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Due to noise from uneven contrast and illumination during acquisition process of retinal fundus images, the use of efficient
preprocessing techniques is highly desirable to produce good retinal vessel segmentation results.This paper develops and compares
the performance of different vessel segmentation techniques based on global thresholding using phase congruency and contrast
limited adaptive histogram equalization (CLAHE) for the preprocessing of the retinal images. The results obtained show that the
combination of preprocessing technique, global thresholding, and postprocessing techniques must be carefully chosen to achieve
a good segmentation performance.

1. Introduction

Diabetic retinopathy (DR) accounts for about five percent
of the causes of blindness globally, representing almost five
million blind as stated by World Health Organization [1].
An early detection of DR is ensured through the regular
examination of retinal images in diabetic patients, thus
reducing the incidence of blindness cases. Automatic vessel
segmentation has a great potential to assist ophthalmologists
in the early detection of DR [2].

There have been various works done on the segmentation
of vessels in retinal images.These works can be classified into
two major categories. The first category is the unsupervised
methods.This comprises vessel tracking [3–5], matched filter
responses [6–8], morphology-based techniques [9, 10], and
locally adaptive thresholding [11]. The second category is the
supervised methods.This category requires manually labeled
images for training. This includes the use of neural networks
[12], Bayesian classifier [13], k-nearest neighbor classifier [14],
and SVM classifier [10, 15], for the classification of the image
pixels as either blood vessel or background tissue pixels. The
method proposed in this paper belongs to the unsupervised
method.

Chaudhuri et al. [6] implemented a matched filter by
initially approximating the intensity of gray level profiles of

the cross sections of retinal vessels using a Gaussian shaped
curve. AnOtsu thresholding techniquewas further applied to
the matched filter response image to segment the retinal ves-
sels. Hoover et al. [8] segmented retinal vessels by applying a
threshold probing technique combining local vessel attributes
with region-based attributes on matched filter response
(MFR) image. Compared to [6] where a basic thresholding of
an MFR was used, the method proposed by [8] reduced the
false positive rate by as much as 15 times. Zhang et al. [16],
having identified that the general matched filter responds to
both vessels edges and nonvessel edges, extended the general
matched filter with the first-order derivative of the Gaussian
properties of the retinal vessels. Martinez-Perez et al. [17]
applied the combination of scale space analysis and region
growing to segment the vasculature.The technique proposed
in [17] was, however, unable to segment the thin vessels. Zana
and Klein [18] implemented a vessel segmentation method
based on the use of mathematical morphology. Although
the result achieved in [18] was good, the vascular structures
were not always connected to one another. Jiang and Mojon
[11] implemented an adaptive local thresholding based on
a verification-based multithreshold probing scheme. The
proposed technique in [11] was, however, faced with the
limitations of some unconnected vascular structures and the
inability to detect the thinner vessels.

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 895267, 15 pages
http://dx.doi.org/10.1155/2015/895267

http://dx.doi.org/10.1155/2015/895267


2 Computational and Mathematical Methods in Medicine

Moment features were used by Maŕın et al. [19] for
vessel segmentation. A 7D vector composed of gray level and
moment invariants-based features for pixel representation
was computed, while a neural network classifier is used
for the vessel segmentation. Soares et al. [13] generated a
feature vector computed from the measurements at different
scales of two-dimensional (2D) Gabor wavelet transform on
each pixel. Bayesian classifier with Gaussian mixtures was
further used to classify the resulting feature space as either
a vessel or nonvessel pixel. Staal et al. [14] implemented a
ridge-based vessel segmentation method. The retinal image
ridges which cooccur approximately with vessel centre-lines
were extracted. Primitives in the form of line elements were
further composed of the ridges.The feature vectors computed
for every pixel were classified using a k-nearest neighbour
classifier and sequential forward feature selection. Niemeijer
et al. [20] implemented vessel segmentation method based
on pixel classification. Each pixel of the green plane of
the retinal image was used to construct a feature vector.
Consequently, these feature vectors were trained using a
kNN-classifier. A filtered output and the pixel values within a
neighborhoodwere compared.The best results were obtained
from the filter output. Niemeijer et al. [20] further did
the comparative study of the proposed vessel segmentation
technique with the techniques proposed in [11, 14]. Fraz et al.
[21, 22] implemented a supervised segmentation technique
based on ensemble classifier of bootstrapped decision trees
for the segmentation retinal vessel network. Lupaşcu et al.
[23] implemented a supervised segmentation technique for
detecting vessels using Ada-Boost classifier. A feature vector
comprising local and spatial properties of the vessels were
generated from the responses of various filters (matched
filters, Gabor wavelet transform, and Gaussian filter and
its derivatives). Ada-Boost classier was further trained and
used to classify each pixel as either vessel or nonvessel.
Ricci and Perfetti [24] proposed two different automated
vessel segmentations based on line operators. The best of
the two segmentationmethods constructed feature vector for
supervised classification using a support vector machine.

Szpak and Tapamo [25] used gradient based approach
and level set technique. The proposed technique in [25]
was, however, unable to detect the thinner vessels. Vlachos
and Dermatas [26] implemented a multiscale line-tracking
combined with a morphological postprocessing technique.
Wang et al. [27] proposedmultiwavelet kernels andmultiscale
hierarchical decomposition for the segmentation of retinal
vessels. Mendonça and Campilho [28] combined differential
filters for center-line extractionwithmorphological operators
for the detection of retinal vessel network. Xiao et al. [29]
proposed a Bayesian method with spatial constraint with
level set for the segmentation of retinal vessels. Yin et al.
[30] implemented a probabilistic tracking-based method for
vessel segmentation.

