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splenectomy plus pericardial
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Yang Zhao1,2, Rui Zhou1,3, Ying Guo1,2, Xi Chen1,2,
Aiyu Zhang1,2, Jiayin Wang4, Fanpu Ji1,2,5, Bowen Qin1,2,
Jing Geng1,2, Guangyao Kong1,2 and Zongfang Li1,2,3*

1Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, China, 2National & Local Joint Engineering Research
Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, China, 3Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China, 4School of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an, China, 5Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
The gut microbiome is an essential component of the intestinal mucosal

barrier, critical in regulating intestinal permeability. Microbiome dysbiosis and

intestinal permeability changes are commonly encountered conditions in

patients with cirrhosis and are closely related to its development and further

complications. However, alterations in the gut microbiome and intestinal

permeability in chronic hepatitis B virus (HBV) patients with cirrhotic portal

hypertension after undergoing a splenectomy plus per icardia l

devascularization (SPD) have not been investigated. This study recruited 22

patients who were measured against themselves on the study parameters

before and after an SPD, along with 20 healthy controls. Methodologically,

fecal samples were collected for gut microbiome analysis by 16S ribosomal

DNA sequencing, and peripheral blood samples were obtained to examine the

liver function and intestinal permeability. This study showed that the

community structure of the gut microbiomes in patients before the SPD

exhibited obvious differences from those in the healthy control group. They

also exhibited a decreased bacterial community richness, increased intestinal

permeability, and enhanced inflammation compared with the healthy controls.

These issues were further aggravated two weeks after the SPD. There was also

evidence of significantly higher abundances of Streptococcaceae,

Enterobacteriaceae, and Enterococcaceae than those in the healthy control

group. However, 12 months after the surgery, 12 of the 16 patient-associated
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genera recovered, of which 10 reached normal levels. Additionally, the

microbiome diversity increased; the bacterial composition was back to a

level similar to the healthy controls. Liver function, intestinal permeability,

and inflammation levels all improved compared with preoperative levels.

Furthermore, correlation analyses indicated that the five recovered bacterial

taxa and the Shannon diversity index were correlated with several improved

clinical indicators. Altogether, the improvements in the liver function and

intestinal permeability in HBV-related cirrhotic patients may be related to the

restoration of the gut microbiome after an SPD.
KEYWORDS

l iver ci rrhosis , porta l hypertens ion, splenectomy, gut microbiome,
intestinal permeability
Introduction

As the pathologic end-stage of advanced liver disease from

hepatitis B virus (HBV) infection (1), cirrhosis may unavoidably

progress to portal hypertension, which subsequently leads to

various portal hypertension-caused complications, such as

hypersplenism, gastroesophageal varices, variceal hemorrhage,

and ascites (2). Hypersplenism is the most common

complication, with an incidence rate of approximately 64%

(3). Its presence indicates a more advanced stage of liver

disease and an increased risk of complications. A splenectomy

plus pericardial devascularization (SPD) is a classic and

efficacious surgical therapy to alleviate pancytopenia caused by

hypersplenism, improve liver function, and reduce portal

pressure and the risk of variceal hemorrhage (4, 5). However,

many postoperative complications, such as infection and

thrombosis, are the most common threats to post-SPD

patients (6). Therefore, analyzing the relevant risk factors for

postoperative complications and strengthening perioperative

management are crucial to improving a prognosis.

The gut microbiome refers to a wide variety of

microorganisms, predominantly bacteria, that reside in the

host’s gastrointestinal tract. The gut microbiome can maintain

normal intestinal barrier function by protecting the intestines

from colonizing and invading pathogens and producing

beneficial metabolites (7). The liver is the first extraintestinal

organ to receive venous blood from the gut via the portal vein. It

communicates bidirectionally with the gut and its microbiome

through the gut-liver axis (8). Liver dysfunction in patients with

cirrhosis can negatively affect the gut by reducing bile acid

secretion, impairing intestinal motility, incurring portal

hypertension, or decreasing the synthesis of antibacterial

molecules (9, 10), all of which may cause a changed intestinal
02
microenvironment, further leading to dysbiosis of the gut

microbiome and alteration in intestinal permeability (11). The

gut microbiome dysbiosis begins before cirrhosis development

and during the progression of chronic liver disease. The severity

of the disorder has been found to correlate with the degree of

liver function damage present at the time (12). The alteration of

the gut microbiome in patients with cirrhosis is usually

characterized by an overgrowth of potentially pathogenic

bacteria concomitant with a decrease in the levels of beneficial

bacteria (13, 14). Gut microbiome dysbiosis and intestinal

barrier injury significantly contribute to the progression of

cirrhosis and have also been implicated in the pathogenesis of

cirrhosis-related complications (15). Previous studies have

confirmed the relationship between the perioperative or

postoperative gut microbiome characteristics and prognoses

(16, 17). Certain specific bacterial taxa have been identified as

independent risk factors for the adverse clinical outcomes of

patients (18, 19). All this evidence suggests that maintaining the

dynamic balance of a normal gut microbiome may represent a

promising approach to alleviating postoperative complications

and improving the prognosis after an SPD. However, the gut

microbiome can vary with different etiologies of liver cirrhosis.

The alterations in the gut microbiome and intestinal

permeability in HBV-related cirrhotic patients after

undergoing an SPD are yet to be reported.

