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Abstract: Weak fault signals, high coupling data, and unknown faults commonly exist in fault
diagnosis systems, causing low detection and identification performance of fault diagnosis methods
based on T2 statistics or cross entropy. This paper proposes a new fault diagnosis method based on
optimal bandwidth kernel density estimation (KDE) and Jensen–Shannon (JS) divergence distribution
for improved fault detection performance. KDE addresses weak signal and coupling fault detection,
and JS divergence addresses unknown fault detection. Firstly, the formula and algorithm of the
optimal bandwidth of multidimensional KDE are presented, and the convergence of the algorithm is
proved. Secondly, the difference in JS divergence between the data is obtained based on the optimal
KDE and used for fault detection. Finally, the fault diagnosis experiment based on the bearing data
from Case Western Reserve University Bearing Data Center is conducted. The results show that for
known faults, the proposed method has 10% and 2% higher detection rate than T2 statistics and
the cross entropy method, respectively. For unknown faults, T2statistics cannot effectively detect
faults, and the proposed method has approximately 15% higher detection rate than the cross entropy
method. Thus, the proposed method can effectively improve the fault detection rate.

Keywords: fault detection; optimal bandwidth; kernel density estimation; JS divergence; bearing

1. Introduction

The development of industrial informatization has given rise to a large amount of
data in various fields. This has led to data processing becoming a difficult problem in
the industry, especially for fault diagnosis. The explosive growth of data provides more
information, and therefore, typical data analysis theories often fail in achieving the neces-
sary results. The main reason for this failure can be attributed to the typical data analysis
theory that often sets the data distribution type through prior information and performs
analyses based on this assumption. Once the distribution type is set, the subsequent anal-
ysis can perform the estimation and parametric analysis based on only that distribution
type; however, with the growth of data, more information is provided, and thus, the type
of data distribution will need to be modified. As a nonparametric estimation method,
kernel density estimation (KDE) is the most suitable method for the massive amount of the
current data. KDE does not employ a priori assumption for the overall data distribution,
and it directly starts from the sample data. When the sample size is sufficient, the KDE
can approximate different distributions. Furthermore, Sheather and Jones [1] provides
the optimal bandwidth estimation formula for a one-dimensional KDE and proves that
the kernel function is asymptotically unbiased and consistent in the density estimation.
However, with the growth of the dimension, the multidimensional KDE becomes more
complex, and its optimal bandwidth formula is not provided. The distribution of multidi-
mensional data has been described to a certain extent by estimating the kernel density of
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the reduced data in different dimensions Muir [2], Laurent [3]. In fact, the optimal KDE of
multidimensional data is a problem that needs to be studied further.

In the field of fault diagnosis, an essential problem is measuring the difference between
samples. A frequency histogram has been used to indicate the distribution difference
between two samples Sugumaran and Ramachandran [4], Scott [5]; however, there are
three shortcomings to this method: (1) the large number of discrete operations require
a higher amount of time; (2) the process depends on the selection of the interval, which
is more subjective; (3) there is no intuitive index to reflect this difference. In fact, based
on KDE, the JS divergence can be used to measure the difference in data distribution,
which can overcome the above shortcomings to a certain extent. For example, the failure
of a rolling bearing, which is a key component of mechanical equipment, will have a
serious effect on the safe and stable operation of the equipment, and the incipient fault
detection of rolling bearings can help avoid equipment running with faults and avoid
causing serious safety accidents and economic losses, which has important practical and
engineering significance.

In Saruhan et al. [6], vibration analysis of rolling element bearings (REBs) defects
is studied. The REBs are the most widely used mechanical parts in rotating machinery
under high load and high rotational speeds. In addition, characteristics of bearing faults
are analyzed in detail in references Razavi-Far et al. [7], Harmouche et al. [8]. Compared
with traditional fault diagnosis, the fault diagnosis of rolling bearings is more complex:

• The fault signal is weak: Bearing data is a type of high-frequency data, and the fault
signal is often covered by these high-frequency signals, thereby leading to the failure
of traditional fault diagnosis methods. KDE is highly accurate in describing data
distribution, so it can identify weak signals.

• Data is highly coupled: Bearing data is reflected in the form of a vibration signal,
and there is strong coupling in different dimension signals, thereby making fault
diagnosis difficult. Multi-dimensional KDE plays an important role in depicting
the correlation of data, which can characterize the relationship between different
dimensions of data.

• Incomplete data set: Most bearings work under normal conditions, and the fault data
collected are often fewer, which makes the data incomplete, thereby resulting in the
imperfection of the fault data set and increasing the difficulty of fault detection. The
fault detection method constructed by JS divergence can deal with unknown faults
and incomplete data sets without using additional data sets.

To overcome these problems, in-depth research has been conducted on this topic. Fault
detection technology based on trend elimination and noise reduction has been proposed pre-
viously He et al. [9], Demetriou and Polycarpou [10]. The signal trend ratio is enhanced by
eliminating the trend, and the signal–noise ratio is enhanced by noise reduction, and there-
fore, the fault detection effect is improved. However, this method uses the traditional
detection method and cannot effectively solve the problem of data coupling. In refer-
ence Zhang et al. [11], Fu et al. [12], a fault detection method based on PCA dimension
reduction and modal decomposition feature extraction is proposed. For multidimensional
data, PCA dimension reduction is performed to reduce data dimensions and eliminate
correlation between different dimensions. Then, the modal decomposition method is used
to extract features among dimensions for fault detection. This method can effectively
solve the strong coupling between data; however, it will lose some information in the
process of PCA dimension reduction, and it leads to a reduction in the fault detection effect.
In reference Itani et al. [13], Kong et al. [14], Jones and Sheather [15], Desforges et al. [16],
a bearing fault detection method based on KDE is proposed. These studies analyzed the
feasibility of KDE method in fault detection, and combined different classification methods
for experiments. However, these methods only use one-dimensional KDE, and cannot
directly describe high-dimensional data.

