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Abstract

How can systems in which individuals’ inner workings are very similar to each other, as neu-

ral networks or ant colonies, produce so many qualitatively different behaviors, giving rise to

roles and specialization? In this work, we bring new perspectives to this question by focusing

on the underlying network that defines how individuals in these systems interact. We applied

a genetic algorithm to optimize rules and connections of cellular automata in order to solve

the density classification task, a classical problem used to study emergent behaviors in

decentralized computational systems. The networks used were all generated by the intro-

duction of shortcuts in an originally regular topology, following the small-world model. Even

though all cells follow the exact same rules, we observed the existence of different classes

of cells’ behaviors in the best cellular automata found—most cells were responsible for

memory and others for integration of information. Through the analysis of structural mea-

sures and patterns of connections (motifs) in successful cellular automata, we observed

that the distribution of shortcuts between distant regions and the speed in which a cell can

gather information from different parts of the system seem to be the main factors for the spe-

cialization we observed, demonstrating how heterogeneity in a network can create hetero-

geneity of behavior.

Introduction

“All animals are equal, but some animals are more equal than others.”

In the book Animal Farm [1], George Orwell tells us a story in which animals in a farm, tired

of being exploited by humans, got rid of the farmer and created an egalitarian society, totally

controlled by animals. Some time after such rebellion, however, a special class appeared—the

pigs –, which did not produce any food and only took care of bureaucratic work. At one point

the pigs acquired so many privileges and got so similar to humans that they replaced all revolu-

tionary principles by just the one that opens this paper.
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Apart from the political allegory expressed in the book, Animal Farm can draw our atten-

tion to a question relevant to many disciplines: how can a system composed of equal (or very

similar) agents display qualitatively different behaviors? This is a particularly relevant question

because, in most cases, instead of being only deleterious, as in Orwell’s book, differences in

individual behavior may have positive effects. Consider, for instance, the human brain: while

there are only a few hundred different types of neurons [2], the number of behavioral patterns

in the brain is countless. Some neurons process auditory information, others are related to

vision and others to empathy [2, 3]. Some people even have neurons that react only to images

of specific celebrities, like Jennifer Aniston or Bill Clinton [4]. Human groups are another

example of systems that can find some benefits in heterogeneity, as there is compelling evi-

dence that diversity can improve a team’s performance in collective problem solving [5].

Indeed, human societies are remarkable for collectively solving complex problems, as the use

of markets to organize labor division and control shared resources, and for learning and diffu-

sion of information through science and culture [6, 7].

Heterogeneity is particularly intriguing in self-organized systems, as, having no central ele-

ment controlling the role to be performed by each agent or how individual results should be

combined, any necessary decision about task allocation or specialization is distributed among

all agents [8].

Surely, in many cases heterogeneity is influenced by diversity in intrinsic features of its

components—e.g.: the different types of neurons or genetic differences between humans in

our two previous examples –, but in many situations these inner characteristics are not suffi-

cient to explain the wide range of behaviors and specialization observed. A neuron is activated

when one sees a picture of a celebrity not because there is a specific type of neuron that is good

at identifying whether a person is famous or not, but as a consequence of its position within

the neural network that connects the eye to the visual cortex to other regions of the brain [2].

Similarly, one would hardly agree, for instance, with the hypothesis of the existence of a

“butcher gene” or a “lawyer gene”, i.e., that our genetic codes are the only factor determining

the professional roles humans take in society. Physical and social environments have a crucial

part in defining how we humans act and differentiate from each other [9, 10], so that the struc-

ture of our social connections has great influence on individuality [11].

Communication between agents is essential in self-organized systems [12] and it can hap-

pen according to a more or less rigid structure: in animal groups there are few restrictions lim-

iting the potential contacts of an individual, so that an ant can interact with any other

nestmate when looking for food sources or for potential new nests [13, 14]. In neural networks,

on the other hand, synaptic connections are well delimited and stable in time [2, 15, 16], so

that neurons can only transmit signals to their peers to which it is connected by an axon termi-

nal. These synapses are persistent but dynamic, as connections can be created, tuned, or

pruned to encode new knowledge or ability learned by the network.

Different patterns of connection can provide different functionalities in systems structured

according to a network [17], like resilience to random failure of nodes (e.g.: neurons, people,

computers) or connections (e.g.: synapses, social contacts, wires), more information storage

capacity, ease of navigation within the network, influence concentration, and/or low average

distance between each pair of nodes [18–21]. Local structures can have large effects on a net-

work’s behavior: motifs (see Fig 1)—small patterns of connection that occur in a network more

commonly than expected in a random network with similar characteristics—are believed to

act as basic functional units in complex systems, having a similar role to that performed by

logic gates in electronic circuits [22, 23].

Therefore, if we want to understand collective computation we must first understand how

connections affect the flow and processing of information in complex systems. In this study,
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we want to shed some light on how network randomness can promote individual behavior het-

erogeneity in a system in which all individuals follow exactly the same rules, studying also how

this randomness affects collective computation in complex systems and can induce specializa-

tion. For this, we combined a simple model of complex system known as elementary cellular
automaton (ECA) with small-world networks—a family of networks capable of displaying

some non-trivial characteristics exhibited by networked systems in the real-world –, using evo-

lutionary computation to explore how individual behaviors and collective performance are

correlated to communication structure, specially to the presence of direct connections between

otherwise distant agents.

As we explain in the next section, most previous works studied computation in complex

systems by analyzing global properties of cellular automata, which were obtained by the evolu-

tion only of rules followed by individuals. We, in turn, choose to evolve both networks and

rules and to focus our analysis on the differences between behaviors of individual cells in a cel-

lular automaton. For this we used information theoretical measures to describe such behaviors,

and investigated how topological characteristics and local patterns of connections between

individuals shape these differences.

Background

As previously stated, we used in this work cellular automaton, a classic agent-based model.

However, instead of following the common regular network, the communication in this study

was structured according to a small-world network. If you are familiar with cellular automata,

complex networks and previous works on the evolution of rules and networks for elementary

cellular automata, you can gladly jump to the next section.

Simple models for distributed systems

In this work, we used computation as an analogy to understand the information processing

happening in self-organized systems. Currently, the most common computer architecture is

the von Neumann architecture, in which one processor (CPU) has access to a memory (RAM)

where program instructions and data are stored. Roughly speaking, the CPU fetches instruc-

tions from the memory and executes them, using this same memory to store all inputs and out-

puts of these computations. Complex and other massively distributed systems, however, are

very different from such usual model of computation: while in a von Neumann architecture

the CPU has access to the whole memory, in a complex system each individual (or processing

unit) has complete access only to its own state (we can refer to this state as the individual mem-

ory) and can gather information solely from those individuals to which it is directly connected

[8]. To exemplify such limitation, we can think about neurons: when deciding whether to fire

Fig 1. Motifs found in the neural network of the worm C. elegans. Motifs names: (A) Feed-forward loop,

(B) Bi-fan and (C) Bi-parallel; motif (D) has no common alias. After Milo et al. [23].

doi:10.1371/journal.pone.0172073.g001
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or not, a neuron does not know the state of the whole brain but only of the neurons to which it

is connected [2].

So, if we hope to study processes happening in complex systems we will need to use a

model other than the von Neumann architecture. One of the simplest yet most powerful mod-

els for this kind of systems is the cellular automaton (known as CA). A CA is composed of a set

of cells, each of which works like this:

• The cell has an internal state, which works as a (very) small memory—the number of possible

states in which a cell may be is finite and fixed;

• In addition to its own state, the cell knows the current state of a given set of other cells,

known as neighbors or contacts;

• At each step, the cell will update its state following a rule table that has as input the current

state of the cell and of its neighbors and yields as output the next state for this cell.

Each cell may have a particular set of possible states or follow a different rule table [24].

However, the most common model, that was also used in this work, is the uniform cellular

automaton, in which all cells are equal to each other. As each piece of this kind of cellular

automaton is too simple, you might wonder about its ability to perform complex computation.