In the study, we evaluate the gut microbiome and intestinal

permeability status between healthy controls and HBV-related

cirrhotic patients with portal hypertension and hypersplenism.

In particular, the differences in intestinal microbial communities

before and after the SPD were characterized. Correlations

between specific bacterial taxa as well as liver function and

intestinal permeability in the patients were also analyzed. The

present study could help to gain a better understand of the risks
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and beneficial effects of SPD for cirrhotic patients from the

perspective of their intestinal microenvironments.
Materials and methods

Inclusion and exclusion criteria

The patients in the study had HBV-related cirrhosis with

portal hypertension and hypersplenism and had undergone an

SPD procedure at the Second Affiliated Hospital of Xi’an

Jiaotong University. The inclusion criteria were designated as

follows: [1] The patients had been diagnosed according to the

guideline of prevention and treatment for chronic hepatitis B in

China (2015 update) by comprehensive consideration of liver

biopsy results, imaging examinations, clinical features, physical

signs, laboratory tests, medical histories, progress notes, and

associated complications (20). [2] All the patients suffered

varying degrees of splenomegaly, and the majority of them

had moderate or severe esophagogastric varices as revealed by

upper gastrointestinal radiography or endoscopy examinations.

[3] The clinical indications for an SPD included endoscopic

treatment-resistant esophagogastric varices with or without

variceal hemorrhage, history of esophageal variceal bleeding or

potential bleeding or infection due to hypersplenism and

thrombocytopenia (platelet count <50×109/L), and upper

abdominal discomfort owing to an enlarged spleen (5, 6).

[4] The patients were not treated at the hospital until their

stool and serum samples had been obtained.

The exclusion criteria for this study were detailed as follows:

[1] Patients who presented with hepatic carcinoma, hepatic

encephalopathy, or preoperative Child-Pugh class C were

excluded. [2] Patients who concomitantly suffered from other

disease entities (such as diabetes, hypertension, obesity, metabolic

syndrome, inflammatory bowel disease, nonalcoholic fatty liver

disease, coeliac disease and cancer) were excluded. [3] Patients

who had received antibiotics and/or probiotics within the three

months of the onset of the study were also excluded.

The inclusion and exclusion criteria of the healthy control

group were set as follows: [1] The healthy individuals underwent

routine health checkups in the Second Affiliated Hospital of

Xi’an Jiaotong University and did not fulfill the exclusion criteria

listed above. [2] The results of liver imaging, liver biochemistry,

physical examinations, urine, blood, and stool tests were within

the normal range. [3] Participants in this group were selected by

matching them with the study patients based on their age, sex,

and body mass index score.

All patients were informed about the benefits and risks of

SPD, and prior informed consent was obtained from all

participants. The study conformed to the ethical guidelines of

the 1975 Declaration of Helsinki and was approved by the

Institutional Ethics Committee of the Second Affiliated

Hospital of Xi’an Jiaotong University (Approval No. 2017-416).
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Fecal sample collection, DNA extraction,
and PCR amplification

Fresh fecal samples from patients with cirrhosis (before the

SPD as well as two weeks and 12 months after the SPD) and

healthy individuals were collected in a sterile container and

delivered immediately from the hospital to the laboratory using

an insulated polystyrene foam box filled with ice. Upon

collection, each stool sample was immediately divided into

aliquots, flash-frozen in liquid nitrogen, and stored at -80°C

before analysis. Total bacterial DNA was then extracted from a

frozen aliquot (200 mg) of each fecal sample using a QIAamp

DNA Stool Mini Kit (51504, Qiagen, Germany) in accordance

with the manufacturer’s instructions. The quality and quantity of

the DNA were measured considering ratios of 260/280 nm and

260/230 nm using a NanoDrop spectrophotometer (NanoDrop

2000, Thermo Scientific, Wilmington, DE, USA). The V3+V4

hypervariable region of the bacterial 16S ribosomal RNA

(rRNA) gene was amplified with the common primer pair

338 F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806 R (5′-
GGACTACHVGGGTWTCTAAT-3′) combined with adapter

and barcode sequences. The thermal cycling conditions were

as follows: initial denaturation at 95°C for 5 min (1 cycle),

followed by 95°C for 30 s, 50°C for 30 s, and 72°C for 40 s (25

cycles), and a final extension at 72°C for 7 min.
DNA library construction and sequencing

Purified amplicons were quantified by a Quant-iT™ dsDNA

High-Sensitivity Assay Kit (Q33120, Invitrogen, USA) and

pooled in equimolar amounts. Then, DNA libraries were

constructed in accordance with the manufacturer’s (Illumina)

instructions and sequenced on an Illumina HiSeq 2500 platform

(Illumina, San Diego, CA, USA) with the paired-end 250 mode

(2×250 bps) following the standard protocols provided by

Biomarker Technologies Co. Ltd. (Beijing, China).
Microbiome analysis

After excluding the adaptor and primer sequences, the raw

sequences were assembled for each sample according to the

unique barcode using the Quantitative Insights Into Microbial

Ecology platform (QIIME, V.1.8.0). The raw paired-end reads

from the original DNA fragments were merged by FLASH

(V.1.2.7), and assigned to each sample according to the unique

barcodes. All the effective reads from each sample were assigned to

the same operational taxonomic units (OTUs) based on a cut-off

of 97% similarity according to the UCLUST algorithm. For alpha

diversity analysis, the OTUs were rarified to different metrics to

analyze species diversity in a sample. This included generating

curves for OTU rank, rarefaction, and the Shannon index. The
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standard Shannon and Simpson diversity indices and richness

indices (including the Chao1 and abundance-based coverage

estimator [ACE] indices) were calculated by Mothur (V.1.30).