The data distribution is reconstructed by KDE and the cross-entropy function is
constructed to measure the distribution difference for improving the fault detection results.
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However, this method cannot reflect the correlation between different dimensions, and the
cross-entropy function is not precise in the description of density distribution, which leads
to a reduction in the fault detection effect, especially for unknown fault detection, which is
not included in the fault set.

In this study, the KDE method is extended to multidimensional data to avoid infor-
mation loss caused by the KDE for each dimension, and to better describe the density
probability distribution of the data. Meanwhile, this study improves the traditional method
using the cross-entropy function as the measurement of density distribution difference,
and it uses JS divergence as the measurement of density distribution difference, thereby
avoiding the relativity caused by the cross-entropy function. Most fault identification
methods are based only on distance measurement; however, only relying on distance mea-
surement cannot effectively detect unknown faults. Based on JS divergence, distribution
characteristics of JS divergence between the sample density distribution and population
density distribution are derived using the sliding window principle. Thus, the detection
threshold of fault identification is assigned to realize the identification of unknown faults.

This paper is based on the following structure. In Section 2, the trend elimination
method and detection method are introduced, and the intrinsic and extrinsic signals in
the observation data are separated. Then, the fault detection threshold is constructed via
statistics. In Section 3, the KDE method is extended to multidimensional data, and the
optimal bandwidth is derived. Then, JS divergence is employed to measure the difference
between probability distributions of different densities. In Section 4, the sliding window
principle is used to sample the training data to obtain the distribution characteristics of JS
divergence between the sample density distribution and the overall density distribution,
and the detection threshold of fault identification is obtained using the KDE method.
In Section 5, the normal data, two known faults, and one unknown fault are identified
using the bearing data of the Case Western Reserve University Bearing Data Center as the
fault diagnosis data. The experimental results show that the method can identify all types
of faults well.

2. T2 Statistics Fault Detection

In the operation process of the complex equipment or systems, the common obser-
vation state can be divided into intrinsic and extrinsic parts. In general, the intrinsic part
represents the main working state of the system, which has a certain trend, monotony,
and periodicity. The extrinsic part represents system noise, which has a certain zero mean
value, high frequency vibration, and statistical stability. For the intrinsic part, the state
equation of the system can be used to describe the law. When a fault occurs in the intrinsic
part, the symptoms are relatively significant, and the corresponding fault detection meth-
ods are relatively mature. However, for high-frequency vibration signals, the incipient
fault is often hidden in the extrinsic part, which is easily covered by noise. Therefore, it is
necessary to analyze the observed data in depth.

2.1. Signal Decomposition

In the initial operation stage of the equipment, the unstable operation of the system
causes large data fluctuations, which will not only have a great effect on the system trend,
but also affect the statistical characteristics of the data. Therefore, it is necessary to truncate
the data to remove unstable signals [9]. The corresponding time of the time series after
removing the nonstationary period data is t1, t2, · · · , tm, and the following m observation
data are obtained:

Y = [y(t1), y(t2), · · · , y(tm)]. (1)

Each sampling y(ti) contains n features, which are expressed as components in the
form of

y(ti) = [y1(ti), y2(ti), · · · , yn(ti)]
T, i = 1, 2, · · · , m. (2)
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Then, the data Y can be decomposed into

Y = Ŷ + R, (3)

where Ŷ denotes the intrinsic part, which is composed of trend, and R denotes the extrinsic
part, which is composed of observation noise and fault data.

The intrinsic part is composed of multiple signals. Selecting the appropriate basis
function f (t) = [ f1(t), f2(t), · · · , fs(t)]

T can help describe the intrinsic part. By traversing
m data to model the nonlinear data Y ,

[y1, y2, · · · , ym] =


β
(1)
1 β

(1)
2 · · · β

(1)
s

β
(2)
1 β

(2)
2 · · · β

(2)
s

...
...

. . .
...

β
(n)
1 β

(n)
2 · · · β

(n)
s




f0(t1) f0(t2) · · · f0(tm)
f1(t1) f1(t2) · · · f1(tm)
...

...
. . .

...
fs(t1) fs(t2) · · · fs(tm)

. (4)

Note that

F ∆
=


f0(t1) f0(t2) · · · f0(tm)
f1(t1) f1(t2) · · · f1(tm)
...

...
. . .

...
fs(t1) fs(t2) · · · fs(tm)

, β
∆
=


β
(1)
1 β

(1)
2 · · · β

(1)
s

β
(2)
1 β

(2)
2 · · · β

(2)
s

...
...

. . .
...

β
(n)
1 β

(n)
2 · · · β

(n)
s

 (5)

Then, Equation (4) can be expressed as

Y = βF. (6)

Thus, the efficient estimator of β is

β̂=YFT
(

FFT
)−1

. (7)

Using Equations (3) and (7), the signal can be decomposed into{
Ŷ = β̂F = YFT(FFT)−1F
R = Y − Ŷ = Y

(
I − FT(FFT)−1F

) (8)

Usually, the choice of the basis function is a problem worthy of discussion, and it
depends on prior knowledge of practical application scenarios; however, this is not the
focus of this paper, and is therefore not covered here.

Remark 1. For the bearing data, the data is generally stable and periodic. Therefore, Fourier
transform is usually used to extract periodic features instead of more complex basis functions, such
as a polynomial basis function and wavelet basis function.

