherry salmon (Oncorhynchus masou) [35]. Pol I (α-like) from a higher 
plant, cauliflower inflorescence, was purified according to the methods outlined by Sakaguchi et al. 
[36]. The Klenow fragment of pol I from E. coli was purchased from Worthington Biochemical Corp. 
(Freehold, NJ, USA). Taq pol, T4 pol, T7 RNA polymerase and T4 polynucleotide kinase were 
purchased from Takara (Kyoto, Japan). Bovine pancreas deoxyribonuclease I (DNase I) was obtained 
from Stratagene Cloning Systems (La Jolla, CA, USA).  
DNA polymerase assays 
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The reaction mixtures for pol α, pol β, fish pol δ, plant pol I (α-like) and prokaryotic pols were 
described previously [37, 38], and those for pol γ, and pols δ and ε were as described by Umeda et al. 
[29] and Ogawa et al. [39], respectively. The reaction mixtures for pols η, ι and κ were the same as for 
pol α, and the reaction mixture for pol λ was the same as that for pol β.  

For pols, poly(dA)/oligo(dT)12-18 (A/T = 2/1) and dTTP were used as the DNA template-primer and 
nucleotide (i.e., dNTP) substrate, respectively. KA-A analogues (i.e., compounds 1–12) were dissolved 
in distilled dimethyl sulfoxide (DMSO) at various concentrations and sonicated for 30 sec. Aliquots of 
4 μL of sonicated samples were mixed with 16 μL of each enzyme (final amount 0.05 units) in 50 mM 
Tris-HCl (pH 7.5) containing 1 mM dithiothreitol, 50% glycerol and 0.1 mM EDTA, and kept at 0 °C 
for 10 min. These inhibitor-enzyme mixtures (8 μl) were added to 16 μL of each of the enzyme 
standard reaction mixtures, and incubation was carried out at 37 °C for 60 min, except for Taq pol, 
which was incubated at 74 °C for 60 min. Activity without the inhibitor was considered 100%, and the 
remaining activity at each concentration of the inhibitor was determined relative to this value. One unit 
of pol activity was defined as the amount of enzyme that catalyzed the incorporation of 1 nmol of 
dNTP (i.e., dTTP) into synthetic DNA template-primers in 60 min at 37 °C under the normal reaction 
conditions for each enzyme [37, 38].  

 
Investigation of growth rate on cultured human cancer cells 

 
To investigate the effects of KA-A derivatives in cultured cells, we used a human cancer cell line, 

HL-60, human promyelocytic leukemia cells (IFO 050022), supplied by the Health Science Research 
Resources Bank (Osaka, Japan). The cells were routinely cultured in RPMI 1640 medium 
supplemented with 10% fetal bovine serum, 100 μg/mL streptomycin, 100 unit/mL penicillin, and 1.6 
mg/mL NaHCO3. The cells were cultured at 37 °C in standard medium in a humidified atmosphere of 
5% CO2-95% air. The rate of the cancer cell growth of the compound was investigated as follows: high 
concentrations (10 mM) of the compounds were dissolved in DMSO and stocked. Approximately 1 x 
104 cells per well were inoculated in 96-well micro plates, and then the compound stock solution was 
diluted to various concentrations, and applied to each well. After incubation for 24 hr, the survival rate 
was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay [40].  

 
Other enzyme assays 

 
The primase activity of calf pol α, the activities of T7 RNA polymerase, T4 polynucleotide kinase 

and bovine DNase I were measured in standard assays according to the manufacturer's specifications 
as described by Tamiya-Koizumi et al. [41], Nakayama et al. [42], Soltis et al. [43], and Lu and 
Sakaguchi [44], respectively.  
 
KA-A derivatives docking modeling 

 
The molecular docking of KA-A derivatives and the 8-kDa domain of pol β (Protein Data Bank 

(PDB) code: 1BNO and 1BPD) was performed using a fixed docking procedure in the Affinity 
program of Insight II modeling software (Accerlys Inc., San Diego, CA, USA, 1999). The calculations 
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used a CVFF force-field in the Discovery program and a Monte Carlo strategy in the Affinity program 
[45]. Each energy-minimized final docking position of KA-A derivatives was evaluated using the 
interactive score function in the Ludi module. The Ludi score includes the contribution of the loss of 
translational and rotational entropy of the fragment, the number and quality of hydrogen bonds, and 
contributions from ionic and lipophilic interactions to the binding energy.  
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