For beta-diversity analysis, principal component analysis (PCA),

principal coordinate analysis (PCoA) and nonmetric

multidimensional scaling (NMDS) were performed using the

QIIME to evaluate differences in species complexity among the

samples. All analyses were carried out with a bioinformatic

pipeline tool, BMK Cloud (http://www.biocloud.net/).
Enzyme-linked immunosorbent assay

Peripheral venous blood from each individual was collected

into pro-coagulation tubes before and after the SPD. The tubes

were left undisturbed at room temperature for 30 min and then

centrifuged at 2,000 rpm for 10 min at 4°C. The supernatants

(serum) were divided into aliquots and stored at -80°C until

subsequent analysis. One aliquot was used for each assay to

avoid multiple freeze/thaw cycles. The serum concentrations of

tumor necrosis factor a (TNF-a), diamine oxidase (DAO),

lipopolysaccharide (LPS), and D-lactate (D-LA) were

measured by enzyme-linked immunosorbent assay (ELISA)

kits (MLbio, Shanghai, China) in accordance with the

manufacturer’s protocols. All samples were tested in triplicate.

The optical density at 450 nm was measured using a microplate

reader (PowerWave XS2, BioTek, Winooski, VT, USA).
Statistical analysis

All statistical analyses were performed with the SPSS 21.0

statistical package (SPSS, Chicago, IL, USA). Values are

presented as the mean ± standard deviation for normally

distributed data or median and interquartile range for

continuous variables following non-normal distribution or

number (%) for categorical variables. One-way ANOVA test

was used for comparison of continuous data among multiple

groups, while the LSD-t test was used for further comparison

between two groups. The Kruskal-Wallis test was performed to

process the data that retained a non-normal distribution even

after log transformation. The inter-group difference was

compared with Fisher’s exact test for categorical variables.

Multiple hypothesis tests were adjusted using the Benjamini

and Hochberg false discovery rate (FDR); significant differences

were considered when the results were below an FDR threshold

of 0.05. Spearman’s rank correlation coefficient (P-value<0.05)

was used to evaluate the associations between bacterial

abundance and clinical characteristics as appropriate. All tests

for significance were two-sided, and P<0.05 was defined as

statistically significant. All figures were plotted by Origin

Pro8.0 software (OriginLab, Northampton, MA, USA) and R

software (V. 3.4.4).
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Results

Study population

From March 1, 2017, to December 31, 2018, a total of 34

HBV-related cirrhotic patients who met the inclusion-exclusion

criteria were enrolled in the study and were prepared for

comparisons to themselves on the study parameters taken

before the SPD (Pre) vs. two weeks after the SPD (Post1) vs.

12 months after the SPD (Post2) (Figure 1). Eight patients were

excluded 12 months after the SPDs for the following reasons:

One patient with cirrhosis had developed hepatocellular

carcinoma, two patients had taken antibiotics within the three

months prior to stool sample collection, and five patients were

lost to follow-up. In summary, serum and fecal samples were

obtained from 22 patients before and after the SPD (the stool

samples of four patients were not collected at two weeks after the

surgery) and from 20 healthy controls (HC). The clinical

characteristics of the patients with cirrhosis and the healthy

controls are shown in Table 1. As expected, the liver function of

the cirrhotic patients with portal hypertension and

hypersplenism was severely impaired, and blood cell counts

were remarkably reduced compared with those of the healthy

control group. However, the Child-Pugh classes of five patients

at Post1 and eight patients at Post2 were downgraded from class

B to A, with the decreases in the Child-Pugh scores from 6.2 ±

1.3 (Pre) to 5.8 ± 0.7 (Post1) (P>0.05) and 5.1 ± 0.4 (Post2)

(P<0.001), respectively. Furthermore, blood cell counts

increased after SPD and reached normal levels in the Post2

group. Therefore, liver function and pancytopenia were

ameliorated significantly in the long term after therapeutic SPD.
The changes in the microbiome diversity
and bacterial composition 12 months
after the SPD

First, overall differences in the microbial community

structures in the healthy controls and cirrhotic patients before

and after SPD were calculated. High-throughput sequencing of

the bacterial 16S rRNA gene V3+V4 regions in 86 samples

produced 6,438,544 raw reads (an average of 74,866 reads per

sample). After filtering the low-quality sequences and chimeras,

4,889,963 effective tags were obtained for the following analysis.

Based on a 97% similarity level, all effective tags were clustered

into OTUs. The rarefaction curve and Shannon index curve were

plotted to reflect sequencing depths. As shown in Figures 2A, B,

OTU numbers and Shannon indices reached plateaus with

increases in sample sequence numbers, suggesting that the

sequencing depth was adequate.

The alpha diversity of the gut microbiome was assessed

using richness and diversity indices. The ACE and Chao1
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FIGURE 1

Flow chart of participants through each stage of the clinical study.
TABLE 1 Clinical information summary of cirrhotic patients and healthy controls.