Surprisingly (at least for some people), even for cellular automata in which the cells have only

two possible states, there are combinations of neighborhoods and rule tables that can enable

such CAs to solve each and every problem that can be solved by the most powerful computa-

tional model, the universal Turing machine [8, 25].

The simplest “flavor” of cellular automaton is the elementary cellular automaton [26]. As

shown in Fig 2, an ECA is composed of a fixed number of uniform cells, organized one beside

the other, forming a (one dimensional) ring. Each cell can be in one of two states (0 or 1) and

has direct contact only to their k closest peers, updating their states synchronously. Even

though agents operate asynchronously in nature, this kind of CA has a dynamic rich enough

to model many systems in the real-world. Even when k = 3 (i.e., a cell can only communicate

to itself and its immediate neighbors to the left and to the right) some ECAs are able to per-

form universal computation [27], being some of the simplest machines able to do so. In Fig 3,

you can see an example of the execution of one of such rules and the elaborate patterns it is

able to produce. This combination of simplicity and ability to produce complex behavior,

embedded within an inherently distributed system, is so impressive that some researchers, like

Stephen Wolfram, see ECAs as key to explain how complexity arises from simple rules in

nature [26]. With such model we can simulate idealized versions of complex systems to study

the origins of self-organized processes and emergent behaviors—hard to predict behaviors that

arise from the interaction of many individuals following simple rule –, being able, thus, to ana-

lyze the collective computation we see in systems like human brains and animal societies.

A model problem commonly used to study computation in cellular automata is the density
classification task (also known by its acronym, DCT, or by a different name, majority problem)

[8]: we initialize each cell in a CA with an arbitrary state, 0 or 1, and, after a fixed number of

steps, all the cells must have converged to 1 if more than half of them were initialized with 1

(i.e., the initial density ρ0 was greater than 0.5), or 0 otherwise (ρ0 < 0.5). This sounds as a

pretty simple problem, but it has been proven that no ECA with finite k can solve the DCT per-

fectly [28]. This is an easy task for a machine with access to the whole memory, but not for a

distributed system where each piece knows only local information: you can understand the dif-

ficulty of such problem, for instance, by thinking about the challenge of knowing the average

opinion of a country’s population by talking only to people who live near you.
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Instead of reducing the interest for the DCT, the non-existence of a perfect solution for this

task puts it in a privileged position for the study of complex systems, as it is both a very simple

problem to formulate and a computationally difficult task. Thus, many researchers have

looked for ECAs able to correctly perform density classification for as many initial configura-

tions as possible, the first of which was Norman Packard. Packard analyzed DCT’s rule space

[29] and used evolutionary computation to list some rules able to achieve good performance in

that problem, studying their common characteristics [30].

The use of evolutionary techniques to search for efficient rules for the DCT (and other

problems) was further explored by Melanie Mitchell, Peter Hraber, Rajarshi Das and James

Crutchfield in a series of influential papers [31–33]. Two years after that, David Andre, Forrest

Bennet and John Koza [34], using genetic programming, discovered the first computer-

designed rule able to beat the performance of hand-coded ECAs. Before that, one of the best

results was achieved by the rule GKL [35], which can be summarized as follows: if a cell is in

state 0, then its next state is defined by the majority among itself, its nearest neighbor to the

left and the neighbor three places to the left; if it is in state 1, symmetrically, it follows the

Fig 2. How elementary cellular automata work. Notice that all cells follow the same set of rules. The state

of each cell is black (0) or white (1). The cellular automaton is uniform in the sense that all cells follow the

same rule table to update their states.

doi:10.1371/journal.pone.0172073.g002
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majority among itself, its nearest neighbor to the right and the neighbor three places to the

right.

In 1998, Juille and Pollack [36] obtained a better rule using a coevolutionary approach. Cur-

rently, due to an emergent phenomenon, two rules share the best results in the DCT problem

[37]. While the best solution in grids with an even number of cells is still the JP rule, for odd-

sized CAs the best results are obtained by the WO rule [38], which was found in 2008,

Fig 3. Space-time diagram of an ECA composed of 20 cells, each following the rule 110. See

subsection “Searching good CAs” for an explanation on rule numbering. The initial state is exhibited at the top

row. Cells 1 and 20 are neighbors.

doi:10.1371/journal.pone.0172073.g003
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combining a multi-level selection evolutionary algorithm with a bias favoring the selection of

symmetric rules.

The results achieved by these rules are summarized in Table 1.

Networks in a nutshell

Real-world networks rarely are as organized as the ring topologies used in the studies we have

just presented. The reality is much “messier”! So let us make a brief pause in our discussion

about cellular automata and focus for a moment on networks.

Until few years ago, networks seen in real systems, like neural and social networks, were

considered too complex and, thus, were modeled as if they were completely random [19]. As

we had access to more data, more computing power and better analytical tools, however,

researchers started noticing that many real-world networks share some common properties

that are not expected in purely random or regular networks. An example is the small-world
effect, formally defined by Duncan Watts and Steven Strogatz [39] in a seminal paper pub-

lished in 1998, which is the simultaneous occurrence in a network of a small average distance
between each pair of nodes and a high clustering coefficient (i.e., a high probability that two ver-

tices that are both neighbors to the same third vertex are also directly connected to each

other). Watts and Strogatz showed that, while this effect is present, for instance, in human

social networks, in power grids and in the neural network of the worm Caenorhabditis elegans,
no lattice, ring or completely random graph is able to display both small average distances and

high clustering. To produce more realistic networks they proposed a new model to generate

networks, the small-world model, summarized in two components (see Fig 4):

• Initialization: the network is started as a ring in which each node is connected to its k closest

neighbors;

• Rewiring: every edge in the initial network has a probability p of being rewired, i.e., of being

disconnected from one of its ends and attached to a randomly chosen vertex (avoiding any

self-loop or repeated edges).

By choosing a small value for p (usually less than 0.1), it is possible to preserve the local

structure with high clustering of the initial ring, while the few long-distance shortcuts added

are able to dramatically reduce the average distance between nodes.

The small-world effect is not the only common phenomenon missed by random and regu-

lar networks: the distribution of degrees (i.e., the distribution of the number of edges con-

nected to each node) in many real-world networks deviate significantly from the Poisson or

delta distributions expected for completely random graphs, lattices, rings and small-world net-

works. Instead, their degree distributions follow power laws—in these networks the probability

Table 1. Some of the rules with best performance in the DCT (in a grid with N = 149 and k = 7). Results

are ordered according to the year they were discovered.

Rule Year Performance

GKL [35] 1978 81.6%

Mitchell et al. [31] 1993 76.9%

ABK [34] 1996 82.3%

JP [36] 1998 85.9%

WO [38] 2008 89.0%

doi:10.1371/journal.pone.0172073.t001
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that a random node has exactly k connections is given by p(k)/ k−γ, for a given positive γ.

This result was published in 1999 by Albert-László Barabási and Réka Albert [40], after study-

ing networks as those formed by citations between scientific publications, links between web

pages and electric power grids. Like Watts and Strogatz, they also proposed a new network

model, the scale-free model, which is able to produce networks with degrees following a

power-law. Its basic components are the continuous inclusion of new nodes and edges and

preferential attachment, a mechanism that selects nodes to receive new edges with probability

proportional to the number of connections these nodes already have.

Fig 4. Graphs generated using the small-world model with different rewiring probabilities p. (A) p = 0.00, (B) p = 0.15 and (C)

p = 1.00.

doi:10.1371/journal.pone.0172073.g004
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As we stated before, topologies with different characteristics can provide different function-

alities to a system. For instance, the connectivity of networks with degrees following a power

law has higher resilience against random removal of nodes, when compared to purely random

graphs. However, this connectivity degenerates very quickly when the most connected nodes

are removed, which makes them vulnerable to targeted attacks [19]. Initial studies also suggest

that topologies combining scale-free networks and the small-world effect may be the result of

an optimization process [41, 42], as they provide a good compromise between high connectiv-

ity between nodes and low demand for links. It is reasonable, thus, to suppose that the behav-

ior of a distributed system, as an ECA, may differ a lot when we replace the usual regular

topologies by more realistic networks to define how its units interact.