Lupascu and Tegolo [31, 32] trained a self-organizingmap
(SOM) on retinal images. The map was further divided into
two classes using 𝑘-means clustering [31] and modified fuzzy
𝑐-means [32] techniques. The entire image is fed into SOM
again and the class of the best matching unit on SOM is
assigned to each pixel. A postprocessed technique based on

hill climbing strategy on connected components was used to
detect the vessel network. Saffarzadeh et al. [33] implemented
a preprocessing phase based on 𝑘-means followed by the
use of multiscale line operators for the detection of retinal
vessel network. With the help of k-means, the visibility of the
vessels was enhanced and the impact of bright lesions was
reduced. The retinal vessels were finally detected using the
line detection operator in three scales.

Setiawan et al. [34] used contrast limited adaptive his-
togram equalization (CLAHE) to enhance the green channel
color retinal image in order to enhance color retinal fundus
image. The enhancement was achieved using histogram
manipulation to get the uniform distribution of the intensity
of the green channel. Contrast limited adaptive histogram
equalization spreads the intensity distribution and adjusts
the intensity of the original image. The red, green, and blue
channels were finally combined as an enhanced color retinal
image. Phase congruency on the other hand is a technique
that is not affected by uneven illumination and contrast of
the retinal image. A bank of log-Gabor filters was used by
Kovesi to compute the phase congruency of an image and a
binary segmentation was obtained by universal thresholding
[35, 36].

Amin andHong [37] implemented the detection of retinal
blood vessels using phase congruency at an high speed.
Although the technique performed well in terms of speed,
there is a need for a higher accuracy rate and a dynamically
computed thresholding approach. Tagore et al. [38] used
phase congruency to improve the contrast of vessel segments
against the retinal background. A hierarchical clustering
based histogram thresholding was then used to segment the
contrast enhanced vessels. In related development, vessels
cross-sectional profiles in the Fourier domain were repre-
sented and characterize using phase congruence by Zhu [39].
A bank of Gabor filter was used to transform the input image.
The performance of the proposed technique in [39] was only
described using visual results.

Although global thresholding technique has been used in
[6], it has, however, been said to be inefficient for the retinal
vascular segmentation [8, 11]. This might have also resulted
from certain limitations of the preprocessing phase [16]. In
order to effectively produce good vessel segmentation, there
is a need for an efficient preprocessing phase to enhance the
vessels, good global thresholding technique, and an efficient
postprocessing technique. This paper presents a study on the
use different global thresholding techniques combined with
different preprocessing and postprocessing techniques. The
rest of this paper is organized as follows. Section 2 describes
the methods and techniques used in this study. Section 3
explains the experimental setup, results, and discussion,
while the conclusion is summarized in Section 4.

2. Methods and Techniques

Retinal fundus images are often characterized by noise due
to illumination and contrast variation. Due to this, the use
of global thresholding techniques for the detection of vessels
in these noisy retinal images becomes challenging. In order
to solve this problem, the need for an efficient preprocessing
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(1) Input the colored retinal image
(2) Compute the gray scale of the colored retinal image
(3) Image preprocessing through CLAHE using (1) and (2)
(4) Enhance image using any of the following smoothing filters:

(i) Gaussian filter
(ii) Average filter
(iii) Adaptive filter
(iv) Average and Gaussian filters

(5) Segment image using any of the following thresholding techniques:
(i) Otsu threshold using (9)
(ii) ISODATA threshold using (10)

(6) Perform background subtraction
(7) Perform morphological operation for noise removal
(8) Obtain segmented vascular network

Algorithm 1: Algorithm for CLAHE global-based thresholding technique.

technique is highly desirable. This section describes the two
different preprocessing techniques and the different filtering
techniques which are used to enhance the vessels. The differ-
ent thresholding techniques and postprocessing techniques
used in this paper are also described in this section. For
the purpose of simplification, we group these techniques
into two major approaches, namely, CLAHE global-based
thresholding approach and phase congruence global-based
thresholding approach as described in Algorithms 1 and 3.

(1) Preprocessing Phase. The different techniques used in the
preprocessing phase are described below.

(a) CLAHE: CLAHE algorithm is used for partitioning
the image into contextual regions and it applies the histogram
equalization to each one. Figure 1 shows the colored, the gray
scale, and the green channel of the retinal fundus image.
CLAHE computes the local histogram at each pixel of the
retinal image and performs histogram clipping, histogram
renormalization, and output pixel mapping to an intensity
proportional to its rank within the histogram. Given that ℎ

𝑖

is the histogram bin and (𝑚×𝑚) is the contextual region, the
rank 𝑟

𝑝
for a pixel with intensity 𝑝 is computed as follows:

𝑟
𝑝
= (

𝑝

∑

𝑖=0

min (𝛽, ℎ
𝑖
) + (𝑝 + 1)

× (
∑
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−1
,

(1)

where the clip limit 𝛽 determines the contrast enhancement
limit and ∑

𝑝

𝑖=0
min(𝛽, ℎ

𝑖
) describes the rank in a clipped

histogram. Since each region will have a different number
of clipped pixels, it is, however, beneficial to redistribute
the part of the histogram that exceeds the clip limit 𝛽
evenly among all histogram bins to normalize the ranks
computed in different regions.This normalization is provided
by ∑
𝑝

𝑗=0
((∑
𝑁

𝑘=0
max(0, ℎ

𝑘
− 𝛽))/(𝑚 × 𝑚)), where ℎ

𝑘
is the

histogram bin in the different region. The rank of intensity

𝑖in at (𝑥, 𝑦) is computed and scaled to produce a fractional
rank 𝑟, such that 0.0 ≤ 𝑟 ≤ 1.0.