2.2. T2 Statistics Detection

For simplicity, remember ri = r(ti), i = 1, 2, · · · , m. According to Equation (8),
the training data after signal decomposition are R = [r1, r2, · · · , rm], which is generally
considered a normal random vector with expectation of 0, so that

ri ∼ N(0, Σ), (9)
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where Σ denotes the total covariance matrix. When the covariance matrix Σ is unknown,
the unbiased estimation is given by

Σ̂ =
RRT

m− 1
. (10)

Let Z =
[
z1, z2, . . . , zp

]
be the data in the test window to be tested; the sample mean

value z̄ is

z̄ =
1
p

p

∑
i=1

zi. (11)

Then, z̄ is still normal distributed and

z̄ ∼ N
(

0,
1
p

Σ

)
. (12)

The T2 statistics can be constructed as

T2 = pz̄TΣ̂−1z̄. (13)

Reference Solomons and Hotelling [17] reports that the distribution of the T2 statis-
tic satisfies

m− n
n(m− 1)

T2 =
p(m− n)
n(m− 1)

z̄TΣ̂−1z̄ ∼ F(n, m− n). (14)

Therefore, if the significance level is α, we can get that

m− n
n(m− 1)

T2 =
l(m− n)
n(m− 1)

z̄TΣ̂−1z̄ < Fα(n, m− n). (15)

The testing data Z and the training data R both come from the same mode; otherwise,
they are considered different. The error rate of this criterion is α.

3. Optimal Kernel Density Estimation

Section 2 introduces the fault detection method based on T2 statistics, including the
signal decomposition technology and fault detection method based on the T2 statistics.
However, the fault detection method based on the T2 statistics assumes that data satisfies
the normal distribution, while the actual observation data may not meet the hypothesis,
which can lead the discriminant performance of the T2 statistics to not satisfy the design
requirements. In addition, the statistics test the data from the angle of the intrinsic part Ŷ
and covariance matrix Σ̂. These two attributes are not sufficient to describe all statistical
characteristics of the system. When the incipient fault is submerged by data noise, it is easy
to miss the detection. In this study, a KDE method for multidimensional data is constructed
to describe the probability and statistical characteristics of the data more accurately.

3.1. Optimal Bandwidth Theorem

For the observed data, the frequency histogram can be used to show its statistical
characteristics directly. However, in the actual application process, the frequency histogram
is a discrete statistical method, the interval number of the histogram is difficult to divide,
and more importantly, the discretization operation inconveniences the subsequent data
processing. To overcome these limitations, the KDE method is proposed. This method
is a nonparametric estimation method that estimates the population probability density
distribution directly by sampling data.
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For any point x ∈ Rn, assuming that the probability density of a certain mode is f (x),
the kernel density of f (x) is estimated based on the sampling data R = [r1, r2, · · · , rm] in
Section 2.1. As reported in reference Rao [18], the estimation formula is

f̂K(x, hm) =
1

mhn
m

m

∑
i=1

K
(

ri − x
hm

)
, (16)

where m, n, K(·), and hm denote the number of sampling data, dimension of sampling data,
kernel function, and bandwidth, respectively.

For the sake of convenience in the following discussions, in the case of no doubt,{
f̂K(x) , f̂K(x, hm)∫

g(x)dx ,
∫

x∈Rn g(x)dx
(17)

The kernel function K(·) satisfies
∫

K(x)dx = 1; therefore,
∫

K
(

ri−x
hm

)
dx = hn

m, that is,∫
f̂K(x)dx = 1. Thus, f̂K(x) satisfies both positive definiteness, continuity, and normality.

Therefore, it is reasonable to use it as the KDE. The Gaussian kernel function is a good
choice as given by

K(x) = (2π)−n/2e−(xTx)
/

2 (18)

In this study, the performance of the kernel density estimator is characterized by the
mean integral square error (MISE).

MISE
(

f̂K(x)
)
=
∫

E
[

f̂K(x)− f (x)
]2

dx (19)

Reference Rao [18] shows that the estimation result f̂K(x) is not sensitive to the
selection of the kernel function K(·); that is, the MISE of the estimation results obtained
using different kernel functions is almost the same, which is reflected in the subsequent
derivation process. In addition, the MISE depends on the selection of the bandwidth hm.
If hm is too small, the density estimation f̂K(x) shows an irregular shape because of the
increase in the randomness. While hm is too large, density estimation f̂K(x) is too averaged
to show sufficient detail.

The optimal bandwidth formula is provided in the following theorem, and it is one of
the key theoretical results of this study.

Theorem 1. For any dimensional probability density function f (·) and any kernel function K(·)
with a symmetric form, if f̂K(·) in Equation (16) is used to estimate f (·), and if the function

tr
(

∂2 f (x)
∂x∂xT

)
with respect to x is integrable when the MISE

(
f̂K(·)

)
in Equation (19) is the minimum,

the bandwidth hm satisfies

hm =

(
md2

K
n3cK

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx

)−1/(n+4)

, (20)

where cK and dK are two constant values given by{
cK =

∫
K2(x)dx

dK =
∫

xTxK2(x)dx
(21)

Equation (20) is called the optimal bandwidth formula and hm denotes the optimal bandwidth.

A detailed proof of this theorem is given below.



Entropy 2021, 23, 266 7 of 23

Proof. It can be proved that the following two equations hold
E
[

f̂K(x)
]
=
∫

K(u) f (x + hmu)du

E
[

f̂ 2
K(x)

]
=

∫
K2(u) f (x + hmu)du

mhn
m

+
(m− 1)(

∫
K(u) f (x + hmu)du)2

m

(22)

In fact,

E
[

f̂K(x)
]
=
∫
· · ·

∫ m

∏
i=1

f (ri)
1

mhn
m

m

∑
i=1

K
(

ri − x
hm

)
drm · · · dr1

=
1

mhn
m

m

∑
i=1

∫
f (r)K

(
r− x

hm

)
dr

=
∫

f (x + hmu)K(u)du.