Characteristic A group B group C group D group P value

HC (n = 20) Pre (n = 22) Post1 (n = 22) Post2 (n = 22) A vs B A vs C A vs D B vs C B vs D

Age 48.1 ± 9.1 46.2 ± 9.0 46.2 ± 9.0 47.2 ± 9.0 n.s. — — — —

Male/female 12/8 13/9 13/9 13/9 n.s. — — — —

BMI (kg/m2) 22.1 ± 1.3 22.0 ± 1.2 21.4 ± 1.1 22.0 ± 1.3 n.s. n.s. n.s. n.s. n.s.

TB (mM/L) 10.7 ± 3.0 25.7 ± 10.4 18.0 ± 9.1 16.7 ± 6.6 *** ** * ** ***

ALT (IU/L) 23.2 ± 8.9 36.5 ± 18.6 26.8 ± 17.6 31.1 ± 12.7 ** n.s. n.s. * n.s.

AST (IU/L) 20.9 ± 5.0 41.1 ± 24.0 31.6 ± 14.6 38.5 ± 14.1 *** * ** n.s. n.s.

Albumin (g/L) 43.5 ± 4.4 36.3 ± 5.7 37.8 ± 5.7 42.0± 4.3 *** *** n.s. n.s. ***

PT (s) 11.9 ± 1.1 13.3 ± 1.6 12.0 ± 1.1 12.1 ± 1.4 ** n.s. n.s. ** **

WBC (109/L) 6.2 ± 1.2 2.2 ± 0.9 7.8 ± 2.2 5.9 ± 2.1 *** ** n.s. *** ***

PLT (109/L) 227.9 ± 30.2 36.0 ± 13.3 303.3 ± 100.3 233.2 ± 69.9 *** *** n.s. *** ***

Ascites (n, %) — 7 (31.8) 3 (13.6) 2 (9.1) — — — n.s. n.s.

Child-Pugh score — 6.2 ± 1.3 5.8 ± 0.7 5.1 ± 0.4 — — — n.s. ***

Child-Pugh class (A/B/C) — 14/8/0 19/3/0 22/0/0 — — — ** **
Frontiers in Immunology
 05
 fronti
BMI, body mass index; TB, Total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; PT, prothrombin time; WBC, white blood cell count; PLT, platelet count. *P < 0.05,
**P < 0.01, ***P < 0.001; n.s. represents no significant difference.
Data are expressed as mean ± standard deviation. Numbers in parenthesis are %.
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indices, which measure species richness, revealed that the

richness was significantly lower at Pre compared with that in

the healthy control group (P<0.05), and richness was further

reduced at Post1 (Figures 2C, D). However, richness was

increased at Post2 compared with Pre and Post1 (P<0.001).

The Shannon and Simpson indices, which reflect bacterial

diversity, are influenced by both the richness and evenness of

the community, and a relatively high Shannon index or relatively

low Simpson index indicates an increased diversity. As shown

in Figure 2E, the Shannon diversity index was slightly lower at

Pre than in the healthy control group, but the difference was

not statistically significant (P>0.05); however, this index was

further decreased at Post1 than in the healthy control and Pre

groups, and was restored at Post2 (P<0.05). Accordingly, the

Simpson diversity index indicated the opposite tendencies
Frontiers in Immunology 06
during the whole process (Figure 2F). The above results

indicated that a low richness and diversity of the gut

microbiome existed in patients before undergoing the SPD

and during hospitalization. However, this situation improved

12 months after surgery.

The beta diversity of the microbiome was assessed using

unsupervised multivariate statistical methods, including

PCoA (based on Binary Jaccard) and NMDS (based on

Weighted Unifrac). The results showed that the bacterial

compositions in the Pre and Post1 groups not only clearly

deviated from each other but also set apart from those in

the healthy control group and in Post2 (Figures 2G, H).

However, most of the points at Post2 overlapped with those

in the healthy control group, suggesting similar bacterial

community structures.
B

C D E

F G H

A

FIGURE 2

The alterations in the gut microbiome diversities and structures in patients after the SPD. (A, B) Rarefaction curves and Shannon curves of the
gut microbiome in each sample. (C–F) Comparisons of the microbiome alpha diversity at Pre (n = 22), Post1 (n = 22), Post2 (n = 22), and in the
healthy control (n = 20) groups. Alpha diversity was illustrated by the ACE richness index, Chao1 richness index, Shannon diversity index, and
Simpson diversity index. The boxes represent the 25th through the 75th percentile, and the median value is shown as a horizontal line inside the
box; the whiskers extend to 1.5 times the difference between the 25th and 75th percentiles. *P < 0.05, **P < 0.01, ***P < 0.001. (G, H) PCoA
score plot based on Binary Jaccard and NMDS score plot based on Weighted Unifrac.
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Normalization of the gut microbiome in
patients 12 months after SPD

To investigate the SPD-related changes in bacterial

phylotypes in patients with cirrhosis, the microbial

compositions of the stool samples from the groups were

analyzed. The relative abundances (%) of the dominant

microbial phyla, families, and genera clustered into each group

are shown in Figure S1. At the phylum level, the gut microbiome

composition of all individuals was mainly characterized by

Bacteroidetes, Firmicutes, and Proteobacteria, with minor

contributions from Actinobacteria , Verrucomicrobia ,

Cyanobacteria, Fusobacteria, and others. Although the

bacterial community was highly diverse and there were

marked interindividual differences, the microbial communities

of the study patients differed from those of healthy controls.