The impact of topology on computation

Most of the research about collective computation has been centered on understanding the

impact of individual behaviors on the global dynamics. Some works, however, studied the

impact of modifying the topology connecting the individuals. Maybe the earliest work on this

subject was the study of random Boolean networks (RBNs) by Stuart Kauffman [43]. In Kauff-

man’s original model, which was created to model genetic regulatory networks, each individual

has a randomly defined Boolean activation function, being connected to each other according

to a completely random topology. In these networks, we observe cyclic behaviors that may be

classified as robust or chaotic, according to the system’s reaction to perturbations (which, in

turn, is determined by the interplay between topological and behavioral parameters) [44].

More recently, in 1997, Moshe Sipper and Eytan Ruppin [45] studied a class of cellular

automata that, differently from ECAs, allow each cell to evolve a different rule table. After eval-

uating how different topologies affect the ability of CAs to solve the DCT problem, they identi-

fied that a cellular automaton’s performance is strongly dependent on the average distance

between its cells—the smaller the distance, the higher is the fitness. This is not an unexpected

result: going back to our analogy of the DCT problem with opinion averaging, the insertion of

long-range connections is similar to allowing you to talk not only to people in your neighbor-

hood, but also to friends that live in different cities. The more shortcuts one has access to, the

more one has access to diverse, less correlated opinions.

When studying small-world networks and their possible impacts on dynamical systems,

Watts and Strogatz used this class of networks to define the neighborhood in ECAs, while

keeping the individual behaviors fixed [39, 46]. They analyzed the effect of these topologies on

the ability of such systems to solve the density classification task. They found that, for the same

number of cells and average degree, such small-world ECAs were able to outperform even the

best rules at that time which made use of the traditional ring topology.

Digging deeper on the effects of different neighborhood structures on the ability of cellular

automata to solve computational problems, Marco Tomassini, Christian Darabos and Mario

Giacobini [47, 48] used evolutionary computation to look for classes of topologies with which

ECAs were able to achieve good performance in the density classification and synchronization

tasks. As in Watts’ work, they kept fixed the rule used by the cells to update their states. The

authors found that the networks able to produce the best results had some characteristics simi-

lar to small-world networks, both when they started the evolution from lattices or from ran-

dom graphs. In agreement to Watts [46], the authors suggested that it is easier to get good

results evolving networks when compared to evolving rules, as they obtained many ECAs able

to solve more than 80% of the initial configurations, while it is very rare for lattices to achieve

such performance. For instance, Crutchfield et al. [49] evolved high-scoring strategies only in

9 out of 300 runs of the evolutionary algorithm. A second interesting result they observed was

The role of the interaction network in the emergence of diversity of behavior

PLOS ONE | DOI:10.1371/journal.pone.0172073 February 24, 2017 9 / 32



that ECAs using small-world neighborhoods are more robust to random failures in cells (i.e., a

cell updates its state to the incorrect output with probability pfail) than regular lattices. In sub-

sequent works [50–52], they compared the effects of using small-world and scale-free networks

to structure the communication in cellular automata and random Boolean networks, observ-

ing that, when solving the DCT or the synchronization problems, small-world networks

achieve higher performance and are more robust to random failures in cells than Barabási-

Albert networks, though both networks have similar resilience to link removal in networks

with many connections.

More evidence about the impact of topology on a system’s dynamics is given by Macêdo

et al. [53] and Oikonomou and Cluzel [54]. Heverton Macêdo, Gina Oliveira and Carlos

Ribeiro [53] evaluated the effect of adding random shortcuts to a network, going from lattices

to small-world networks, noticing that more shortcuts lead to more rapid deviation between

two cellular automata with similar initial states. Panos Oikonomou and Philippe Cluzel [54]

used Boolean threshold networks—a framework similar to cellular automata, but in which

connections have weights that can be either positive (excitatory) or negative (inhibitory)—to

study how topology may affect the natural evolution of networked systems. Their results indi-

cate that the evolution of systems structured according to scale-free networks is faster and

more continuous than that of random networks, which is characterized by large plateaus with

sparse improvements in evolution.

A broad analysis performed by Carsten Marr and Marc-Thorsten Hütt [55] used different

classes of networks—e.g., rings with different k’s and small-world networks—to study how

topology can change the behavior of a dynamic system. Their results indicate that, simply by

changing the network used to structure interactions between agents, one can make, for

instance, an initially homogeneous system to behave chaotically or a system with complex

dynamics to enter a periodic regime. In their work, the authors also found that the lower the

degree of a node, the more uncertain its behavior—as they have few influences, the aggregated

information of these individuals is subject to larger fluctuations. This heterogeneity of behav-

iors among individuals following the same set of rules is a very interesting finding that we will

further explore in this paper.

Methods

In this work we intended to further investigate how networks defining the interactions in com-

plex systems impact the computation occurring in such systems and their performance when

trying to solve problems. In a previous study [17], we have already showed that networks with

small-world and scale-free characteristics could enhance the ability of multi-agent systems in

collective problem solving. Now we are interested, more precisely, in understanding how

information processing is affected by the presence of shortcuts in small-world networks and

how topology is correlated with individual behaviors and collective performance.

Therefore, we replicated the experiment proposed by Melanie Mitchell and her colleagues

[31], evolving simple CAs to achieve good performance in the density classification task, but

with a small and crucial change relative to most of the previous works in literature: instead of

evolving only rules, we also evolved the networks that define interactions between cells, keep-

ing fixed, however, the number of shortcuts a CA was able to add to its basic ring network.

Evolving rules and network together has a profound impact on the observed results because

there is interaction between topology and rules when defining a group’s global behavior [17]:

while a network may improve the performance of a system using a specific rule, it can worsen

the results achieved by another system in which elements have a slightly different individual

behavior.
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In many other works trying to explain computation in complex systems, researchers were

interested in improving the performance of some CAs and in studying their global properties.

We, on the other hand, wanted mainly to observe which kind of individual behaviors emerge

and the mechanisms by which the evolved systems shape individuals in order to achieve good

collective results. We kept the search procedure as simple as possible, and neither adjusted it

nor repeated the process extensively to find the best possible CAs. Thus, we did not expect to

achieve results similar to those shown in Table 1. Of particular interest to us is whether the

shortcuts affect individual computations, creating asymmetries between cells in cellular

automata.

To complete this research we had to choose the mechanism to be used to search for CAs

with good performance, the encoding used by such mechanism for rules and networks, and

the theoretical framework to understand the evolved behaviors. In the following subsections

we will present all decisions made and techniques used.

Searching good CAs

The space we explored to find cellular automata able to achieve good performance in the den-

sity classification problem is overwhelming—in a CA with 149 cells each with 7 connections

(the configuration used in this work), in which a ratio of only 0.01 of its connections are

rewired, there are about 1.6 � 1070 different combinations of rules and topologies. Evaluating

all possible CA was not an option! Thus, as many other researchers working with cellular

automata, we decided to look for rules with good performance using a genetic algorithm.

Beyond the difficulty of designing rules for cellular automata that perform specific computa-

tions, a good aspect of using automated search procedures in comparison to using predefined

rules is to make us able to find non-intuitive—but suitable—rules about which we would not

think by ourselves, showing us some alternative ways a complex system could explore the

interactions between multiple agents to achieve collective computation.

Genetic algorithms (GA) [56] are optimization methods inspired by biological evolution. A

solution is encoded as a string, known as chromosome, and at each epoch many solutions are

evaluated. Those chromosomes with best fitness are preferentially selected for reproduction,

producing the population for the next epoch. New chromosomes are created by the combina-

tion of genes coming from a pair of parents through crossover and, after that, a small number

of randomly selected genes of these new solutions are mutated, aiming at introducing diversity

in the population. This process is repeated until a termination criterion is reached (e.g., the

maximum number of epochs is reached or the search process stopped finding better solu-

tions). In this process, the better the gene the higher its chance of spreading throughout the

population, so that when the execution is finished the population, which was randomly initial-

ized, usually contains high-quality solutions for the problem being solved. It is worth noting,

however, that being a metaheuristic, no genetic algorithm can guarantee to find the global

optimal solution, whenever a finite amount of computational resources is employed.

