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Abstract 

Background:  A key challenge in the realm of human disease research is next genera‑
tion sequencing (NGS) interpretation, whereby identified filtered variant-harboring 
genes are associated with a patient’s disease phenotypes. This necessitates bioinfor‑
matics tools linked to comprehensive knowledgebases. The GeneCards suite databases, 
which include GeneCards (human genes), MalaCards (human diseases) and PathCards 
(human pathways) together with additional tools, are presented with the focus on 
MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses.

Results:  VarElect, our NGS interpretation tool, leverages the broad information in 
the GeneCards suite databases. MalaCards algorithms unify disease-related terms 
and annotations from 69 sources. Further, MalaCards defines hierarchical related‑
ness—aliases, disease families, a related diseases network, categories and ontological 
classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored 
gene-disease network, with stringency levels, including the definition of elite sta‑
tus—high quality gene-disease pairs, coming from manually curated trustworthy 
sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS 
interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both 
direct and indirect links between genes and user-supplied disease/phenotype terms, 
is robustly strengthened by the information found in MalaCards. The indirect mode 
benefits from GeneCards’ diverse gene-to-gene relationships, including SuperPaths—
integrated biological pathways from 12 information sources. We are currently adding 
an important information layer in the form of “disease SuperPaths”, generated from the 
gene-disease matrix by an algorithm similar to that previously employed for biological 
pathway unification. This allows the discovery of novel gene-disease and disease–dis‑
ease relationships. The advent of whole genome sequencing necessitates capacities to 
go beyond protein coding genes. GeneCards is highly useful in this respect, as it also 
addresses 101,976 non-protein-coding RNA genes. In a more recent development, we 
are currently adding an inclusive map of regulatory elements and their inferred target 
genes, generated by integration from 4 resources.
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Conclusions:  MalaCards provides a rich big-data scaffold for in silico biomedical 
discovery within the gene-disease universe. VarElect, which depends significantly on 
both GeneCards and MalaCards power, is a potent tool for supporting the interpreta‑
tion of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has 
thus transcended its 2-decade role in biomedical research, maturing into a key player 
in clinical investigation.

Background
Human diseases are at the heart of extensive research encompassing genomics, bioin-
formatics, systems biology, and systems medicine. Advances in the past decade have 
seen the rise of high-throughput sequencing techniques, which are collectively referred 
to as next-generation sequencing (NGS). NGS has increased the cost-effectiveness 
of sequencing per base, which allows for simultaneous examination of multiple genes 
through one single reaction, having a crucial clinical utility. A key challenge in this realm 
is the interpretation of NGS results, whereby identified filtered variant-containing genes 
are to be related to the patient’s disease phenotypes.

Thus, reliable connections between human genes and diseases need to be established. 
Different methods may identify such associations, including genome-wide association 
studies (GWAS), classical genetic studies, transcriptomics and proteomics, functional 
molecular studies and literature text mining [1]. Such heterogeneous datasets should 
then be cleverly integrated to allow gene prioritization. For this, integrated searchable 
databases for genes and diseases are crucial. Furthermore, there is a need for heuristics 
that connect the realm of NGS with such data structures.

The biomedical world is starting to transition from exome sequencing to whole-
genome sequencing (WGS) [2], catalysed by the introduction of technologies that 
make such analysis significantly more affordable. While the promise of this transition is 
substantial, the relevant bioinformatics analyses pose significant challenges. The main 
advantages of WGS are: (1) better protein-coding exon coverage, including recently-dis-
covered genes not currently in the exome capture kits; (2) complete coverage of non-
coding exons; (3) full coverage of introns; (4) full coverage of promoter regions; (5) much 
larger coverage of the all-important ncRNAs; (6) a capacity to address the terra incognita 
of the estimated 400,000 enhancers in the human genome; (7) a much stronger capac-
ity to discover and interpret genomic structural (copy number) variations afforded by 
much more uniform sequence coverage. This spectrum of variants significantly exceeds 
the standard annotation, variant filtration that is necessary to reduce the number of vari-
ant calls for clinical interpretation (e.g. based on population frequency), and phenotype 
interpretation used for whole-exome sequencing. Therefore, appropriate bioinformatics 
pipelines should be adopted.