(23)

In addition,

E
[

f̂ 2
K(x)

]
=
∫
· · ·
∫ m

∏
i=1

f (ri)

(
(mhn

m)
−1 m

∑
i=1

f (ri)K
(

ri−x
hm

))2
dr1 · · · drm

= (mhn
m)
−2 ∫ · · · ∫ m

∏
i=1

f (ri)

(
m
∑

i=1
f (ri)K

(
ri−x
hm

))2
dr1 · · · drm

= (mhn
m)
−2 ∫ · · · ∫ m

∏
i=1

f (ri)

(
m
∑

i=1
K2
(

ri−x
hm

)
+

m
∑
i 6=j

K
(

ri−x
hm

)
K
( rj−x

hm

))
dr1 · · · drm

= (mhn
m)
−2 ∫ · · · ∫ ( m

∏
i=1

f (ri)
m
∑

i=1
K2
(

ri−x
hm

)
+

m
∏
i=1

f (ri)
m
∑
i 6=j

K
(

ri−x
hm

)
K
( rj−x

hm

))
dr1 · · · drm

= (mhn
m)
−2

(
m
∑

i=1

∫
f (ri)K2

(
ri−x
hm

)
dr +

m
∑
i 6=j

∫ ∫ (
f (ri)K

(
ri−x
hm

)
f
(
rj
)
K
( rj−x

hm

))
dridrj

)
= (mhn

m)
−2
(

m
∫

f (r)K2
(

r−x
hm

)
dr + m(m− 1)

(∫
f (r)K

(
r−x
hm

)
dr
)2
)

= (mhn
m)
−2
(

mhn
m
∫

K2(u) f (x + hmu)du + m(m− 1)(hn
m
∫

f (x + hmu)K(u)du)2
)

.

(24)

From Equation (23),

E
[

f̂K(x)
]
− f (x) =

h2
m
2

∫
uT
(

∂2 f (x + θhmu)
∂x∂xT

)
uK(u)du, (25)

where θ represents a constant value between 0 and 1. According to Equations (23) and (24),

E
[

f̂ 2
K(x)

]
−
(

E
[

f̂K(x)
])2

=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m
. (26)

According to the Equations (25) and (26), the following equation holds.

E
[

f̂K(x)− f (x)
]2
= E

[
f̂ 2
K(x)

]
−
(

E
[

f̂K(x)
])2

+
(

E
[

f̂K(x)
]
− f (x)

)2

=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m

+

(
1
2

h2
m

∫
uT
(

∂2 f (x + θhmu)
∂x∂xT

)
uK(u)du

)2

(27)

To facilitate the subsequent reasoning, the following theorem is given.
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Theorem 2. For any matrix Φ, K(·) is a kernel density function with symmetric form; then,∫
xTΦxK(x)dx =

tr(Φ)

n

∫
xTxK(x)dx. (28)

Proof. If the odd function g(x) is integrable on R, there must be ∫∞
−∞ g(x)dx = 0. Similarly,

it can be verified that the kernel function K(·) with a symmetric form satisfies∫
· · ·

∫
∑
i 6=j

ΦijxixjK(x)dx1 · · · dxn = 0. (29)

Then,∫
xTΦxK(x)dx =

∫
· · ·

∫
xTΦxK(x)dx1 · · · dxn

=
∫
· · ·

∫
∑

i
Φiix2

i K(x)dx1 · · · dxn +
∫
· · ·

∫
∑
i 6=j

ΦijxixjK(x)dx1 · · · dxn

= tr(Φ)
∫
· · ·

∫
x2

1K(x)dx1 · · · dxn

=
tr(Φ)

n

∫
· · ·

∫
xTxK(x)dx1 · · · dxn

=
tr(Φ)

n

∫
xTxK(x)dx.

(30)

Thus, the Theorem 2 is proved.

For any unit length vector u ∈ Rn, the Taylor expansion can be used to obtain
f (x + hmu) = f (x) + hmuT∇( f (x)) + o(hm)

∂2 f (x + θhmu)
∂xi∂xj

=
∂2 f (x)
∂xi∂xj

+ θhmuT∇
(

∂2 f (x)
∂xi∂xj

)
+ o(hm)

(31)

If the bandwidth hm satisfies the condition
lim

m→∞
(hm) = 0,

lim
m→∞

(
1

mhn
m

)
= 0,

(32)

Then, from Equations (22)–(32), we get that

E
[

f̂K(x)− f (x)
]2

=
cK f (x)
mhn

m
+ o
(

1
mhn

m

)
+

h4
md2

K
4n2

(
tr
(

∂2 f (x)
∂x∂xT

))2

+ o
(

h4
m

)
. (33)

In fact,

E
[

f̂K(x)− f (x)
]2
=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m

+

(
h2

m
2

∫
uT
(

∂2 f (x + θhmu)
∂x∂xT

)
uK(u)du

)2

=
cK f (x)
mhn

m
+ o
(

1
mhn

m

)
− f (x)2

m
+ o
(

1
m

)
+

(
h2

m
2n

tr
(

∂2 f (x + θhmu)
∂x∂xT

) ∫
uTuK(u)du

)2

=
cK f (x)
mhn

m
+ o
(

1
mhn

m

)
+

(
h2

m
2n

tr
(

∂2 f (x)
∂x∂xT

)
dK + o

(
h2

m

))2

=
cK f (x)
mhn

m
+ o
(

1
mhn

m

)
+

h4
md2

K
4n2

(
tr
(

∂2 f (x)
∂x∂xT

))2

+ o
(

h4
m

)
.

(34)
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Based on Equation (33), if tr
(

∂2 f (x)
∂x∂xT

)
is integrable, there is

MISE
(

f̂K(x)
)
=
∫ ( cK f (x)

mhn
m

+
h4

m
4n2

(
dKtr

(
∂2 f (x)
∂x∂xT

))2)
dx + o

(
1

mhn
m

)
+ o(hm)

=
cK

mhn
m
+

1
4n2 h4

md2
K

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx + o
(

1
mhn

m

)
+ o(hm).