In our study, the search process was repeated 11 times, each allowing the CAs to have a dif-

ferent number of rewired edges, starting with networks with 0.0 of rewiring, and increasing by

0.01 this ratio at each search, until the ratio of 0.1 was reached. This decision was taken to

allow the evaluation of the impact of adding different numbers of shortcuts to the interaction

structure of the CA. The maximum value of rewiring ratios was limited to 0.1 because, for a

network similar to those used in this experiment, this is the range in which changes in rewiring

ratio p have the highest impact on topological features, so that small-world characteristics are

more prominent, as one can see in Fig 5.
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The power of genetic algorithms resides in their ability to explore characteristics common

to the structure of many problems, thus we need a proper way to encode solutions into a chro-

mosome for an effective search. Some desirable features of such encoding are: the ability to

represent virtually any possible solution of interest to the problem at hand; solutions generated

through crossover and mutation must satisfy any existing constraint (e.g.: the in-degree of

every cell must be equal to k); and solutions with representations close to each other have simi-

lar fitness (i.e., the fitness function is smooth). As we needed to represent two different aspects

of the cellular automata, we opted for a chromosome composed of two disjoint parts, one rep-

resenting the topology and the other representing the rule table used.

Rule table encoding and rule crossover. In an ECA, each possible set of states a cell and

its neighbors may take can be encoded as arrays of zeros and ones [57]: if k = 3 and a cell is,

currently, in state 0, while its left and right neighbors are, respectively, in states 1 and 0, this

input set can be represented by the array 100, or the number 4 if we read this array as a binary

number. This means we can list every possible input a cell can see and associate with each of

them a unique number. In the case of k = 3 we would have 2k = 8 possible inputs, numbered

Fig 5. Relative average path length and clustering coefficient in networks generated with the small-world model,

according to the rewiring probability p.

doi:10.1371/journal.pone.0172073.g005
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between 0 and 7. An even nicer possibility for ECAs is that if we list all output states of a given

rule table, sorted by the number associated with its input set, we would have again a binary

array and, thus, we could represent each possible rule table a cell can have by a unique number

—a representation widely used in literature regarding elementary cellular automata. For

instance, if we consider white cells as ones and black cells as zeros, the rule set adopted in Fig 2

would be represented by the array 10001111, and its number would be 143, while the number

of the rule in Fig 3 would be 110 (array 01101110).

With the use of irregular networks comes the possibility of cells in a CA having different

number of inputs. It would make necessary a different way to encode a rule table. Some

researchers [46, 51, 58] solved this problem by adopting a simple rule in which a cell goes to

state 1 if a ratio larger than a threshold τ of its neighbors are in state 1 and goes to 0 otherwise.

However, to keep local characteristics of cells—like rules and number of inputs—as similar as

possible, we forced every cell to have exactly k = 7 inputs, implying the existence of 227

� 3.4 �

1038 possible rule tables for CAs like those we explored in this work. This uniformity imposed

that most of the behavioral differences comes from factors external to the cell (externalities)

and also allowed us to borrow the same encoding used for ordinary ECAs, making it possible

for us to explore more rules than a threshold-based rule would allow.

When generating a new individual, for each entry in the rule table we randomly selected

one of the two parents from which we copied the associated output. After that, mutation was

performed by flipping each bit with a small probability π.

Network encoding and topology crossover. As explained, we decided to explore small-

world networks [39], but using rewires selected by an evolutionary method, instead of random

rewires. In each CA we allowed a fixed number of edges to be reconnected, what means that a

CA originally based on a ring network could replace some cells’ original contacts for contacts

located anywhere in the system, creating, thus, some shortcuts. Compared to previous analysis,

which usually evolved only the amount of rewiring in the network—a parameter not evolvable

in our experiments—but not which edge to reconnect, this approach has the advantage of

making possible shortcuts to be more carefully placed in the network as well as the evolution

of motifs and other control structures.

As a cell can be a source of information for a variable number of peers but can read the

state from exactly k = 7 neighbors, all networks studied here were directed and edges could

only be disconnected from their origins, not from their destinations.

In a CA’s chromosome, the network was encoded by representing only its rewirings. For a

given ratio p of rewirings, a network is represented by a list with bp � n � kc triples, one indicat-

ing each reconnected edge. The first position of such triples stores the index i 2 [1, n] of the

destination cell of this edge. The second position contains the index j 2 [−r, −1] [ [1, r] of the

input edge of the destination cell to be rewired. Here the j-th edge is the one that originally

pointed from cell i + j to cell i. Edge j = 0 represents a self-loop and is not allowed to be

rewired, so a cell always considers its own current state when calculating the next state. Finally,

the third position indicates the cell l 2 [1, n] which is the edge’s new origin. It is relevant to

notice that an edge could be rewired back to its previous origin, so that this encoding also

allows the evolution to “cancel” rewirings, if it is found to be beneficial to CAs. We did not

take any special measure to avoid the occurrence of different representations for isomorphic

graphs, considering the computational costs involved in such operation.

Given a pair of parents, a new chromosome was generated by combining the lists of triples

from the parents and selecting bp � n � kc unique elements from it. Rewires that occurred in

both the parents were twice as likely to be selected for the new individual. Mutation was per-

formed by replacing with probability π each triple in the rewire list by a new one randomly

selected among all possible rewires. No edge was allowed to be rewired twice. For a given set of
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parameters p, n and k, these evolutionary operators always generate individuals with the same

number of distinct rewirings, so that all solutions produced by crossover and mutation are

feasible.

Fitness evaluation. Ideally, an individual’s fitness would be given by the proportion of all

possible configurations such cellular automaton is able to correctly solve. This is a value

extremely difficult to calculate, though, considering that the CAs we evolved have around 7.1 �

1044 different possible initial configurations and that, as far as we know, there is no closed

method to perform such calculation directly from a CA’s encoding. To estimate an automaton

fitness, following Lizier et al. [59] we tested it over c = 4480 randomly sampled initial configu-

rations. Only tests in which all cells converged to the correct state were considered successful

—i.e., a configuration in which more than 0.5 of the cells were initially in state 1 was consid-

ered as a failure even if only one cell was in state 0 at the end of the execution. Also following

the common practice in literature [31, 34, 37], each CA was executed for m = 2 � n + 1 = 299

iterations and an execution was considered to converge only if all cells are in the same state

during the last and the second-to-last iterations.

The most straightforward way to sample the initial configurations is by defining indepen-

dently the state of each cell with uniform probability, which yields each possible initial configu-

ration with the same probability. However, as this process gives rise to a binomial distribution

of densities with probability p = 0.5 of cell being in state 1, most of the configurations gener-

ated using this model have densities near ρ0 = 0.5, the hardest region for the DCT, as changes

in initial states of few cells can invert the desired output. To provide an easier landscape to

optimize, we used a different sampling mechanism to calculate a CA’s fitness for the evolution-

ary algorithm: we used a different probability, for each repetition, of initializing a cell with

state 1. These probabilities were uniformly spaced in the range (0, 1), as suggested by Melanie

Mitchell et al. [31].

Selection. At each epoch a complete new population was produced. For each of such new

chromosomes, its parents were selected based on two different tournaments between 5 ran-

dom individuals from the previous epoch. The candidate with highest fitness was considered

the tournament’s winner and, thus, selected for reproduction.

Table 2 summarizes all configurations used in the experiment.

Table 2. Parameters and configurations used in the experiment.