The GeneCards suite

In the past 2  decades, our group has been developing the GeneCards suite, which 
includes a set of databases and tools that integrate and utilize information on human 
genes (GeneCards), diseases (MalaCards) and pathways (PathCards) from 150 sources 
[3–6]; Table 1. Its main component is GeneCards, a comprehensive web-based com-
pendium of human genes, with numerous annotations in 18 sections, one of which is 
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the disorders section, devoted to diseases associated with the gene. This information 
is consolidated from 150 data sources and encompassing 147,962 gene entries, includ-
ing 21,819 protein-coding genes as well as 101,976 non-coding RNA (ncRNA) genes. 
The GeneCards suite’s disease database is MalaCards [6, 14, 15], which features 19,289 
human diseases, with annotations integrated from 69 sources and shown in 15 sec-
tions. One of these is the genes section, showing for every disease its related genes. 
MalaCards effectively addresses some of the major challenges facing disease bioinfor-
matics: disease nomenclature, integration of heterogeneous information from diverse 
sources, and generation of a comprehensive and consistent view of gene-disease rela-
tionships. GeneCards and MalaCards each have behind-the-scene relational tables (a 
MySQL database) that handle this information, along with a separate index for the 
search engine.

We further portray MalaCard’s utility in both NGS interpretation and in large-scale 
bioinformatic analyses. We provide an example for deciphering a specific genetic disease 

Table 1  The GeneCards suite member databases and tools

Suite member title Type Brief description Relevant publication

GeneCards Affiliated database Human gene database Stelzer et al. (2016) The GeneCards 
suite: from gene data mining 
to disease genome sequence 
analysis, current protocols in 
bioinformatics [7]

MalaCards Affiliated database Human disease database Rappaport et al. MalaCards: an 
amalgamated human disease 
compendium with diverse clini‑
cal and genetic annotation and 
structured search, NAR [6]

PathCards Affiliated database Integrated human pathway 
database

Belinky et al. PathCards: multi-
source consolidation of human 
biological pathways, database 
[8]

GeneLoc Affiliated database Genome locator Rosen et al. GeneLoc: exon-based 
integration of human genome 
maps, bioinformatics [9]

LifeMap Affiliated database Embryonic development and 
stem cell compendium

Buzhor et al. Cell-based therapy 
approaches: the hope for incur‑
able diseases, future medicine 
[10]

TGex NGS analysis tool Knowledge-driven NGS analysis Stelzer G. et al. VarElect: the 
phenotype-based variation pri‑
oritizer of the GeneCards suite, 
BMC genomics [11]

VarElect NGS analysis tool NGS phenotyping Stelzer G. et al. VarElect: the 
phenotype-based variation pri‑
oritizer of the GeneCards suite, 
BMC genomics [11]

GeneAnalytics Analysis tool Gene set analysis Ben-Ari Fuchs et al. GeneAnalytics: 
an integrative gene set analysis 
tool, OMICS [12]

GenesLikeMe Analysis tool Related genes finder Stelzer et al. GeneDecks: paralog 
hunting and gene-set distillation 
with GeneCards annotation, 
OMICS [13]

GeneALaCart Analysis tool GeneCards batch queries Stelzer et al. In-silico human 
genomics with GeneCards, 
human genomics [4]
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using MalaCards, via our VarElect bioinformatic NGS interpretation pipeline, which uti-
lizes several other GeneCards suite tools. The integration of MalaCards information on 
gene disease associations and on phenotype information within the GeneCards database 
facilitates the discovery of new connections among biological entities.

Results and discussion
The MalaCards disease universe

To help overcome the impediment of disease name unification stemming from source 
heterogeneity, we obtained 85,000 disease terms from 15 sources that were examined in 
a predefined order of importance, and used text unification heuristics to define 19,289 
main names and their associated 65,000 aliases. The 15 annotative sections for each dis-
ease also include disease-related summaries and publications, disease categories and 
classifications, symptoms, gene variations, drugs, clinical trials, genetic tests and ani-
mal models. Several MalaCards sections (summaries, symptoms and aliases) are incor-
porated into the GeneCards database. This allows the content of such sections to be 
searchable in the context of a gene-centric database.