The output intensity level 𝑖out is then computed in some
grey scale ranging between 𝑖

1
and 𝑖
2
as follows:

𝑖out = 𝑖
1
+ 𝑟 × (𝑖

2
− 𝑖
1
) . (2)

(b)The phase congruence model proposed in [35, 36] has
been very promising in the detection of object boundary in
the presence of noise. The green channel is enhanced using
phase congruence to minimize retinal image noise due to
nonuniform illumination and contrast. Phase congruency is
computed as follows:

PC (𝑥) =
|𝐸 (𝑥)|

∑
𝑡
𝐴
𝑡 (𝑥)

, 0 ≤ PC (𝑥) ≤ 1, (3)

where𝐴
𝑡
(𝑥) is the amplitude, 𝜙

𝑡
(𝑥) is the phase, and |𝐸(𝑥)| is

the local energy, given that

𝐸 (𝑥) = ∑

𝑡

𝐴
𝑡 (𝑥) cos (𝜙𝑡 (𝑥) − 𝜙 (𝑥)) . (4)

In order to apply phase congruence to images, (3) is
modified to be as follows:

PC (𝑥, 𝑦) =
∑
𝜃
∑
𝑡
𝑊
𝜃
(𝑥, 𝑦) ⌊𝐴

𝑡,𝜃
Δ𝜙
𝑡,𝜃
(𝑥, 𝑦) − 𝑇

𝜃
⌋

∑
𝜃
∑
𝑡
𝐴
𝑡,𝜃
(𝑥, 𝑦) + 𝜀

, (5)

where (𝑥, 𝑦) is the position of the pixel in the green channel
of the retinal image, while 𝑡 and 𝜃 are the given scale and
orientation, respectively. 𝑊

𝜃
is the weighing factor for the

distributed frequency, while𝑇
𝜃
estimates the image noise.The

energy is computed using 𝐴
𝑡,𝜃
Δ𝜙
𝑡,𝜃
(𝑥, 𝑦), while 𝜀 is added

to the denominator such that the divisor will be nonzero.
The visual results of both CLAHE and phase congruence
preprocessing techniques can be seen in Figure 2.

(c) Filters: the resulting images from CLAHE preprocess-
ing technique are still affected to some extent by noise. In
order to further enhance the retinal images, different filters
are considered. The different filters considered are adaptive
filter, average filter, and Gaussian filter. The combination of
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(1) Input the colored retinal image
(2) Compute the gray scale of the colored retinal image
(3) Compute the GLCM using (11)
(4) Construct the GLCM-IDM feature matrix using (13) and (14)
(5) Compute the IDM-based threshold using (16)

Algorithm 2: Algorithm for computing IDM-based threshold.

(1) Input the colored retinal image
(2) Extract the green channel of the colored retinal image
(3) Perform preprocessing on image using phase congruence as indicated in (5)
(4) Further enhance the preprocessed image using average filter
(5) Segment image using any of the following thresholding techniques:

(i) Otsu threshold using (9)
(ii) ISODATA threshold using (10)
(iii) IDM-based threshold computed in Algorithm 2

(6) Perform morphological operation for noise removal
(7) Subtract image mask to obtain segmented vascular network

Algorithm 3: Algorithm for phase congruence global-based thresholding technique.

average filter and Gaussian filter was also used to further
enhance the output of CLAHEpreprocessing technique. Each
of these different filtering approaches was considered in order
to investigate their suitability for further enhancement of the
retinal image. In related development, the resulting images
from phase congruence were also enhance using average
filter.Theperformance of each of the filtering approacheswas,
however, measured after the final vessel segmentation. The
visual results from DRIVE database can be seen in Figures
4, 5, and 7 and those of STARE database in Figures 11 and 12.

(2)GlobalThresholding. Automatic thresholding is potentially
useful to dynamically select an optimal gray level threshold
value for the segmentation of retinal vessels in the image from
the background tissue based on their intensity distribution.
The different global thresholding techniques studied in this
paper are as follows.