Genetic algorithm

Population 100

Number of epochs 50

Selection method Tournament

Tournament size 5

Crossover type Uniform

Mutation rate (π) 2%

Rewiring ratios {0.0, 0.01, . . ., 0.09, 0.1}

Cellular automata

Size (n) 149

Radius (r) 3 (k = 2 � r + 1 = 7 neighbors)

Boundary Periodic (ring)

Update Synchronous

Iterations 2 � n + 1 = 299

# of repetitions 4480

doi:10.1371/journal.pone.0172073.t002

The role of the interaction network in the emergence of diversity of behavior

PLOS ONE | DOI:10.1371/journal.pone.0172073 February 24, 2017 14 / 32



All simulations were performed using Python 2.7 with NumPy 1.8.2, SciPy 0.13.3 (for statis-

tical calculations) and CUDA 6.5 (for GPU parallel computing) in Ubuntu Linux 14.04 run-

ning in an Intel Core i7 CPU (3.50GHz) and a GPU NVIDIA GeForce GTX 660 Ti. The source

code for this experiments is available at https://github.com/unicamp-lbic/small_world_ca.

Understanding collective computation

After the examination of space-time diagrams depicting the execution of cellular automata

evolved in an initial, exploratory step, we noticed that, unlike reported in works using fixed

networks, computation in the evolved CAs was characterized by the occurrence of directed

flows and limits—information flows almost freely in a specific direction until it encounters a

limit, a cell that “decides” whether the flow will continue or will be interrupted. In the evolved

CAs, the cells which act as limits are very stable over many different initial configurations (see

Fig 6).

To understand such different behaviors, in the second phase of our work we evolved new

CAs following the same setup used before, but evaluating topological conditions—as the

occurrence of rewiring, degrees, clustering coefficient, distances and centrality measures—for

the emergence of such limits and whether they were related to higher performance. To deter-

mine whether a cell acted as a limit in a CA, we estimated the direction and velocity that better

approximate the flow of information in the CA and, then, counted in all repetitions how fre-

quently a cell interrupted the flow of information, acting as a limit. For each CA, the estimated

flow was given by the integer f that minimized the difference between the automaton states in

iteration t rotated by f 2 [−r, r] positions and the automaton states in iteration t + 1. Given f, a

cell i is considered to interrupt the flow of information in a given iteration if its state differs

from the state of cell i − f in the previous iteration. Fig 6 shows the limit measure calculated for

a CA with ratio 0.01 of rewiring.

Fig 6. Space-time diagram of executions of the best cellular automaton found with p = 0.01 rewired connections, for three different initial

configurations. In (A), (B) and (C), limits and flow directions are indicated, respectively, by the vertical lines and diagonal arrows. In (D), darker

colors indicate that a cell acted more frequently as a limit.

doi:10.1371/journal.pone.0172073.g006
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Previous works with uniform and regular ECAs have established different analytic frame-

works to explain how computation happens in cellular automata. Computational mechanics
[33, 49, 60] is an analogy with particle physics which explains computation in CAs by using

particles as information carriers and collisions between particles as computational events. As

the reader can see in Fig 7, particles are defined by boundaries between two different kinds of

domains and they travel through the CA transporting information about local densities and

sizes of high- and low-density regions. When particles collide, they can both annihilate each

other or emit new particles, depending on the types of the colliding particles. However, despite

being helpful to predict the behavior of a CA from its rule table and understand its errors [61],

this approach is not suited to explain the behavior of irregular networks as the notion of space,

central to computation mechanics, is destroyed in small-world networks with the addition of

connections between cells not adjacent in the original ring.

Fig 7. Space-time diagram for an execution of the GKL rule [35] (with regular ring topology) and particles observed during such

execution.

doi:10.1371/journal.pone.0172073.g007
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Manuel Marques-Pita and Luis Rocha [62] proposed a second way to analyze cellular

automata, known as schema redescription. The main idea is to eliminate redundancy in rule

tables for cellular automata, leaving only input states that are relevant to define a cell’s next

state and grouping states in which the exact position of an input is irrelevant (the only infor-

mation that matters in this group is the number of cells in state 0 or in state 1). After this rede-

scription, the rule table keeps only the input states that effectively determine the automaton’s

transitions, which reduces the number of rules to analyze, making it easier to detect symme-

tries in a CA’s behavior. Using this technique, Marques-Pita and Rocha were able to show that,

despite showing different global behaviors, the hand-designed rule GKL [35] is extremely simi-

lar at local level to the rule GP, found by Andre, Bennet and Koza [34] using genetic

programming.

Considering its ability to evaluate cells based on their observed behaviors and not only on

their rule tables, our framework of choice is a set of information theoretic measures proposed

by Joseph Lizier, Mikhail Prokopenko and Albert Zomaya [63, 64] to analyze local dynamics

of information in distributed systems like cellular automata and random Boolean networks.

They presented a set of measures intended to indicate how information is stored, transferred

and modified in the system—operations required for universal computation.

The stored information that is currently used by a cell to calculate its next state is given by

its active information storage. It is defined as the average mutual information between the

semi-infinite past of cell i and its next state at time step t + 1:

Ai ¼ lim
j!1

log 2

pðxðjÞi;t ; xi;tþ1Þ

pðxðjÞi;t Þpðxi;tþ1Þ

* +

; ð1Þ

in which xi,t is the state of the cell i at time t and xðjÞi;t is the j past states of cell i, from time t − j
+ 1 to time t. Considering that it is not feasible to compute Ai in the limit j!1, the approxi-

mation Ai(j) with finite history length j is used. Ai can be either positive or negative indicating,

respectively, if the cell’s current state is relatively likely or unlikely, considering its past. The

reader can also notice that Ai can assume high values even if the cell i does not have a connec-

tion to itself through a self-loop, as it can store information in a distributed manner, using its

neighbors.

Different measures have been proposed to evaluate different aspects of the information
transfer to a cell from its neighbors. We decide to use the local collective transfer entropy, which

captures the amount of information transferred from all causal sources that were not already

contained in the cell’s past. In deterministic systems, like CAs, its value is equal to the local
entropy rate [64], which can be calculated as:

Hmi ¼ lim
j!1

Hxi;tþ1 jx
ðjÞ
i;t
; ð2Þ

in which Hxi;tþ1 jx
ðjÞ
i;t

is cell i’s conditional entropy, the uncertainty about the cell next state when

its j previous states are known:

Hxi;tþ1 jx
ðjÞ
i;t
¼ �

X

xi;tþ1 ;x
ðjÞ
i;t

pðxi;tþ1; x
ðjÞ
i;t Þlog2

pðxi;tþ1jx
ðjÞ
i;t Þ:

ð3Þ

Again, as the computation of the limit for j!1 is not feasible, a finite j is used to calculate

the local collective transfer entropy.
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The local entropy for a cell is the sum of the local active information and the local entropy

rate:

Hi ¼ Ai þHmi; ð4Þ

a relation preserved even for approximations with finite j.
To measure information modification, the framework proposes a metric named local separa-

ble information which, however, can be considered more a heuristic, as it double-counts parts

of the information in the next state of the destination. A proper metric is still under develop-

ment [65] and, therefore, local separable information is not used in our work.

Lizier and colleagues applied their framework to study information flow in cellular autom-

ata and random Boolean networks [63, 65], quantitatively verifying, for instance, the conjec-

tures about roles of particles and collisions in the computational mechanics framework [63].

They also evaluated information dynamics in random Boolean networks [59], discovering

that, while regular and random topologies are usually dominated, respectively, by information

storage and information transfer, RBNs based on small-world networks balance both storage

and transfer capacity.

Results

In Fig 8 we show, for each different rewiring probability p, the evolution of the distribution of

fitness in the population during the search. The first thing the reader can notice is that, simi-

larly to results seen in the literature [47], the evolution was faster in finding multiple good

solutions when we allowed the topology to be rewired: in searches with p> 0 we observed a

general improvement of fitness around the 4th epoch, while for fixed topologies such improve-

ment was seen only after 8 epochs. It is worth noticing that all searches were successful in find-

ing rules able to solve more than 90% of the initial configurations, which were sampled with

densities evenly distributed in the range ρ0 2 (0, 1). We also show in Fig 8 the performance of

the best individual at each epoch, testing them in initial configurations sampled with density

ρ0� 0.5, the most common and, also, most difficult situation in the DCT. Again, all the best

results achieved when allowing rewiring—respectively, 72%, 71%, 71%, 69%, 71%, 67%, 74%,

72%, 71% and 73%—were better than the obtained with fixed topology—when 66% of all ini-

tializations were correctly solved.