(35)

When MISE
(

f̂K(·)
)

is the smallest, the derivative of Equation (35) with respect to hm

is 0, which means
∂MISE

(
f̂K(x)

)
∂hm

= 0. (36)

Thus, the optimal bandwidth hm in Theorem 1 is obtained as

hm =

(
md2

K
n3cK

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx

)−1/(n+4)

. (37)

Remark 2. When the number of samples m is determined, the appropriate bandwidth hm can be
selected using Equation (20) to construct the KDE, which can better fit the sample distribution.
In Equation (20), the influence of the kernel function on bandwidth selection is on cK and dK, which
are almost the same under different kernel function selection, and they have a slight effect on the
final bandwidth selection.

3.2. Optimal Bandwidth Algorithm

The optimal bandwidth formula is given by Equation (20). However, f (x) is unknown

in Equation (20), and therefore, ∫ tr
(

∂2 f (x)
∂x∂xT

)
dx is also unknown. An approximate value of

the bandwidth parameter hm can be obtained by replacing f (x) with f̂K(x) in Equation (16).
Furthermore, an iterative algorithm can be used to calculate a more accurate bandwidth
parameter. Theorem 3 shows that the algorithm is convergent.

Theorem 3. For any n-dimensional probability density function f (·) and Gaussian kernel function
K(·), if f̂K(·) in Equation (16) is used to estimate f (·), then the iterative calculation formula of hm
is obtained as

hm,k+1 =

md2
K

n3cK

∫
tr

(
∂2 f̂K(x, hm,k)

∂x∂xT

)2

dx

−1/(n+4)

(38)

and it is convergent, where hm,k is the value of hm during the k− th iteration.

Proof. For a particular Gaussian kernel function

K(u) = (2π)−n/2e−(uTu)
/

2 (39)

dK is a χ2 distribution with degree of freedom n, and the expectation is equal to the degree
of freedom.

dK =
∫

uTuK(u)du = n (40)

In addition,

cK =
∫

K2(u)du =
∫

(2π)−ne−uTudu =
(
2
√

π
)−n. (41)
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Substituting Equations (39)–(40) into Equation (20) and substituting f̂K(x) in Equation (16)
for f (x), the iterative form of calculating hm is obtained as

hm,k+1 =
( n

m
)1/(n+4)(2√π

)−n/(n+4)
(∫

tr
(

∂2 f̂K(x)
∂x∂xT

)2
dx
)−1/(n+4)

=
(

mnh2n
m,k

)1/(n+4)(
2
√

π
)−n/(n+4)

(∫
tr
(

∂2

∂x∂xT

(
m
∑

i=1
K
(

ri−x
hm,k

)))2
dx

)−1/(n+4) (42)

To facilitate the subsequent reasoning, the following lemma is given as

Lemma 1. For any function f1, f2, · · · , fn, inequality∫
( f1 + f2 + · · ·+ fn)

2dx ≤
∫

n
(

f 2
1 + f 2

2 + · · ·+ f 2
n

)
dx. (43)

If and only if f1(x) = f2(x) = · · · = fn(x) holds almost everywhere.

Proof. In fact, for any function f1, f2, · · · , fn, there are

0 ≤ ( f1(x) + f2(x) + · · ·+ fn(x))2 ≤ n
(

f1(x)2 + f2(x)2 + · · ·+ fn(x)2
)

. (44)

Thus, the two sides of Equation (44) are integrated as∫
( f1 + f2 + · · ·+ fn)

2dx ≤
∫

n
(

f 2
1 + f 2

2 + · · ·+ f 2
n

)
dx. (45)

It is obvious that the sign of Equation (43) holds the condition that f1(x) = f2(x) =
· · · = fn(x) is almost everywhere.

Because the second derivative of Equation (39) with respect to xi is

∂2

∂xi∂xi
K(x) = (2π)−n/2e−(xTx)

/
2
(

x2
i − 1

)
. (46)

In addition,

∫ (
∂2

∂xj∂xj

(
K
(

ri − x
hm,k

)))2

dx=
∫ (

∂2

∂xj∂xj

(
(2π)−n/2e−(ri−x)T(ri−x)

/
2h2

m,k

))2

dx

=
3
4
(
2
√

π
)−nhn−4

m,k .

(47)

From Lemma 1 and Equation (47)

∫
tr

(
∂2

∂x∂xT

(
m

∑
i=1

K
(

ri − x
hm,k

)))2

dx ≤
∫

nm ∑
i,j

(
∂2

∂xj∂xj

(
K
(

ri − x
hm,k

)))2

dx

=
3
4
(nm)2(2√π

)−nhn−4
m,k .

(48)

When hm,k is sufficiently large, we can assume that K
(

ri−x
hm,k

)
is almost the same

everywhere, i.e., the equal sign in Equation (48) is tenable.

hm,k+1=

(
mnh2n

m,k

2
√

π

)1/(n+4)(
3
4
(nm)2(2√π

)−nhn−4
m,k

)−1/(n+4)

= hm,k

(
3
4

nm
)−1/(n+4)

< hm,k

(49)
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When hm,k is large, the iterative process decreases. Because hm,k has a lower bound,
the algorithm converges.

In summary, the KDE method based on optimal bandwidth is given (see Algorithm 1),
and the flowchart of the KDE method is shown in Figure 1.

Algorithm 1: Kernel density estimation (KDE) method based on optimal band-
width

Input: Training set: R = [r1, r2, · · · , rm]; Given the estimation accuracy: ε;
Maximum number of iterations: kmax.

Output: Optimal bandwidth: hm; Optimal KDE: f̂K(x).