There were significantly lower relative abundances of

Bacteroidetes and Lentisphaerae at Pre than in the healthy

control group, while Actinobacteria was remarkably

overrepresented (P<0.05) (Figure S2). However, the relative

abundance of Lentisphaerae was recovered at Post2 (P<0.05)

and was not significantly different from that in the healthy

control group (P>0.05).

At the family level, the relative abundances of five families,

including Enterobacteriaceae, Streptococcaceae, Lactobacillaceae,

Bifidobacteriaceae, and Clostridiaceae_1, were significantly higher

in the Pre group than in the healthy control group (P<0.05)

(Figure 3A). Notably, three families containing many potentially

pathogenic phylotypes, Enterococcaceae, Enterobacteriaceae, and

Streptococcaceae, were significantly higher in abundance at Post1

than in the healthy control group (P<0.05) (Figure 3B). All three

families showed a declining tendency at Post2 compared with

Post1, especially as Enterococcaceae and Enterobacteriaceae were

significantly reduced (P<0.01) . Enterobacter iaceae ,

Streptococcaceae, and Clostridiaceae_1, the three disordered

families at Pre, were reversed at Post2, and the relative

abundance of Enterobacteriaceae even reached normal level

when compared with the healthy control group (P>0.05)

(Figure 3C). In addition, the correlation between disease

severities and specific families at Pre revealed that the Child-

Pugh score was negatively correlated with the relative abundance

of the Lachnospiraceae (R=-0.502, P<0.05) and positively

correlated with the Streptococcaceae (R=0.587, P<0.01) (Figure

S3A). However, the relative abundances of the two families were

reversed after the SPD at Post2, especially the difference in the

Lachnospiraceae was statistically significant compared with the

Pre (P<0.05) (Figure S3B). This was in accordance with the result

that showed that the Child-Pugh score was dramatically reduced

at Post2 (Table 1).

The bacterial taxa were also compared at the genus level to

further evaluate the differences between the groups. Sixteen

cirrhosis-associated genera were differentially abundant between

the Pre and the healthy control group (P<0.05). Among the nine
Frontiers in Immunology 07
genera enriched in the healthy control group (Figure 4A),Dialister,

Lachnospiraceae_NK4A136_group , Subdoligranulum ,

Ruminococcaceae_UCG-002, Barnesiella, Ruminococcaceae_UCG-

003, and Lachnospiraceae_UCG-008 displayed significantly

increased abundances at Post2 (P<0.01) (Figure 4C). In contrast,

of the seven genera that were enriched at Pre (Figure 4B),

Veillonella and [Ruminococcus]_gnavus_group were significantly

decreased at Post2 (P<0.01) (Figure 4C). Altogether, the relative

abundances of twelve cirrhosis-associated genera were improved at

Post2, and, except for Subdoligranulum and Streptococcus, ten

genera even reached normal levels (P>0.05).

In addition, it is worth mentioning that Enterococcus,

Escherichia-Shigella, and Streptococcus were more enriched at

Post1 compared with the healthy control group (Figure 5A). As

concluded by many clinical studies, these genera contain many

pathogenic species that are the leading causes of bacterial infections

and are associated with a poor clinical prognosis in patients with

cirrhosis (18, 21–23). The result of this study was in accordance with

the changes in bacterial communities at the family level (Figure 3B).

Lachnospira, Faecalibacterium, Lachnospiraceae_NK4A136_group,

Roseburia, Subdoligranulum, [Eubacterium]_eligens_group, Blautia,

and so on, which can produce beneficial substances called short-

chain fatty acids (SCFAs) (24), were significantly suppressed in the

Post1 group (Figure 5B). With the exception of Streptococcus, the

relative abundances of these fifteen genera were reversed at Post2,

and had significant differences compared with those at Post1

(P<0.01). All this evidence indicated an imbalance in the intestinal

flora in cirrhotic patients. This situation was aggravated two weeks

after the SPD. However, it had partly improved 12 months

after surgery.
The association of the restoration of the
gut microbiome with the improvement
of liver function and intestinal
permeability after SPD

The concentration levels of DAO, D-LA, LPS, and TNF-a,
which indirectly reflect intestinal permeability and systemic

inflammatory levels, were measured to evaluate the effects of

the SPD on intestinal permeability. As shown in Figures 6A–D,

the levels of the four biomarkers were higher in Pre than in the

healthy control group (P<0.05). Subsequently, these indices were

further increased significantly at Post1 (P<0.05) and reached

peak values. Finally, these indices displayed decreased levels at

Post2 compared with Pre and Post1. The concentrations of D-

LA and LPS in the Post2 group were still slightly higher than

those in the healthy control group (P<0.05), but DAO and TNF-

a were restored to a normal level (P>0.05).