We exhibit in Fig 9 space-time diagrams with examples of executions of the best individuals

found for each different p. When p = 0 the observed behavior is very similar to that of particles

from computational mechanics, though we did not achieve rules so refined as those obtained

by Melanie Mitchell and colleagues [31], with many different domains and particles. We

remember, however, that in their work, from hundreds of executions, only few searches were

able to find such rules with high performance. As more edges are allowed to be rewired, we

can observe the loss of spatial coherence.

At the top of each space-time diagram, we also plotted a bar graph indicating how often a

cell acted as a limit. Even though such measure is only a heuristic, in these graphs it is possible

to see that, in each CA, there are groups with few cells that act as limit at least twice as often

than the others, a fact even more prominent for smaller p. This is evidenced in Fig 10, which

displays the evolution of inequality in the role performed by the cells during evolution, mea-

sured with the Gini coefficient [66]. Gini coefficient is a summary statistic that measure the

inequality in a population of non-negative reals, assuming values between zero (when all indi-

viduals are equal) and one (when only one individual has value different from 0). We can

notice that, consistently across all executions with p> 0, as the population’s fitness increases

fewer cells will act as limits (apparently) “deciding” the fate of information flows. At the final

The role of the interaction network in the emergence of diversity of behavior

PLOS ONE | DOI:10.1371/journal.pone.0172073 February 24, 2017 18 / 32



epochs of the evolutionary search, such most decisive cells act, usually, 4 to 10 times more

often as limits than the least decisive ones (see Fig 11).

Inequality, topology and fitness in cellular automata

In Table 3, we can see how some general metrics regarding the cellular automata’s efficacy and

structure correlate with the inequality in behavior among cells. In addition to clustering coeffi-

cient and average path length, we also indicate inequality in out-degrees (the number of edges

originated in each node) and in closeness centrality (a measure that indicates how close a

given node is to all other nodes in the network). The first point to notice is the high correlation

Fig 8. Evolution of fitness during the searches with different rewiring probabilities p. The plots indicate, for each epoch, the best and the

median fitness of the population, calculated with initial configurations with densities evenly distributed in the range ρ0 2 (0, 1). We also show the results

achieved by the best individuals in each epoch when initial configurations are sampled with density ρ0� 0.5.

doi:10.1371/journal.pone.0172073.g008
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Fig 9. Space-time diagram of executions of the best cellular automaton found at each execution. Above each space-time

diagram is depicted a bar graph indicating how often each cell acted as a limit. To improve visualization the bar graphs were scaled so

the maximum height is equal across all CAs, so that bar heights should be compared solely within each graph. (A) p = 0.00, (B)

p = 0.01, (C) p = 0.02, (D) p = 0.03, (E) p = 0.04, (F) p = 0.05, (G) p = 0.06, (H) p = 0.07, (I) p = 0.08, (J) p = 0.09 and (K) p = 0.10.

doi:10.1371/journal.pone.0172073.g009
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between inequality and a CA’s fitness, agreeing with what was seen in Figs 8 and 10. For every

search, such correlation was stronger than that between fitness and average path length

(max|ρ| = 0.302), which may indicate that, in the evolved CAs, the presence of limits was more

relevant for a successful automaton than a small average distance between cells. Also, in almost

every execution, there was statistically significant indication of a weak negative correlation

between inequality in the behavior of the cells and both average clustering coefficient and aver-

age path length. Such results indicate that CAs where the occurrence of limits was concen-

trated in fewer cells also favored rewires in which the new source of information was not in the

neighborhood of any other source of the destination cell (i.e., the rewired connection brings

new information to such cell). Regarding inequality in out-degrees, also measured using the

Gini coefficient, in 7 of 10 executions we can see a weak negative correlation with concentra-

tion of limits in fewer cells. This may indicate that inequality in the behavior of the cells is asso-

ciated with a lower presence of hubs that broadcast information to many cells; however, more

research is needed to confirm such hypothesis. We highlight that most of the correlations

Fig 10. Evolution of the Gini coefficient. Evolution of median inequality of frequencies that cells in each CA acted as limits during the

search with different rewiring probabilities p.

doi:10.1371/journal.pone.0172073.g010
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Fig 11. Evolution of the ratio between the maximum and minimum frequencies a cell acted as a limit. Evolution of median ratio

between the maximum and minimum frequencies that cells in each CA acted as limits during the search with different rewiring

probabilities p.

doi:10.1371/journal.pone.0172073.g011

Table 3. Spearman’s rank correlation between the inequality of limits distribution and CA’s metrics. Statistically significant correlations (pvalue < 10−5)

are marked with ‘*’.

Rewire (p) Fitness Clustering Avg. Path Length Out-degree (Gini) Closeness (Gini)

0.00 0.609* – – – –

0.01 0.512* 0.157* 0.064* 0.015 0.130*

0.02 0.555* −0.073* −0.143* 0.058 −0.034

0.03 0.537* −0.079* −0.066* −0.144* −0.042

0.04 0.531* −0.106* −0.072* 0.071* −0.075*

0.05 0.549* −0.134* −0.173* −0.162* −0.049

0.06 0.414* −0.035 0.006 −0.007 0.026

0.07 0.539* −0.172* −0.155* −0.083* −0.014

0.08 0.569* −0.158* −0.110* −0.217* 0.027

0.09 0.554* −0.060 −0.047 −0.118* 0.064*

0.10 0.419* −0.017 −0.008 −0.008 0.014

doi:10.1371/journal.pone.0172073.t003
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discussed before were not seen in the execution for p = 0.01. We conjecture that the evolution-

ary process took a different and (apparently) less likely path during this search. It is important

to have in mind that most of the observed correlations are weak and that the experimental

design does not allow us to look for causal relations between the metrics, so that we cannot

confirm or rule out whether these associations are mediated only by the correlation to a third

variable (fitness, for instance).

The results for p = 0 need a more careful explanation: in such situation, despite all cells having

the same pattern of connections and following the same rule table—which makes inequality in

behavior virtually impossible—we see a strong correlation between behavior inequality in a CA

and its fitness. This is an artifact of the heuristic used to detect limits in the space-time diagram,

as it also identifies as limits many domain boundaries in the computational mechanics para-

digm. However, as the reader can see in Fig 10, the Gini coefficient when p = 0 is much smaller

than the values observed when p> 0. Indeed, this correlation is a spurious result from the finite

number c of repetitions used to estimate fitness and behaviors and it fades away as c!1.

Cells’ roles and their position within the network

Now, it is important to understand whether such limits, in fact, play a relevant computational

role in the evolved cellular automata. For this, we used the information theoretical metrics pre-

sented in the previous section and evaluated their Spearman’s rank correlation with the value

indicated by the limit heuristic. For each different CA, the information theoretical metrics

were calculated for each cell based on their behaviors in all of the 4480 different initial configu-

rations tested. We observed a strong correlation between the frequency a cell acts as a limit

and its local entropy rate (ρ = 0.691, pvalue� 10−10), while the limit frequency is negatively cor-

related with the active information storage (ρ = −0.473, p� 10−10). Such results agree with our

initial hypothesis that cells that work more as limits have a different role when compared to

the other cells. The high correlation with local entropy indicates that the limits are important

for the integration of information from different places, while the other cells function more as

the cellular automaton’s memory.

Let us then investigate possible reasons for this difference in behavior between cells. The

first thing we will do is to evaluate the Spearman’s rank correlation between the value indicated

by our limit heuristic and structural metrics about the underlying topology of the CA (for

p> 0). For this, we used basic local metrics—a cell’s in- and out-degrees, its local clustering

coefficient, the average out-degree of its neighbors and the number of rewired input edges—

and also classical centrality measures [67, 68], that are affected by a cell’s position in relation to

the whole network. The centrality measures used are:

• PageRank, HITS and eigenvalue centrality, which, in our design, measure how much infor-

mation can flow to each node. PageRank and eigenvalue centrality are computed using the

recursive assumption that the information a node can gather is proportional to the informa-

tion gathered by this node’s neighbors. HITS (Hypertext Induced Topic Search), in turn,

provides two different values for each node (“authority” and “hub” scores) indicating respec-

tively how influenced and how influential is a node. The basic (recursive) idea in HITS is

that nodes with more “authority” are pointed by good “hubs” and that good “hubs” point to

nodes with more “authority”.