1 Select the initial iteration hm,1 = hm,0;
2 for k = 1, 2, · · · , kmax do
3 Calculate the KDE f̂K(x) using Equation (16)
4 Update the optimal bandwidth hm,k by Equation (38)
5 if k < kmax&

∣∣hm,k − hm,k−1
∣∣ > ε then

6 k = k + 1, return step3;
7 else if k = kmax then
8 Iteration times overrun, jump out;
9 else if

∣∣hm,k − hm,k−1
∣∣ < ε then

10 Obtain the optimal bandwidth.
11 end
12 end

Y

Y

1 2

max

Training Data:

Prec i

, , ,

, Max Iterationsis on: :

m

k

R r r r

N 1k k, , 1m k m kh h

1 4
2

22
, 1

, 3

ˆ ,
n

K m kK
m k

K

f hmd
h tr d

n c

x
x

x x
T

maxk k

N

,0Initialization Parameters: , 1mh k

, ,

,
ˆ ˆ ,

m opt m k

m k

h h

f f hx x

Figure 1. Flowchart of KDE method based on optimal bandwidth.

4. Fault Detection Method Based on JS Divergence Distribution

In Section 3, we construct a multidimensional KDE method based on the optimal
bandwidth; this method can accurately describe the density distribution of multidimen-
sional data. JS divergence is used to measure the distribution difference, and thus, it can
highlight the difference in the statistical characteristics of different mode data.

4.1. Mode Difference Index

In Section 3, the probability density estimation of multidimensional data is obtained
using the kernel function method, and the optimal bandwidth formula is derived. When the
system fails, the state of the system will inevitably change, and the statistical characteristics



Entropy 2021, 23, 266 12 of 23

of the system output will also change, thereby leading to significant changes in the density
distribution of the observed data. For two groups of the sample window data R and Z,
the cross entropy H(R, Z) can be used to measure the distribution difference of R and Z.

H(R, Z) =
∫
− f̂K,Z(x) log

(
f̂K,R(x)

)
dx, (50)

where f̂K,R, f̂K,Z represents the optimal KDE of R and Z calculated using Equation (16).
H(R, Z) does not satisfy the definition of distance because H(R, Z) does not necessar-

ily satisfy positive definiteness and symmetry; that is, H(R, Z) < 0 or H(R, Z) 6= H(R, Z).

• The smaller the difference of distribution, the smaller is H(R, Z), which means that
even H(R, Z) < 0, and therefore, it is reasonable to use H(R, Z) to measure the
distribution difference of R and Z.

• However, the quantitative description of distribution difference must satisfy symmetry;
otherwise, the exchange position and distribution difference will be different, which is
difficult to accept.

The JS divergence JS(R, Z) was used as a measure of the distribution difference
between R and Z in reference Zhang et al. [19], Bruni et al. [20] as follows:

JS(R, Z) =
∫ f̂K,R log

(
f̂K,R

)
+ f̂K,Z log

(
f̂K,Z

)
−
(

f̂K,R + f̂K,Z

)
log
((

f̂K,R + f̂K,Z

)
/2
) dx. (51)

It is easy to get that {
JS(R, Z) ≥ 0
JS(R, Z) = JS(Z, R)

(52)

In this paper, Equation (52) is used to measure the distribution difference between
testing data Z and training data R for realizing fault detection and isolation.

4.2. Mode Discrimination Method

If the training data has q patterns
{

R1, R2, · · · , Rq
}

, the JS divergence set{
JS(Z, R1), JS(Z, R2), · · · , JS

(
Z, Rq

)}
between the testing data Z and different modes R can be calculated using Equation (51).

If i0 is the schema tag corresponding to the minimum JS divergence, it means that

i0 = arg min
{

JS(Z, R1), JS(Z, R2), · · · , JS
(
Z, Rq

)}
. (53)

It is reasonable to assume that testing data Z and training data Ri0 belong to the
same mode. However, for a new failure mode that may be unknown in the application,
Equation (50) evaluates the testing data Z as the known failure mode of type i0, which is
obviously unreasonable.

If JS
(
Z, Ri0

)
is too large, we believe that testing data Z comes from an unknown

new failure mode; its label is q + 1. However, the method to obtain the threshold JShigh
of JS

(
Z, Ri0

)
is a problem that should be investigated. A method to determine JShigh is

provided below.
For the training data Ri0 = [r1, r2, · · · , rm] of the i0 mode, the density estimation of

the data set can be obtained using Equation (16).

f̂K,R(x) =
1

m(hm)
n

m

∑
i=1

K
(

ri − x
hm

)
(54)
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In addition, if the length of the sampling window is fixed as p(p < m), the new sam-
pling data is R(j) =

[
rj, rj+1, · · · , rj+p

]
⊂ Ri0 , j = 1, 2, · · · , m− p by sliding the sampling

window. For each R(j), the density of the dataset can be estimated as

f̂K,R(j)(x) =
1

p
(
hp
)n

j+p

∑
i=j

K
(

ri − x
hp

)
. (55)

Using Equation (52), the divergence between the training data R and the sample data
R(j) can be obtained as

JSj = JS
(

R, R(j)
)

= H
((

f̂K,R + f̂K,R(j)

)
,
(

f̂K,R + f̂K,R(j)

)
/2
)
− H

(
f̂K,R

)
− H

(
f̂K,R(j)

)
.

(56)

Using Equation (55), we can obtain a series of JS divergence calculation value sets

JS =
{

JS1, JS2, · · · , JSm−p
}

.

We use this set to provide the estimation formula f̂ JS(x) of the density function f JS(x)
of the JS divergence as

f̂ JS(x) =
1

(m− p)
(
hm−p

)n

m−p

∑
j=1

K
( JSj − x

hm−p

)
. (57)

If the significance level is α, the probability of f̂ JS(x) that exceeds the threshold JShigh is

P
{∫ JShigh

0
f̂ JS(x)dx.

}
< α (58)

Because the distribution type of JS divergence is not a common random distribution,
the quantile cannot be obtained by looking up the table; instead, it can only be obtained by
numerical integration. If h is the step size, and∫ +∞

h∗(i−1)
f̂ JS(x)dx ≤ α ≤

∫ +∞

h∗i
f̂ JS(x)dx, (59)

it is reasonable to deduce that

JShigh = h ∗ i. (60)

The following fault detection and isolation criteria are constructed by Equation (58).