(a) Otsu thresholding: global thresholding technique
based on Otsu [40] is used on the results computed from
phase congruence and CLAHE with filters for the initial esti-
mation of the vessel network. The threshold that minimizes
the intraclass variance as a weighted sum of variances of the
two classes is explored in Otsu’s method. The weighted sum
of variances of two classes is expressed as follows:

𝜎
2

𝜔
(𝑡) = 𝜔

1 (𝑡) 𝜎
2

1
(𝑡) + 𝜔2 (𝑡) 𝜎

2

2
(𝑡) , (6)

such that weights 𝜔
𝑖
describe the probabilities of the two

classes separated by a threshold 𝑡 and 𝜎
2

𝑖
variances of the

classes.The class probability 𝜔
1
(𝑡) is then computed from the

histogram as follows:

𝜔
1 (𝑡) =

𝑡

∑

0

𝑝 (𝑖) , (7)

while the class mean 𝜇
1
(𝑡) is computed as follows:

𝜇
1 (𝑡) =

[∑
𝑡

0
𝑝 (𝑖) 𝑥 (𝑖)]

𝜔
1

, (8)

such that 𝑥(𝑖) is the value at the center of the 𝑖th histogram
bin. 𝜔

2
(𝑡) and 𝜇(𝑡) can likewise be computed on the his-

togram for bins greater than 𝑡. Otsu further showed that
minimizing the intraclass variance is the same as maximizing
interclass variance; thus the desired threshold 𝜎2

𝑏
(𝑡) is given

as follows:

𝜎
2

𝑏
(𝑡) = 𝜎

2
(𝑡) − 𝜎

2

𝜔
(𝑡) = 𝜔

1 (𝑡) 𝜔2 (𝑡) [𝜇1 (𝑡) − 𝜇2 (𝑡)]
2
, (9)

where 𝜇
1
(𝑡) and 𝜇

2
(𝑡) are the means of the first and second

group, respectively.The visual result of Otsu threshold on the
image obtained fromCLAHEpreprocessing technique can be
seen in Figure 3.

(b) ISODATA threshold selection: ISODATA threshold
technique divides the histogram of the image output from
phase congruence method into two using an initial threshold
value 𝑡

0
. The threshold is computed as follows:

𝑡
ℎ
=
𝑚
1
+ 𝑚
2

2
, (10)

where 𝑚
1
and 𝑚

2
are the mean values of the two different

parts of the histogram.This process continues until 𝑡
ℎ
≈ 𝑡
ℎ−1

.
(c) Inverse difference moment (IDM)-based binary

thresholding: image signal statistics, particularly first- and
second-order statistics, are good texture feature descriptors
used for supervised segmentation techniques. Moments,
first-order statistics, are concerned with individual image
pixel properties while second-order statistics such as gray
level cooccurrence matrix (GLCM) are concerned with indi-
vidual pixel properties as well as the spatial interdependency
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(a) (b) (c)

Figure 1: (a) Colored retinal image (b) Gray Scale Retinal Image. (c) Green channel of the colored retinal image.

(a) (b)

Figure 2: (a) Preprocessed retinal image using CLAHE (b) Preprocessed retinal image using phase congruence.

(a) (b)

Figure 3: (a) Segmented retinal vessels using CLAHE preprocessing with Otsu threshold. (b) DRIVE database gold standard.
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

Figure 4: Shows retinal images and their segmentation results obtained through phase congruence using different global-based thresholding
techniques. Images (a1), (b1), and (c1) are DRIVE database colored retinal Images. Images (a2), (b2), and (c2) are DRIVE database gold
standards. Images (a3), (b3), and (c3) are images segmented using IDM-based threshold values while images (a4), (b4), and (c4) are images
segmented using ISODATA threshold values. Images (a5), (b5), and (c5) are images segmented using Otsu threshold values.

of the two pixels at particular relative positions. The IDM
texture information is computed using the GLCM of the
gray scale of the retinal fundus image. The GLCM for the
retinal fundus image is computed in the relative distance
“𝑑” between the pixel pair and their relative orientation “Φ”
across four directions (horizontal: 0∘, diagonal: 45∘, vertical:
90∘, and antidiagonal: 135∘) as

𝐶
𝑖,𝑗
=

𝑀−1

∑

𝑥=0

𝑁−1

∑

𝑦=0

(𝑃 {𝑉 (𝑥, 𝑦) = 𝑖, 𝑉 (𝑥 ± 𝑑Φ
1
, 𝑦 ± 𝑑Φ

2
) = 𝑗}) ,

(11)

where 𝑉(𝑥, 𝑦) = 𝑖means 𝑖 is the gray level of the pixel (𝑥, 𝑦),
and 𝑃 is defined as

𝑃 (𝑥) = {
1 if 𝑥 is true
0 Otherwise.

(12)

The IDM feature across the different distances “𝑑” and
varying relative orientation “Φ” is defined as follows:

IDM
(𝑑,Φ)

= ∑

𝑖,𝑗

𝑝
(𝑖,𝑗)

(1 + (𝑖 + 𝑗)
2
)

, (13)

where 𝑝
(𝑖,𝑗)

is the (𝑖, 𝑗)th entry in a normalized gray scale
spatial dependence matrix 𝐶

(𝑖,𝑗)
/𝑅.