To further elucidate whether the improved liver function and

intestinal permeability were related to the recovery of the gut

microbiome at Post2, a correlation analysis between the clinical

parameters and improved genera was conducted. The results
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showed that the relative abundance of Veillonella was positively

correlated with aspartate aminotransferase (AST) (R=0.451,

P<0 .05) (F igure 7A) . The re l a t ive abundance o f

Subdoligranulum was negatively correlated with AST (R=-0.464,

P<0.05) and alanine transaminase (ALT) (R=-0.456, P<0.05)

(Figures 7B, C). The relative abundances of Streptococcus and

Veillonella were negatively correlated with albumin (R=-0.481,

P<0.01; R=-0.672, P<0.01, respectively) (Figures 7D, E). The

relative abundances of Enterobacteriaceae and Escherichia-

Shihella, which contain many kinds of gram-negative bacteria,

were positively correlated with LPS concentration (R=0.564,

P<0.01; R=0.678, P<0.01) (Figures 7F, G). The relative
Frontiers in Immunology 08
abundance of Lachnospiraceae_NK4A136_group was negatively

correlated with D-LA (R=-0.512, P<0.05) and TNF-a (R=-0.609,

P<0.01) concentrations (Figures 7H, I). In particular, the

Shannon diversity of the gut microbiome showed a negative

correlation with LPS (R=-0.654, P<0.01), DAO (R=-0.528,

P<0.05), and D-LA (R=-0.467, P<0.05) concentrations

(Figures 7J–L). Compared with the Pre group, the changing

trends in these clinical parameters and bacterial taxa at Post2

were consistent with the correlations between them. These results

suggested that normalizing the intestinal permeability through

the restoration of some specific genera might ameliorate liver

damage and its function.
B

C

A

FIGURE 3

Microbiome phylotype alterations at the family level. (A) The relative abundances of five families were significantly different between the healthy
control group (n = 20) and at Pre (n = 22). (B) Enterococcaceae, Enterobacteriaceae, and Streptococcaceae were significantly increased at
Post1 (n = 22) compared with the healthy control group (n = 20) but showed a declining tendency at Post2 (n = 22). (C) Enterobacteriaceae,
Streptococcaceae, and Clostridiaceae_1 were reversed at Post2 (n = 22) compared with Pre (n = 22). The box plot illustration is provided in
Figure 2, *P < 0.05, **P < 0.01, ***P < 0.001.
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Discussion

To the best of our knowledge, this was the first prospective

study to investigate the alterations in the gut microbiome

and the intestinal permeability of HBV-related cirrhotic

patients after undergoing an SPD. Our results revealed that

gut microbial dysbiosis, increased intestinal permeability

and impaired liver function were significantly mitigated

at 12 months after surgery. Several improved clinical
Frontiers in Immunology 09
parameters were related to specific bacterial taxa with

altered abundances.

Diversity is one of the essential tools by which to

characterize the microbiome. Alpha diversity measures the

diversity of the microbial community in a single sample,

taking into account the number of different taxa and their

relative abundances. A lower alpha diversity, which usually

indicates a non-healthy and poor gut-microbial status, has also

been reported to be associated with other diseases, such as
B

C

A

FIGURE 4

Microbiome phylotype alterations at the genus level. The phylotypes (A) decreased and (B) increased at Pre (n = 22) compared with the healthy
control group (n = 20). (C) Twelve of the patient-associated genera had recovered at Post2 (n = 22). The box plot illustration is provided in
Figure 2, *P < 0.05, **P < 0.01, ***P < 0.001.
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inflammatory bowel disease, obesity, and colorectal cancer (25).

Recent data suggest that mice with a complex gut microbiome

showed reduced liver fibrosis in cholestasis-induced and toxin-

induced liver injury, again demonstrating the health-promoting

effects of a diverse gut microbiome (26). Beta diversity describes

the degree of similarity in the microbial community composition

between different samples. We found that the alpha diversity

levels of the fecal microbiome exhibited a decreasing tendency in

the HBV-related cirrhotic patients compared with healthy

controls in this study. It was further reduced within two weeks

of the SPD, probably due to conventional treatments during the

perioperative period, such as antibiotic usage or abrosia.

However, this situation improved 12 months after surgery.

Meanwhile, the beta diversity of the fecal microbiome showed
Frontiers in Immunology 10
the same varying tendencies. Although the exact reason for the

decreased microbial diversity in patients with cirrhosis is

unclear, this phenomenon could be explained by the richness

and evenness of microbial communities in the patients being

insufficient to construct a rich and diverse biome such as those

observed in healthy individuals. From the bacterial point of view,

a more diverse community is associated with greater ecosystem

resilience. The intestinal microenvironment may be more

conducive to the overgrowth of certain bacteria that suppress

other species below the detection threshold in patients under

these abnormal conditions, thus decreasing bacterial diversity.

These alterations in diversity, which only indicated

differences between the groups, did not define which taxa were

responsible for such differences. Therefore, substantial
B

A

FIGURE 5

(A) Three opportunistic pathogens were enriched at Post1 (n=22) compared with the healthy control group (n = 20) but showed a declining
tendency at Post2 (n = 22). (B) Twelve SCFA-producing genera were significantly suppressed at Post1 (n = 22), compared with the healthy
control group (n = 20), and were restored after SPD at Post2 (n = 22). The box plot illustration is provided in Figure 2, *P < 0.05, **P < 0.01,
***P < 0.001.
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differences in the gut microbiome that existed between the

period before and after the SPD at different taxonomic levels

were evaluated. At the phylum level, the relative abundance of

Bacteroidetes, which is dominant in the human gut, was

significantly reduced at Pre compared with the healthy control

group. This was in accordance with previous studies that

recruited cirrhotic patients with various etiologies (13, 14).