Criterion 1. Suppose i0 is the pattern label corresponding to the minimum JS divergence—see
Equation (38)—the training data Ri0 = [r1, r2, · · · , rm] corresponding to the i0 mode and the upper
bound of JS divergence is JShigh—see Equation (56). If the testing data Z = [z1, z2, . . . , zl ] meet
the requirements,

JS
(
Z, Ri0

)
≤ JShigh. (61)

The testing data Z and training data Ri0 belong to the same failure mode; otherwise, the testing
data Z are considered to originate from the unknown new failure mode, and their label is marked as
q + 1.

In conclusion, the fault diagnosis method based on optimal bandwidth is provided
(See Algorithm 2), and the corresponding fault diagnosis method flowchart is shown in
Figure 2.
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Algorithm 2: Fault Diagnosis Method Based on Optimal KDE

Input: Training data:
{

R1, R2, · · · , Rp
}

; Significance level: α; Testing data:
Z = [z1, z2, . . . , zl ].

Output: Pattern classification labels for testing data Z.

1 Calculate the optimal KDE JS = {JS1, JS2, · · · , JSm−l} of R by Algorithm 1;
2 Calculate the optimal KDE f̂K,Z(x) of Z by Algorithm 1;
3 Calculate the JS divergence set

{
JS(Z, R1), JS(Z, R2), · · · , JS

(
Z, Rp

)}
of R and Z

using Equation (51);
4 Calculate the minimum JS divergence label i0 using Equation (53), and the

corresponding training data were Ri0 = [r1, r2, · · · , rm] ∈ R;
5 for j = 1, 2, · · · , m− l do
6 Get the training data R(j) =

[
rj, rj+1, · · · , rj+l

]
⊂ Ri0 by sliding the windows;

7 Calculate f̂K(x) based on hm,i, kernel function K(·), and Equation (16);
8 Update the optimal bandwidth hm,i by Equation (37);
9 Calculate the optimal KDE of R(j) using Algorithm 1 and Equation (55);

10 Calculate JS
(

f̂K,R, f̂K,R(j)

)
according to Equation (56)

11 end
12 Calculate the density function of the JS divergence according to Equation (57)

f JS(x);
13 Calculate the upper bound JShigh of the JS divergence according to Equation (58)

and 60;
14 Assess the pattern of testing data Z according to Criterion 1,

,
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Figure 2. Flowchart of fault diagnosis method based on optimal KDE.
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Remark 3. Equations (54) and (55) show that the calculation result of JS divergence is directly
related to the length of sampling data. Indeed, with the increase in the sampling data length,
the density estimation obtained by Equation (54) can describe the distribution characteristics of
samples more effectively, thereby significantly improving the accuracy of fault detection.

5. Numerical Simulation

The bearing data from Case Western Reserve University Bearing Data Center were
used as the diagnosis research object, and they have been considered as a case for many
fault diagnosis, such as in references Smith and Randall [21], Lou and Loparo [22], Rai and
Mohanty [23].

The sampling frequency of the motor data was 12 kHz, and 12 kHz is the default
sampling frequency for Case Western Reserve University Bearing Data Center. The dataset
contains four groups of sample data: normal data ( f0), 0.007 inch inner raceway fault data
( f1), 0.014 inch inner raceway fault data ( f2), and 0.014 inch outer raceway fault data( f3).
Each group of data had two dimensions: the acceleration data of the drive end ( fi − DE)
and the acceleration data of the fan end ( fi − FE). All the experiments were conducted on
an Lenovo Ryzen 3700X CPU with 3.60 GHz processor, 16 GB RAM.

5.1. Data Preprocessing

The observed data in the process of the bearing operation show obvious periodicity,
which needs to be eliminated. Taking normal data f0 as an example, the main frequency in
the observed signal can be obtained by fast Fourier transform (FFT), and the result of the
FFT is shown in Figure 3.
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Figure 3. Single-sided amplitude spectrum of f0.

Figure 3 indicates that the main frequency is approximately 1036 Hz, and thus, the ba-
sis function is constructed as

f (t) =
[

1 sin(1036× 2πt) cos(1036× 2πt)
]T.

The estimation of β calculated using Equation (7) is

β̂ =

[
0.0116 −0.0158 0.0548
0.0280 0.0326 −0.0396

]
.

Thus, the data after removing the intrinsic signal are shown in Figure 4, where
Figure 4a represents the acceleration data of the drive end and Figure 4b represents the
acceleration data of the fan end.
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(a) Acceleration data of drive end of f0
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(b) Acceleration data of fan end of f0

Figure 4. Preprocessed data to remove trends by fast Fourier transform (FFT).

In the later fault detection process, the data of all modes are similar to the above
operation, and the results are recorded as fi.

5.2. Fault Detection Effect
5.2.1. Norm Data and Known Fault

For the norm data f0 and the known fault f1, f2, the first 20,480 sample points are
selected as the training set, which are recorded as fi−train. The last 81,920 sample points
are taken as the testing set, which are recorded as fi−test. A total of 128 sample points are
used as detection objects in each test. The training set data are shown in Figure 5, where
Figure 5a,b represent data fi−train, i = 1, 2 of the two dimensions, respectively.
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(a) Training data of f1
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(b) Training data of f2

Figure 5. Training data f1, f2 after being preprocessed.

Figure 5 shows that the bearing data have high frequency, and the fault does not
change the observed mean value; however, it changes the dispersion characteristics or the
correlation of data.



Entropy 2021, 23, 266 17 of 23

5.2.2. Unknown Fault

The training data does not necessarily contain all types of patterns, and the detection
of unknown faults is always a difficult problem. f3 is used as an unknown fault for fault
detection; the training set sample does not contain any information about f3. The unknown
fault data are shown in Figure 6, where in Figure 6a represents the acceleration data at the
driving end and Figure 6b represents the acceleration data at the fan end.