A multiscale IDM feature measurement across the vary-
ing distance “𝑑” and relative orientation “Φ” is used in the
computation of an IDM feature matrix as follows:

𝐹 = (

𝑓
11

𝑓
12

𝑓
13

𝑓
14

𝑓
21

𝑓
22

𝑓
23

𝑓
24

𝑓
31

𝑓
32

𝑓
33

𝑓
34

𝑓
41

𝑓
42

𝑓
43

𝑓
44

), (14)

where 𝑓
𝑖𝑗
= IDM

𝑑𝑖 ,Φ𝑗
with orientations (Φ

𝑗
)
𝑖=1,...,4

, such that
Φ
1
= 0∘, Φ

2
= 45∘, Φ

3
= 90∘, and Φ

4
= 135∘, with distances

(𝑑
𝑖
)
𝑖=1,...,4

. The range measure of 𝐹 is given below as

𝑅
Φ
= max
1≤𝑗≤4

(𝑓
𝑖𝑗
) − min
1≤𝑗≤4

(𝑓
𝑖𝑗
) , (15)

where 1 ≤ 𝑖 ≤ 4 and 𝑅
Φ
is a row vector containing the range

of each column of matrix (𝐹).
The threshold value that will be used for the binarization

of the output image from the phase congruence and average
filter is computed as follows:

𝑇
ℎ
= max (𝑅

Φ
) +mean (𝑅

Φ
) . (16)

(3) Postprocessing Phase. The different techniques used in the
postprocessing phase are described below.
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(d1) (d2) (d3) (d4) (d5)

(e1) (e2) (e3) (e4) (e5)

(f1) (f2) (f3) (f4) (f5)

Figure 5: Shows different segmentation results obtained throughCLAHEwith different filters usingOtsu thresholding technique. Images (d1),
(e1), and (f1) are DRIVE database gold standards. Images (d2), (e2), and (f2) are images segmented using Otsu threshold with Gaussian filter.
Images (d3), (e3), and (f3) are images segmented using Otsu threshold with average filter. Images (d4), (e4), and (f4) are images segmented
using Otsu threshold with adaptive filter. Images (d5), (e5), and (f5) are images segmented using Otsu threshold with combination of average
and Gaussian filters.

(a) (b) (c)

Figure 6: (a) Colored retinal image. (b) Preprocessed image using phase congruence. (c) Segmented retinal image containing vessel network
and lesions.

(a) Median filtering and morphological opening: median
filter is used to restore the connectivity of several vessel lines
by revealing some hidden pixels that belong to vessel lines. It
is also used to get rid of the remaining noisy pixels.The choice

of applying a 2 × 2median filter has a good performance.This
is referred to as (MO) in Tables 4 and 5. This is followed by
the use of morphological opening in removing part of the
remaining noisy pixels. The use of morphological opening
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Table 1: Phase congruence parameter description and optimum parameter values.

Parameter description Parameter
symbol

Parameter
value

(DRIVE)

Parameter
value

(STARE)
Number of wavelet scales. 𝑛scale 4 3
Number of filter orientations. norient 6 5
Wavelength of smallest scale filter. minWaveLength 3 2.5
Scaling factor between successive filters. mult 2.1 2.9
Ratio of the standard deviation of the Gaussian
describing the log Gabor filter’s transfer function in the
frequency domain to the filter center frequency.

sigmaOnf 0.55 1.5

Ratio of angular interval between filter orientations and
the standard deviation of the angular Gaussian function
used to construct filters in the frequency plane.

dThetaOnSigma 1.2 1.7

Number of standard deviations of the noise energy
beyond the mean at which we set the noise threshold
point.

𝑘 2.3 3

The fractional measure of frequency spread below
which phase congruency values get penalized. cutOff 0.5 0.5

Controls the sharpness of the transition in the sigmoid
function used to weight phase congruency for
frequency spread.

𝑔 10 14

(g1) (g2) (g3) (g4) (g5)

(h1) (h2) (h3) (h4) (h5)

(i1) (i2) (i3) (i4) (i5)

Figure 7: CLAHE combined with ISODATA thresholding technique. It shows the different segmentation results obtained through CLAHE
with different filters using ISODATA thresholding technique. Images (g1), (h1), and (i1) are DRIVE database gold standards. Images (g2),
(h2), and (i2) are images segmented using ISODATA threshold with Gaussian filter. Images (g3), (h3), and (i3) are images segmented using
ISODATA threshold with average filter. Images (g4), (h4), and (i4) are images segmented using ISODATA threshold with adaptive filter.
Images (g5), (h5), and (i5) are images segmented using ISODATA threshold with combination of average and Gaussian filters.
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Table 2: optimal parameter values for CLAHE global thresholding
approaches.

Filtering Filter CLAHE CLAHE

Technique Window size Clip-limits Number of
tiles

Adaptive filter 4 × 4 0.05 75 × 75
Average filter 3 × 3 0.05 75 × 75
Gaussian filter
(sigma = 0.5) 3 × 3 0.04 75 × 75
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Figure 8: Measures the different phase congruence-based global
thresholding approaches. It describes the average sensitivity, speci-
ficity, and accuracy of the segmentation results obtained through
phase congruence using different global-based thresholding tech-
niques. Phase congruence with IDM-based threshold, combined
with (MO), gives the average accuracy of 0.94302, average sensitivity
of 0.71520, and average specificity of 0.96496.

(MO) alone and the combination of morphological opening
and median filter was used. This is referred to as (MOMF) in
Tables 4 and 5.

(b) Morphological directional filtering and reconstruc-
tion: the morphological directional filtering described in
[12] is used to handle the several misclassifications that
still remained. Morphological openings with line structuring
elements orientation in five various directions, namely, 0, 30,
60, 120, and 150 degrees, are used. This paper adopts length
of 1 pixel to keep vessel like structures with length of greater
or less than 1. A logical OR for the responses of the five
different directions and morphological reconstruction were
performed on the image to remove a few erroneous regions
before producing the final vessels network. The (MOMF)
described in (a) above is combined with morphological
directional filtering andmorphological reconstruction for the
purpose of performance investigation. This is referred to as
(ATC) in Tables 4 and 5.