• Closeness centrality considering both the original and the reversed network, to evaluate

respectively how fast information flows from and to the node.
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• Load and betweenness, that indicate the fraction of shortest paths in the network that pass

through each node, measuring how central a node is for efficient connections in the

network.

• Eccentricity, i.e., the node’s maximum distance to all other nodes.

Despite all correlations achieving statistical significance (pvalue� 10−10), we did not observe

any strong correlation between the measures and the frequency a cell acts as a limit. However,

we saw a weak correlation (|ρ|� 0.1) of limits with the number of rewired inputs (ρ = 0.141)

and with a node’s closeness centrality in the reversed network (ρ = 0.130). We also observed a

negative correlation with clustering coefficient (ρ = −0.113), which is expected as the rewiring

process tends to reduce local clustering coefficient.

We also looked at this relationship between a cell’s behavior and its position within the

CA’s topology from a different perspective: instead of considering all cells in all CAs to calcu-

late the correlations between the frequency a cell is a limit and its structural metrics, we com-

puted such correlations for each CA separately (for p> 0). Our goal is to better understand the

factors that explain why, in each specific CA, some cells act regularly as limits and others do

not. Fig 12 shows histograms depicting the distribution of correlations we observed. As we can

see, the number of rewired inputs and the closeness centrality in the reverse graph have a mod-

erate median correlation with limits (~r ¼ 0:327 and ~r ¼ 0:326, respectively), agreeing with

our previous observations. As closeness in the reverse graph and number of rewires are

strongly correlated (~r ¼ 0:530), we evaluated Spearman’s partial rank correlation between fre-

quency as limit and closeness in the reverse graph, controlling for rewired inputs, obtaining a

relevant residual effect (~r ¼ 0:187). Weaker correlations are also observed with betweenness

(~r ¼ 0:197) and load (~r ¼ 0:196) centralities. Such results suggests that cells that act more

frequently as limits are usually those able to gather information from different regions of the

automaton more quickly, being relevant not only the number of rewired inputs a cell has, but

also the regions accessed by the cell through such links. As a side effect of the rewiring process,

negative correlations are observed for clustering coefficient (~r ¼ � 0:216) and average neigh-

bors out-degree (~r ¼ � 0:186).

How edges are reconnected

After looking at the cellular automata from macroscopic (focusing CAs’ general metrics) and

microscopic perspectives (analyzing cells’ characteristics), we will assume an intermediary

point of view, analyzing local patterns of connections between cells (motifs) associated with

CAs with high fitness. Using the ESU algorithm [69], which enumerates all subgraphs with

size k, we counted how many times each pattern of connections with k = 3 and k = 4 cells

occurred in the best CA found in each execution with p> 0. Subgraphs in the same isomor-

phism classes were grouped. We used only one graph per search to avoid counts to be artifi-

cially inflated by the dependency between solutions in an execution of an evolutionary search,

as these methods work by replicating blocks found in the previous epoch, usually (but not

exclusively) associated with good fitness. Therefore, even a harmful motif, found in the initial

population or generated by mutation, could be present in many CAs of a progeny (and, thus,

identified as a motif) before the evolutionary pressure eliminated it.

For each selected graph, we generated an exact copy, but with random rewires, which we

used as a baseline to check whether a subgraph is a motif or an anti-motif (i.e., it appears signif-

icantly less than the expected). Such evaluation was made using a paired t-test for each sub-

graph, comparing the number of occurrences in the original graph and in the baseline. In Fig

13 we exhibit all the subgraphs of size 3 or 4 whose number of occurrences in the high fitness
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Fig 12. Distribution of spearman’s rank correlation, calculated for each CA, between the frequency a cell acts

as a limit and the cell’s structural metrics. The black vertical line indicates median value and the red vertical lines

indicate, respectively, the 10th and the 90th percentiles (N = 51000).

doi:10.1371/journal.pone.0172073.g012
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graphs was significantly different from the occurrences in the randomized graphs

(pvalue< 10−2). We call attention to the fact that we lowered the bar for statistical significance

in this analysis considering the low number of graphs analyzed (only 10 for each motif). Even

though we raised the significance threshold, we point that the probability of false positives pro-

ducing results similar to those reported in this work, with at least 3 false positives in 13 com-

parisons (for motifs of size 3) and 11 false positives in 199 comparisons (for motifs of size 4)

with pvalue� 10−2, is of only 2.653 � 10−4 and 6.563 � 10−6, respectively (assuming independent

comparisons).

From the motifs depicted in Fig 13, we can infer the occurrence of four different general

patterns of reconnections in cellular automata with high fitness:

• Long range rewires: motifs A, C, D, E, F and H indicate that rewires creating edges between

nodes that were not previously in the same neighborhood are more likely in cellular autom-

ata with higher fitness.

• Multiple rewires per cell: motif B can be created either by the addition of edges from the cen-

tral node or the removal of edges directed to it. Considering the absence of any motif of size

4 corroborating to the additive hypothesis and also motifs I and M, the most likely process is

the rewiring of at least two of the central node edges originally coming from nodes that had

no direct connection between each other.

• Centralization of rewires in a neighborhood: the observed anti-motifs J, L and N share one

feature—all of them are likely to be generated by at least two different nodes that were

directly connected in the original topology rewiring some of their input edges. Such situation

may be the result of benefits obtained by a CA when it centralizes in only one node per

neighborhood the task of integrating information arriving from different places of the CA.

• There and back again: motif K is likely to be created by the addition of a size 2 path by which

the information coming from a neighborhood flows to a distant node, where it is integrated

with information from other parts of the CA, and then it flows back to its original

neighborhood.

We highlight that all the patterns observed in this motif analysis are in line with the correla-

tions pointed in the previous subsections, as both analyses point to the importance of rewires

to bring information from other regions of the CA and to the concentration of multiple

rewires towards few cells, which integrate information from different places.

Discussion

We observed in the experiments performed during this study that, unlike previous works that

used traditional elementary cellular automata with ring topology, when making the topology

more flexible different classes of cells emerge with qualitatively different computational behav-

iors. In traditional ECAs that solve the density classification task, the movement of informa-

tion structures—particles and domains—and their collisions are the main mechanisms for

information transmission and modification, so that any type of computational process can

happen anywhere in the CA. On the other hand, in cellular automata that allow edges to be

rewired we saw that, usually, information flows in specific directions, and decisions about

interrupting or allowing the propagation of such flows are made by specific cells, which we

named limits. It is remarkable that even systems with individuals as simple as the cells in ECAs

can achieve labor division—and obtain the benefits that come with it—only by creating and

removing few connections between cells.
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Fig 13. Motifs identified in the best topologies found in each search. Nreal is the average count of the

respective subgraph in each network. Nrandom is the average number of occurrences of such subgraph in

similar networks, but with random rewires.

doi:10.1371/journal.pone.0172073.g013
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Differently from most works in emergent computation [62], we focused not on general

characteristics of the systems under analysis, but on understanding how local interactions can

introduce specialization and, thus, produce the desired collective computation. After analyzing

the behavior of limits according to information theoretical measures, we saw that they have

the role of integrating information from multiple regions of the cellular automaton while other

cells are, mainly, devoted to store information. This is a very interesting result from the point

of view of network science, considering that all cells follow the exact same rules and have the

exact same number of inputs, so any difference in behavior that is persistent over multiple ini-

tializations of a CA can only be attributed to differences among the positions these cells occupy

in the CA’s underlying structure. The observed specialization is also curious, as the evolution-

ary algorithm found, with no guidance, a method to overcome the lack of separation between

memory and processing units of cellular automata, partially mimicking the separation between

storage and data processing seen in systems as von Neumann computers.