Figure 6 shows that the data of unknown faults is close to the other two types
of fault data. If the fault detection method is not sensitive, the detection rate will be
reduced significantly.
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(a) Acceleration data at the drive end of f3
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(b) Acceleration data at the fan end of f3

Figure 6. Training data f3 after preprocessed.

5.2.3. Detection Effect

The characteristics of bearing data make bearing fault detection extremely challenging.
The input of the training set is f0−train, the estimation accuracy is ε = 10−4, and the
maximum number of iterations is kmax = 100, according to Algorithm 1, the optimal
bandwidth is

hm = 0.0445.

The KDE of the training set is obtained by Equation (15), and the results are shown in
Figure 7, where Figure 7a,c,e represent the two-dimensional frequency histograms of the
training data fi−train, i = 0, 1, 2, and Figure 7b,d,f represent the two-dimensional KDE of
the training data fi−train, i = 0, 1, 2.

Figure 7 further shows that the bearing fault changes the dispersion characteristics
and data correlation. Meanwhile, Figure 7 shows that the KDE of the training data obtained
by Equation (15) is in good agreement with the data distribution of the training data,
and therefore, this method can really describe the distribution of multidimensional data.
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Figure 7. Training data after being preprocessed.

The JS divergence of the training data and KDE of the distribution are obtained by
Equations (51) and (58); the results are shown in Figure 8.
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Figure 8. The results of detection threshold.

When the significance level is α = 95%, the detection thresholds of the training set,
which are calculated using Equation (58), are

f0 : JShigh < 0.1375
f1 : JShigh < 0.0995
f2 : JShigh < 0.1225

Thus, the detection results of using JS divergence methods on the testing data are
shown in Figure 9. If the detection points fall within the threshold, the data set to be
detected is in the same pattern; otherwise, the data have different patterns.
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Figure 9. Fault detection effect using JS divergence as index.

Furthermore, detection rates using different methods are shown in Table 1.

Table 1. Detection rate of normal and different failure modes using different methods.

Method T2 Statistics Detection Cross Entropy JS Divergence

Normal mode f0 95.80% 96.95% 97.03%
Known fault f1 83.47% 94.41% 95.81%
Known fault f2 78.11% 94.19% 95.36%

Unknown fault f3 \ 53.16% 69.49%
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For the known fault, Table 1 indicates that the bearing fault identification based
on multidimensional KDE and JS divergence achieves better results compared to those
obtained using the T2 statistics detection methods in the testing data. The detection rate
of normal data f0 increases from 95.08% to 97.03%, the detection rate of fault data f1
increases from 81.33% to 95.81%, and the detection rate of fault data f2 increases from
70.69% to 95.36%. Meanwhile, compared with the cross-entropy methods, the detection
rate of normal data f0 increased from 96.95% to 97.03%; of fault data f1 increased from
94.41% to 95.81%; and of fault data f2 increased from 94.19% to 95.36%.

For the unknown fault f3, Table 1 shows that the T2 statistics detection method cannot
detect the unknown faults. The method using cross entropy as a measure can only detect
unknown faults with a detection rate of 53.16%, which is not obvious. The JS divergence
method constructed in this study can identify the unknown fault accurately, and the
detection rate reaches 69.49%. This is because JS divergence is more accurate at measuring
the differences between distributions.

5.3. Influence of Window Width on Fault Diagnosis

The fault diagnosis effect is related to the data window width; therefore, the fault
diagnosis effect under different window widths is investigated. The results are shown in
Figure 10.
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Figure 10. Fault diagnosis effect under different window width hm.

Figure 10 indicates that, with the increase in the detection window, the detection
performance of the proposed method for the known fault detection first rises, and then, it
tends to be stable. This is because when the length of the detection window increases to a
certain extent, the data to be detected already contains sufficient information. Meanwhile,
if the detection window continues to increase, the contribution rate to the improvement
of the fault detection rate is not large. Meanwhile, for unknown faults, the detection rate
increases rapidly with the length of the detection window because the longer the detection
window, the higher the amount of information contained in the data to be detected, and the
better is the difference characterized between the fault and the known fault.

6. Conclusions

In this study, a method of bearing fault detection and identification was constructed
using multidimensional KDE and JS divergence. The distribution characteristics of JS
divergence between the sample density distribution and population density distribution
were derived using the sliding sampling window method. Thus, the threshold of fault
detection was provided, and therefore, different faults, especially unknown faults, could
be identified. The theory showed that the multidimensional KDE method could reduce
information loss caused by processing each dimension; the JS divergence is more accu-
rate than the traditional cross entropy to measure the difference in density distribution.
The experimental results verified the above conclusions.

For a known fault, the detection effect of this method was obviously better than that of
the traditional method, and it also had a certain degree of improvement compared with the
cross-entropy method. Second, for unknown faults, the traditional method could not detect
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the distribution difference accurately, while the detection effect of the proposed method
was significantly improved.

Furthermore, the detection effect of this method depends on the window width.
The detection effect improved with a growth in the detection window. In this paper,
under the condition of a given window width, the estimation formula for the optimal band-
width of a multidimensional KDE was provided. The experimental results showed that the
formula was applicable to any mode of data, and therefore, it had a certain universality.

However, this study has certain limitations. Firstly, although the calculation formula
of multidimensional KDE is given in this study, the computational complexity will increase
when the dimension is large, which may restrict the further application of the method.
Secondly, the calculation of JS divergence is time consuming, which is not conducive to
rapid fault diagnosis.

In future research, we can try to use the PCA dimension reduction method to solve
the computational complexity caused by very large dimension, and optimize the algorithm
flow of JS divergence to expedite the calculation. In the latest study Ginzarly et al. [24],
prognosis of the vehicle’s electrical machine is treated using a hidden Markov model after
modeling the electrical machine using the finite element method. Therefore, we will try to
combine this method in future work and apply it to the fault detection of other systems.
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