3. Experimental Results and Discussions

Experiment was carried out using Matlab 2010a on an Intel
Core i5 2410M CPU, 2.30GHz, with 4GB of RAM. The
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Figure 9: Measures of CLAHE combined with different filters using
Otsu threshold. It describes the average sensitivity, specificity, and
accuracy of the segmentation results obtained through CLAHE
with Otsu thresholding using different filters. CLAHEwith guassian
filters, combined with (ATC), gives the best performance of an
average accuracy of 0.94980, average sensitivity of 0.67290, and
average specificity of 0.97651.
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Figure 10:Measures ofCLAHEcombinedwith different filters using
ISODATA threshold. It describes the average sensitivity, specificity,
and accuracy of the segmentation results obtained through CLAHE
with ISODATA thresholding using different filters. CLAHE with
guassian filters, combined with (ATC), gives the best performance
of an average accuracy of 0.94997, average sensitivity of 0.67011, and
average specificity of 0.97695.

proposed method was evaluated using the retinal images on
the publicly available DRIVE [41] and STARE databases [8].
DRIVE database is made up of 40 images captured with the
use of Canon CR5 camera with 24-bit gray scale resolution
and a spatial resolution of 565 × 584 pixels. The 40 images
were divided into two groups. The first group of the DRIVE
images is a training set made up of twenty images. The
second group is a testing set made up of twenty images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: (a) and (e) are STARE database ground truth. (b) and (e) are images segmented using global threshold with adaptive filter. (c) and
(f) are images segmented using global threshold with average filter. (d) and (g) are images segmented using global threshold with Gaussian
filter.

DRIVE database also provides gold standard images as the
ground truth for vessel segmentation for the comparative
performance evaluation of different vessel segmentation algo-
rithms. STARE database on the other hand consists of retinal
images captured with the use of TopCon TRV-50 fundus
camerawith 24-bit gray scale resolution and spatial resolution
of 700×605 pixels.The database provides 20 coloured retinal
images and 20 hand-labeled images as the ground truth for
the comparative performance evaluation of different vessel
segmentation algorithms.

The outcome of retinal vessel segmentation is a pixel-
based classification result. Each pixel is either classified as
vessel or background. Different events such as true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN) take place during the pixel classification. An
event is said to be TP if a pixel is correctly segmented as
a vessel and TN when a pixel is correctly segmented as
background. In related development, an event is said to be
FN if a vessel pixel is segmented to be a background and a
FP when a background pixel is segmented as a pixel in the
vessel. The statistical performance measures commonly used
for the evaluation of segmentation techniques are sensitivity,
specificity, and accuracy. Sensitivity measure indicates the
ability of a segmentation technique to detect the vessel pixels
while specificity measure indicates the ability of a segmen-
tation technique to detect background pixels. The accuracy
measure, however, indicates the degree of conformity of the
segmented retinal image to the ground truth. The measures
are described in the equation below as

Sensitivity = TP
(TP + FN)

,

Specificity = TN
(TN + FP)

,

Accuracy = (TP + TN)
(TP + TN + FP + FN)

,

(17)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Table 1 gives an overview of the parameter description
and optimum parameter values of the phase congruence
technique. In related development, different optimal values
were empirically selected for the parameters used in CLAHE
global thresholding approaches as described in Table 2.

Figure 4 shows retinal images and their segmentation
results obtained through phase congruence using different
global-based thresholding techniques on DRIVE database.
Figure 6 also shows the segmentation result obtained from a
diseased retinal from DRIVE database using phase congru-
ence combined with IDM thresholding technique. Figure 12
shows the result of phase congruence-based global threshold-
ing approach on STARE database.

Figure 5 shows different segmentation results obtained
through CLAHE combined with different filters using Otsu
thresholding technique while Figure 7 shows different seg-
mentation results obtained through CLAHE combined with
different filters using ISODATA thresholding technique on
DRIVE database. Figure 11 also shows the result of CLAHE-
based global thresholding approaches on STARE Database.

Figure 8 describes the average sensitivities, specificities,
and accuracies of the segmentation results obtained from
phase congruence-based global thresholding approaches
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(a) (b) (c) (d)

Figure 12: (a) STARE database ground truth. (b) Preprocessed image using phase congruence. (c) Retinal image mask. (d) Segmented vessel
network using phase congruence-based global thresholding approach.

Table 3: Performance of different segmentation methods on DRIVE database.