The prognosis of inpatients with cirrhosis depends on the

proinflammatory milieu, which may lead to organ failure. The

proinflammatory milieu in cirrhosis is associated with the gut

microbial dysbiosis characterized by an increase in the taxa

belonging to the phylum Proteobacteria (27). However, the

relative abundance of Proteobacteria was slightly higher in Pre

than in the healthy control group, but the difference was not

statistically significant. At a lower taxonomic level,

Lachnospiraceae, which showed a negative correlation with the

Child-Pugh score at Pre, was significantly overrepresented at

Post2. In contrast, Streptococcaceae, which showed a positive

correlation with the Child-Pugh score, exhibited the opposite

result at Post2. These correlations are the key to discovering the

connection between gut microenvironment variation and liver

function improvement in cirrhotic patients.
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Although illustrating the mechanism of underlying gut

microbiome variations post-SPD was not the primary purpose

of this study, we speculated that alleviating liver impairment in

these patients could lead to this outcome. Splenic abnormalities

are involved in the progression of liver fibrosis to cirrhosis

through liver-spleen crosstalk. Splenic macrophages have been

suggested as one of the crucial sources of transforming growth

factor-beta1 (TGF-b1), which is considered the predominant

fibrogenic cytokine in liver fibrosis (28). Splenic TGF-b1 plays a
critical role in developing hepatic fibrogenesis. A splenectomy

could decrease the serum level of TGF-b1 significantly while

improving the parameters of liver fibrosis (29). Studies have also

observed that a splenectomy promotes liver regeneration

capacities of the liver by reducing TGF-b1 production and

increasing hepatocyte growth factor levels (30, 31). In

addition, the spleen influences the hepatic immune

microenvironment by splenic soluble factor secretions and

spleen-derived immune cell migrations. Our previous study

demonstrated that splenic macrophages promoted chemokine

CCL2 secretion in hepatic macrophages, facilitating monocyte

recruitment and establishing an M1 dominant phenotype in

hepatic macrophages, thus promoting hepatic fibrosis (32).
B

C D

A

FIGURE 6

Alterations in the intestinal permeability and systemic inflammatory indices in peripheral blood. (A) Serum DAO, (B) D-LA, (C) LPS, and (D) TNF-a
levels in the healthy control group (n = 20) and cirrhotic patients (n=22) before and after the SPD. Box plot illustration is provided in Figure 2,
*P < 0.05, **P < 0.01, ***P < 0.001.
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Liver function is impaired along with the reduction of bile acid

secretion and increased intestinal pH, leading to intestinal

bacterial overgrowth in patients with cirrhosis. One study

showed that oral administration of bile acids could reduce

bacterial overgrowth and prevent bacterial translocation and

endotoxemia in cirrhotic rats, indicating that the status of liver
Frontiers in Immunology 12
function can directly impact the intestinal microenvironment

(33). On the other hand, patients with liver cirrhosis may have

elevated portal vein pressure, which causes intestinal mucosal

congestion and edema, and reduced intestinal motility (9). Taken

together, the dysfunction of the cirrhotic liver may change the

intestinal microenvironment and cause gut microbiome
B C

D E F

G H I

J K L

A

FIGURE 7

Correlation analysis of (A–E) the relative abundance of improved genera with liver damage and liver function indicators, (F–L) the relative
abundance of improved bacterial taxa and Shannon diversity with intestinal permeability indicators at Post2.
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imbalance. This study and others have shown that the SPD can

reduce portal vein pressure and significantly improve liver

function (4, 34), so as to better gut microenvironment, and thus

further ameliorating the gut microbiome dysbiosis.

In the setting of cirrhosis, the intestinal barrier function is

usually reduced due to impaired intestinal mucosal integrity and

increased intestinal permeability. Elevated intestinal

permeability is likely to cause translocation of pathogen-

associated molecular patterns (e.g., LPS), which can induce a

systemic inflammatory response and promote liver damage (11).

One pattern, LPS, is a component of the gram-negative bacterial

cell wall and plays a vital role in enterogenous infection. The gut

microbiome is the primary source of the portal LPS, which can

be recognized by the presence of toll-like receptor 4 in intestinal

epithelial cells, promoting intestinal barrier injuries and liver

fibrosis development (35). The intracellular enzyme, DAO, is

confined primarily in intestinal villus cells that can catalyze the

oxidation of diamines. Almost all of the DAO in the blood comes

from the intestine (36). D-LA is a product of the bacterial

fermentation of carbohydrates present in the intestinal lumen.

Only a tiny amount of these substances can be detected in the

serum under normal conditions, while concentrations rise

rapidly when intestinal permeability is increased. Hence, the

DAO, D-LA, and LPS concentrations have been considered

sensitive biomarkers for reflecting intestinal permeability (37).