Our analyses were not conclusive about which network characteristics contribute for the

emergence of specialization in a cellular automaton. We were able, however, to gather coher-

ent evidence pointing to some patterns and properties that are likely to have an important role

in defining whether a CA will show limits and, also, which cells will act as limits. Considering

the negative correlation of inequality with average distance between cells and clustering coeffi-

cient and, also, the patterns of connections in motifs found in CAs with high fitness, the pres-

ence of long-distance rewires seems to be a relevant factor for the occurrence of stronger

limits. Limits are usually cells that have the ability to quickly gather signals coming from differ-

ent regions—what is reflected in a positive correlation of limits with closeness centrality in the

reverse graph—and, thus, tend to have many of their input edges rewired to distant cells and

to centralize all rewires in their neighborhoods.

These results are in tune with those reported by Lizier and colleagues [59] about computa-

tional capabilities of Boolean networks based on small-world, regular and random topologies.

They observed a strong correlation between networks with high clustering coefficient and

information storage and a negative correlation between information transfer and average dis-

tances in a network, which points to the importance of long links for information transfer in a

decentralized system. Small-world networks, according to their analysis, display a balance

between information storage and transfer, which may render them suitable for complex compu-

tation. Our results indicate that these computational capabilities are not uniformly distributed

across the network, but rely on network-induced specialization. Combining this capacity of

interaction networks to affect global computation and individual behaviors with other results

from network science [39, 48, 70, 71], we can wonder whether networks structuring many com-

plex systems have some similar properties not only due to coincidence or to physical restric-

tions, but that they were positively selected by evolution or learning to do (at least) part of the

computation performed collectively. There is already evidence of this evolutionary design of

social networks in humans, for instance, as researchers have observed direct influence of some

genes on the propensity of two individuals developing a long-term relationship [72].

While in neuroscience the idea of heterogeneity emerging from differences in connections

is not new, they bring a new perspective when applied to other complex systems, particularly

to social networks (both involving humans or other animals). Considering the variety and

intricacy of individual behaviors, when analyzing social systems scientists usually think that

complexity can prescind network structure or regard it to a secondary role in relation to indi-

viduals. However, as the difference of position in a network can partially explain the existence

of individual diversity even in systems as simple as cellular automata, a proper understanding

of collective behaviors may require consideration of the structure of interactions between

agents, even when evidence indicates that individual behaviors are the sole responsible for a
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computation. This focus on social relations echoes many ideas from distributed cognition [9,

73], which argues that mental processes are not restricted to single human brains but extend

also to interactions with other people and the environment.

Finally, as the correlations we observed between behavior and network properties are either

weak or moderate, a deeper study is necessary in the future in order to investigate other requi-

sites for the emergence of inequality and specialization in elementary cellular automata with

non-uniform topology. Despite not being able to generate limits when there is no heterogene-

ity in topology, a CA’s rule table is also crucial for the existence of different classes of cells—as

a trivial example, a rule in which a cell only repeats its previous state would never allow the

emergence of limits, no matter the underlying network used. So, in future works it is relevant

to better explore whether different types of specialization may emerge when different rules are

applied and how sensitive are cells’ computational behaviors to changes in the rules they fol-

low. In order to advance the study reported here towards more complex systems, particularly

social networks, it is also important to investigate how collective computation and the emer-

gence of diverse behaviors is impacted by richer underlying networks—e.g.: networks that

include more than one type of interaction, allow the exchange of complex signals, and support

relations with different intensities.
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42. Ferrer i, Cancho R, Solé RV. Optimization in complex networks. In: Pastor-Satorras R, Rubi M, Diaz-

Guilera A, editors. Statistical Mechanics of Complex Networks. vol. 625 of Lecture Notes in Physics.

Springer Berlin Heidelberg; 2003. p. 114–126. Available from: http://dx.doi.org/10.1007/978-3-540-

44943-0_7.

43. Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature. 1969; 224

(5215):177–178. doi: 10.1038/224177a0 PMID: 5343519

44. Aldana M, Cluzel P. A natural class of robust networks. Proceedings of the National Academy of Sci-

ences. 2003; 100(15):8710–8714. doi: 10.1073/pnas.1536783100

45. Sipper M, Ruppin E. Co-evolving architectures for cellular machines. Physica D: Nonlinear Phenomena.

1997; 99(4):428–441. doi: 10.1016/S0167-2789(96)00172-8

46. Watts DJ. Small worlds: The dynamics of networks between order and randomness. Princeton Univer-

sity Press; 2003.

47. Tomassini M, Giacobini M, Darabos C. Evolution of small-world networks of automata for computation.

In: Yao X, Burke EK, Lozano JA, Smith J, Merelo-Guervós JJ, Bullinaria JA, et al., editors. Parallel Prob-

lem Solving from Nature—PPSN VIII. vol. 3242 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg; 2004. p. 672–681. Available from: http://dx.doi.org/10.1007/978-3-540-30217-9_68.

48. Tomassini M, Giacobini M, Darabos C. Evolution and dynamics of small-world cellular automata. Com-

plex Systems. 2005; 15(4):261–284.

49. Crutchfield JP, Mitchell M, Das R. Evolutionary design of collective computation in cellular automata. In:

Crutchfield JP, Schuster P, editors. Evolutionary Dynamics: Exploring the Interplay of Selection, Acci-

dent, Neutrality, and Function. Santa Fe Institute Studies in the Sciences of Complexity. Oxford Univer-

sity Press; 2003. p. 361–411.

50. Darabos C, Giacobini M, Tomassini M. Scale-free automata networks are not robust in a collective

computational task. In: El Yacoubi S, Chopard B, Bandini S, editors. Cellular Automata. vol. 4173 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 512–521. Available from:

http://dx.doi.org/10.1007/11861201_59.

51. Darabos C, Giacobini M, Tomassini M. Performance and robustness of cellular automata computation

on irregular networks. Advances in Complex Systems. 2007; 10(supp01):85–110. doi: 10.1142/

S0219525907001124

The role of the interaction network in the emergence of diversity of behavior

PLOS ONE | DOI:10.1371/journal.pone.0172073 February 24, 2017 31 / 32

http://dx.doi.org/10.1016/0167-2789(94)90293-3
http://dx.doi.org/10.1016/0167-2789(94)90293-3
http://dx.doi.org/10.1007/3-540-58484-6_278
http://dl.acm.org/citation.cfm?id=1595536.1595538
http://www.cs.brandeis.edu/~hugues/papers/GP_98.ps.gz
http://dx.doi.org/10.1016/j.entcs.2009.09.018
http://dx.doi.org/10.1016/j.entcs.2009.09.018
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1103/PhysRevE.63.021117
http://dx.doi.org/10.1103/PhysRevE.63.021117
http://dx.doi.org/10.1007/978-3-540-44943-0_7
http://dx.doi.org/10.1007/978-3-540-44943-0_7
http://dx.doi.org/10.1038/224177a0
http://www.ncbi.nlm.nih.gov/pubmed/5343519
http://dx.doi.org/10.1073/pnas.1536783100
http://dx.doi.org/10.1016/S0167-2789(96)00172-8
http://dx.doi.org/10.1007/978-3-540-30217-9_68
http://dx.doi.org/10.1007/11861201_59
http://dx.doi.org/10.1142/S0219525907001124
http://dx.doi.org/10.1142/S0219525907001124


52. Darabos C, Tomassini M, Di Cunto F, Provero P, Moore JH, Giacobini M. Toward robust network based

complex systems: From evolutionary cellular automata to biological models. Intelligenza Artificiale.

2011; 5(1):37–47.

53. Macêdo HB, Oliveira GMB, Ribeiro CHC. Dynamic behaviour of chaotic cellular automata—A compara-

tive entropy analysis of regular lattices and small-world structures. In: 2013 IEEE International Confer-

ence on Systems, Man, and Cybernetics (SMC); 2013. p. 1566–1571. Available from: http://dx.doi.org/

10.1109/SMC.2013.270.

54. Oikonomou P, Cluzel P. Effects of topology on network evolution. Nat Phys. 2006; 2:532–536. doi: 10.

1038/nphys359
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