Preprocessing method Postprocessing method Average sensitivity Average specificity Average accuracy

CLAHE with average filter using
Otsu

Morphological opening 0.57309 0.99048 0.95376
Morphological opening and median filter 0.59957 0.98439 0.95054
All techniques combined 0.65349 0.97798 0.94943

CLAHE with Gaussian filter using
Otsu

Morphological opening 0.56045 0.99247 0.95449
Morphological opening and median filter 0.61246 0.98482 0.95204
All techniques combined 0.67290 0.97651 0.94980

CLAHE with average and Gaussian
filters using Otsu

Morphological opening 0.57529 0.98889 0.95255
Morphological opening and median filter 0.58221 0.98201 0.94688
All techniques combined 0.64159 0.97172 0.94269

CLAHE with adaptive filter using
Otsu

Morphological opening 0.53973 0.99087 0.95118
Morphological opening and median filter 0.56335 0.98390 0.94691
All techniques combined 0.61596 0.96773 0.93678

CLAHE with average filter using
ISODATA

Morphological opening 0.56730 0.99092 0.95366
Morphological opening and median filter 0.59380 0.98495 0.95056
All techniques combined 0.61630 0.98395 0.95162

CLAHE with Gaussian filter using
ISODATA

Morphological opening 0.60458 0.98892 0.95508
Morphological opening and median filter 0.63350 0.98193 0.95125
All techniques combined 0.67011 0.97695 0.94997

CLAHE with average and Gaussian
filters using ISODATA

Morphological opening 0.55402 0.99129 0.95286
Morphological opening and median filter 0.58024 0.98247 0.94993
All techniques combined 0.60265 0.98459 0.95104

CLAHE with adaptive filter using
ISODATA

Morphological opening 0.58487 0.98978 0.95417
Morphological opening and median filter 0.61775 0.98318 0.95104
All techniques combined 0.64348 0.98185 0.95209

Phase congruence with Otsu
Morphological opening 0.45610 0.99210 0.94509
Morphological opening and median filter 0.48690 0.98754 0.94364
All techniques combined 0.47232 0.98849 0.94324

Phase congruence with ISODATA
Morphological opening 0.51579 0.98872 0.94722
Morphological opening and median filter 0.55410 0.98278 0.94517
All techniques combined 0.53369 0.98459 0.94504

Phase congruence with IDM-based
threshold

Morphological opening 0.71520 0.96496 0.94302
Morphological opening and median filter 0.74247 0.95461 0.93596
All techniques combined 0.73910 0.95687 0.93772
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Table 4: Performance of different segmentation methods on DRIVE database.

Method Average accuracy Average sensitivity Average specificity
Human observer 0.9473 0.7761 0.9725
Chaudhuri et al. [6] 0.8773 0.3357 0.9794
Staal et al. [14] 0.9442 0.7345 0.9773
Niemeijer et al. [20] 0.9416 0.7145 0.9801
Zana and Klein [18] 0.9377 0.6971 0.9769
Jiang and Mojon [11] 0.9212 0.6399 0.9625
Maŕın et al. [19] 0.9452 N/A N/A
Ricci and Perfetti [24] 0.9646 N/A N/A
Martinez-Perez et al. [17] 0.9181 0.6389 0.9496
Soares et al. [13] 0.9466 N/A N/A
Vlachos and Dermatas [26] 0.9285 0.7468 0.9551
Akram and Khan [42] 0.9469 N/A N/A
Amin and Hong [37] 0.9191 0.6608 N/A
Mendonça and Campilho [28] 0.9463 0.7315 N/A
Tagore et al. [38] 0.9424 N/A N/A
CLAHE and average filter (ATC) using Otsu 0.9494 0.6535 0.9780
CLAHE and Gaussian filter (ATC) using Otsu 0.9498 0.6729 0.9765
CLAHE with average and Gaussian filters (ATC)
using Otsu 0.9427 0.6416 0.9717

CLAHE and adaptive filter (ATC) using Otsu 0.9368 0.6160 0.9677
CLAHE and average filter (ATC) using ISODATA 0.9516 0.6163 0.9780
CLAHE and Gaussian filter (ATC) using
ISODATA 0.9500 0.6701 0.9770

CLAHE with average and Gaussian filters (ATC)
using ISODATA 0.9510 0.6027 0.9846

CLAHE and adaptive filter (ATC) using
ISODATA 0.9521 0.6435 0.9819

Phase congruence with IDM-based threshold
(MO) 0.9430 0.7152 0.9650

Phase congruence with IDM-based threshold
(MOMF) 0.9360 0.7425 0.9546

Phase congruence with IDM-based threshold
(ATC) 0.9377 0.7391 0.9569

while Figures 9 and 10 show the average sensitivities, specifici-
ties, and accuracies of the segmentation results obtained from
CLAHE-based global thresholding approaches on DRIVE
database.

Table 3 shows the performance of the different global
thresholding techniques on DRIVE database. Although
CLAHE-based global thresholding approaches have very
good accuracies due to the accurate segmented vessels, they,
however, possess lower sensitivities due to the inability to
segment the thin vessels. CLAHE-based global thresholding
approaches are at their best performance when all the
postprocessing techniques are combined. The best average
sensitivity and accuracy results of CLAHE with Gaussian
filter using Otsu threshold are 0.67290 and 0.9498. The next
in rank of CLAHE-based preprocessing combined with Otsu
threshold is CLAHE with average filter giving the aver-
age sensitivity and accuracy results of 0.65349 and 0.9494.
CLAHE with average and Gaussian filters gives the average
sensitivity and accuracy results of 0.64159 and 0.94269 while
CLAHE with adaptive filter gives the average sensitivity and

accuracy results of 0.61596 and 0.93678. The best average
sensitivity and accuracy results of CLAHE with Gaussian
filter using ISODATA threshold are 0.67011 and 0.94997.
CLAHE-based preprocessing combined with average filter
gives the average sensitivity and accuracy results of 0.61630
and 0.95162 for the ISODATA threshold technique. CLAHE-
based preprocessing combined with average and Gaussian
filters gives the average sensitivity and accuracy results of
0.60265 and 0.95104 for the ISODATA threshold technique.
CLAHE with adaptive filter also gives the average sensitivity
and accuracy results of 0.64348 and 0.95209 for the ISODATA
threshold technique.