Our study showed that intestinal dysbacteriosis was further

aggravated at Post1 compared with Pre. On one hand, the

dysbacteriosis increased the intestinal permeability so that

Bacteroidaceae and Enterobacteriaceae, the gram-negative

bacteria, which were significantly enriched at Post1, might

rush into the circulation through the broken intestinal barrier

and release their LPS in the bloodstream. The increased LPS

levels subsequently cascaded the TNF-a to cause a stronger

inflammatory response in the body. Additionally, our further

correlation analysis revealed that the content of LPS was

positively correlated with the content of TNF-a at Post1

(R=0.429, P<0.05) (data not shown). On the other hand,

various gut-derived chemicals could more easily pass through

the dysfunctional intestinal barrier and enter the systemic

circulation from the intestines, leading to increased D-LA and

DAO levels in peripheral blood. Notably, the diversity and

complexity of intestinal microorganisms are critical to shaping

intestinal barrier systems (38). A diverse gut microbiome is

essential to regulating intestinal barrier function via the

immune-mediated host defense response, which further

prevents the progression of liver fibrosis (26). Our results

showed that all these indicators at Post1 were obviously

elevated compared with those at Pre but decreased compared

with those at Post2. This was consistent with the changes in the

gut microbiome diversity at different time points after the

surgery. In the subsequent correlation analysis, we also

confirmed that the Shannon diversity negatively correlated

with DAO, D-LA, and LPS levels.
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The gut microbiome plays an important regulatory role in

maintaining the homeostasis of the intestinal mucosal barrier by

resisting the colonization of pathogenic bacteria, promoting the

secretion of intestinal mucin and sIgA, enhancing the tight

junctions between intestinal epithelial cells, and regulating the

differentiation of intestinal immune cells (39). The large intestine

harbors commensal bacteria that ferment dietary fiber into short-

chain fatty acids (SCFAs). SCFAs mainly consist of acetic acid,

propionic acid, and butyric acid. They are an essential energy

source for colonic enterocytes and goblet cells. Mucus secreted by

goblet cells continuously replenishes the mucosal layer of the

intestinal epithelium, serving as the first barrier against

commensal bacteria and invading pathogens (40). The health-

promoting functions of SCFAs for the host include inhibiting the

inflammatory response, enhancing intestinal barrier function, and

decreasing colonic pH and ammonia production. A decrease in

SCFAs could result in hyperammonemia due to an increased pH

and ammonia absorption in the gut (41), which is a very

important pathogenetic factor in hepatic encephalopathy. We

observed the interesting phenomenon that many SCFA-

producing bacterial taxa, such as Faecalibacterium, Roseburia,

and Lachnospira, were significantly decreased at Post1

compared with those at Post2. Faecalibacterium prausnitzii is a

known gut bacterium that regulates mucus production by

enhancing goblet cell differentiation and inducing gene

expression in mucin glycosylation (42). It has also been found

that butyrate, one of the primary metabolites of Faecalibacterium

prausnitzii, can restore the number and function of mucin-

secreting goblet cells by promoting the polarization of intestinal

macrophages to M2 type, thereby promoting intestinal barrier

repair (43). In addition, the flagellin of Roseburia intestinalis can

recognize TLR5 and upregulate the tight junction protein

Occludin and mucin MUC2 genes to recover intestinal barrier

integrity (44).

With a decrease in SCFA-producing bacteria, Escherichia-

Shigella, Streptococcus, and Enterococcus, the leading causes of

opportunistic infections in patients with cirrhosis, were

significantly increased at Post1. A healthy gut microbiome

comprises diverse communities of commensal bacteria that

mutually restrict and resist invading and colonizing pathogens

(45). Consumption of these obligate anaerobes, resulting from,

for instance, perioperative stress or antibiotics, can alter the

utilization and downstream metabolism of microbiota-derived

SCFAs by colonocytes. This change increases luminal oxygen

availability, allowing the facultative anaerobes to expand (19).

This may explain the prevalence of these genera in patients

within two weeks after the SPD. A novel study has shown that

Escherichia coli (belonging to the family Enterobacteriaceae)

isolated from patients with liver cirrhosis can damage the

intestinal barrier by reducing the expression of Occludin and

E-cadherin (46). The present study found that the relative

abundances of SCFA-producing bacteria at Post2 were

significantly higher than those at Post1, while the relative
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abundance of Enterobacteriaceae was significantly lower,

suggesting that the improvement of the gut microbiome 12

months after SPD may help to reduce intestinal permeability

and improve intestinal barrier function. Improving intestinal

microenvironment, in turn, may subsequently alleviate liver

damage and improve liver function.

This study had some limitations. First, gut microbiome

difference exists between cirrhotic patients with different

etiologies (13). The present study focused on HBV-related

cirrhotic patients, and the patients who did not meet the

inclusion criteria for various reasons were excluded. Therefore,

this study may not be sufficient to represent all cirrhotic patients

with portal hypertension. It is necessary to perform additional

sub-classification analysis based on different etiologies with more

participants. Second, although the perioperative management was

protocolized and consistent across most patients, the results could

have been influenced by individual differences and unpredictable

factors, which are common issues in this kind of study. Finally, the

gut microbiome analysis was based on the 16s rRNA gene

sequence, which can only identify the bacterial classification at

the genus level, whereas metagenomic sequencing can reveal more

accurate information at a species level and concerning

microbial functions.

Even with these limitations, our work could still observe

substantial differences in the gut microbiome and intestinal

permeability between cirrhotic patients and healthy individuals.

The differences were further exacerbated two weeks after the SPD.

However, the patients then exhibited benefits that included the

improvement of liver function and gut microenvironment 12

months after surgery. Improvements in the liver function and

intestinal permeability were likely related to restoring the gut

microbiome. Further studies are needed to determine whether and

how the altered gut microbiome that occurs after an SPD

influences the prognosis of patients.
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