The best results achieved using phase congruence-based
global thresholding approaches are obtained using IDM-
based thresholding compared to ISODATA and Otsu thresh-
olding. Phase congruence combinedwith IDM-based thresh-
olding has very good accuracies due to the accurate seg-
mented vessels and possesses good sensitivities due to the
ability to segment some thin vessels. It is, however, still unable
to segment the thinnest vessels. The best average accuracy
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Table 5: Performance of different proposed segmentation methods on STARE database.

Method Average accuracy Average sensitivity Average specificity
Human observer 0.9354 0.8949 N/A
Hoover et al. [8] 0.9275 0.6751 0.9567
Staal et al. [14] 0.9516 0.6970 N/A
Jiang and Mojon [11] 0.9009 N/A N/A
Maŕın et al. [19] 0.9526 N/A N/A
Ricci and Perfetti [24] 0.9646 N/A N/A
Soares et al. [13] 0.9480 N/A N/A
Akram and Khan [42] 0.9502 N/A N/A
Amin and Hong [37] 0.9081 0.7261 N/A
Mendonça and Campilho [28] 0.9479 0.7123 N/A
Tagore et al. [38] 0.9497 N/A N/A
CLAHE and average filter (ATC) using Otsu 0.9409 0.6258 0.9662
CLAHE and Gaussian filter (ATC) using Otsu 0.9435 0.6138 0.9698
CLAHE with average and Gaussian filters (ATC)
using Otsu 0.9468 0.6144 0.9735

CLAHE and adaptive filter (ATC) using Otsu 0.9456 0.6135 0.9722
CLAHE and average filter (ATC) using ISODATA 0.9421 0.6238 0.9676
CLAHE and Gaussian filter (ATC) using
ISODATA 0.9442 0.6099 0.9709

CLAHE with average and Gaussian filters (ATC)
using ISODATA 0.9471 0.6127 0.9740

CLAHE and adaptive filter (ATC) using
ISODATA 0.9458 0.6115 0.9726

Phase congruence with IDM-based threshold
(MO) 0.9340 0.5202 0.9682

Phase congruence with IDM-based threshold
(MOMF) 0.9318 0.5036 0.9671

Phase congruence with IDM-based threshold
(ATC) 0.9221 0.5031 0.9567

of 0.94302 and average sensitivity of 0.71520 are achieved
using morphological opening postprocessing technique. The
next in rank of phase congruence-based global thresholding
approaches is IDM-based thresholding combined with all
postprocessing techniques combined giving average accu-
racy and sensitivity results of 0.93772 and 0.73910. IDM-
based thresholding combined with morphological opening
combined with median filter gives average accuracy and
sensitivity results of 0.93596 and 0.74247.

Phase congruence combined with IDM-based thresh-
olding generally performed better than all the CLAHE-
based global thresholding approaches. Phase congruence
combined with IDM-based thresholding also gives better
performance compared to Otsu and ISODATA thresholding
combined with phase congruence.The performances of Otsu
and ISODATA thresholding coupled with phase congruence
are, however, at their best when morphological opening and
median filter are combine for the post processing phase.

Tables 4 and 5 describe the performances of the best tech-
niques from the different segmentationmethods investigated
in this paper and other previously published works using
DRIVE and STARE databases.

Phase congruence combined with IDM-based threshold-
ing using morphological opening postprocessing technique
presents a higher average accuracy rates on DRIVE and
STAREdatabases compared to the previously proposed phase
congruence based technique by Amin and Hong [37]. Tagore
et al. [38] achieves a lower average accuracy rate on DRIVE
database but a higher average accuracy rate compared to the
best phase congruence-based global thresholding approach
presented in this paper.The technique proposed in [38], how-
ever, did not present the sensitivity and specificity measures.
In related development, the phase congruence technique
proposed by Zhu [39] discussed only the visual performance.
Tables 4 and 5 also compare the results obtained in this paper
with other results achieved in other literatures.

4. Conclusion

Theperformance of different vessel segmentation approaches
based on combination of different preprocessing techniques,
global thresholding, and postprocessing techniques has been
investigated. It has also been shown that the combination
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of preprocessing technique, global thresholding, and post-
processing techniques must be carefully chosen to achieve
a good segmentation performance. It is, however, important
to state that the paper shows that sensitivity, specificity,
and accuracy measures must all be high to ascertain a
good segmentation performance. It was also shown that
phase congruence combined with IDM-based thresholding
generally performs better compared to phase congruence
combined with ISODATA and Otsu threshold. Phase con-
gruence combined with IDM-based thresholding is at its
best on DRIVE database but did not have a better perfor-
mance compared to the best of the CLAHE-based global
thresholding approaches on STARE database. CLAHE-based
global thresholding approaches were, however, shown to have
maintained high accuracy rates across DRIVE and STARE
databases. Although good accuracy and specificity rates were
achieved, the sensitivity rate shows that global thresholding
approach is still limited at efficiently segmenting the thin
vessels. Our future work shall investigate the use of more
robust segmentation techniques for the detection of both
large and thin vessels in retinal images.
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