Additionally, MalaCards defines a hierarchical disease relatedness scheme, which 
includes aliases, disease families, related diseases and disease SuperPaths (Fig.  1). 
SuperPaths are integrated biological pathways from 12 information sources, shown in 
the PathCards database, a member of the GeneCards suite [14]. This hierarchical dis-
ease relatedness scheme constitutes a major MalaCards strength for NGS interpretation, 
allowing one to gradually augment the sphere of disease definition pertinent to the genes 
of interest. Currently, the first level (aliases), is available to the GeneCards search index, 
and therefore also to VarElect (see below). Higher relatedness levels are in the process of 
being implemented within GeneCards. Further, related diseases form a basis for defin-
ing a disease network which we are now using as a platform for disease neighbourhood 
scrutiny based on MalaCards disease annotations, such as drugs, symptoms and ana-
tomical context.

Fig. 1  Disease relatedness hierarchy. MalaCards contains several layered levels of relatedness. Aliases are 
integrated through MalaCards sources via their annotations and our text mining heuristics. Disease families 
are grouped according to textual similarity, e.g. disease types, inheritance, onset etc. Related diseases are 
obtained via gene sharing GeneAnalytics [12], a descendent of GeneDecks Set Distiller [13], and by searching 
within MalaCards. A disease SuperPaths conform to sets of diseases indirectly related to each other via the 
PathCards algorithm (see “Disease-based pathways”)
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The gene‑disease network

Crucial for MalaCards’ NGS interpretation capacities is its well-defined scored gene-
disease network. We have generated such a network based on MalaCards data. This 
network has two types of nodes—genes and diseases, with only one type of edge—that 
which connects a disease to a gene (Fig.  2). The network is weighted and directional; 
hence, each pair of nodes is associated with two types of scores: D-G signifies the impor-
tance of a gene for the disease, and G-D—the association strength of a disease to the 
gene. D-G is displayed in the genes section of MalaCards [6, 14] and G-D is portrayed 
in the disorders section of GeneCards. The latter is also portrayed within the “disease-
gene” table affiliated with GeneCards.

A conservative level of gene-disease connections is essential for enhancing the NGS 
interpretation specificity of VarElect. This prompted us to define three levels of asso-
ciation strength in the gene-disease network (Fig. 3). When considering all disease-gene 
relationships in our knowledge-base, i.e. all cases in which D-G >0, a very large network 
is obtained, connecting 22,280 genes to 11,580 disease entries, with some diseases hav-
ing as many as 5000 associated genes. To provide more specific information, we applied 
filtration heuristics to reduce the number of gene disease connections (e.g. removing 
publications that provide more than 5 gene-disease associations, typically large scale 
studies which are more prone to providing noisy data). This reduced the connected gene 
count to 10,615, with no more than 300 genes per disease, and with nearly all diseases 
having 25 genes or fewer each. The number of gene-disease associations was reduced to 
14.6%, involving 47% of the genes prior to filtration. Our gene-disease network is based 
on this connectivity level. Finally, it was deemed necessary to highlight gene-disease 
relations that are curated and evidence-based, for which reason we defined elite genes 

Fig. 2  a The complete gene-disease network based on MalaCards data. This is a bipartite network with gene 
and disease nodes, whereby a connection between two diseases is generated via a gene associated with 
both. The network shown depicts only the more trustworthy disease-gene relationships (“Elite”), as defined in 
the “Gene-disease network” of the results. b One of the connected components (sub-networks) which exem‑
plifies the utility of this network, by demonstrating that MalaCards performs informative grouping of diseases 
with common symptoms and etiology, which could be useful for off-label therapy or disease mechanism 
elucidation
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as the associations coming from curated sources such as OMIM and Orphanet. The elite 
gene-disease network has 4500 genes and 8000 diseases, with 99% of diseases having 10 
or fewer genes (Fig. 3). The disease nodes of this reduced network are termed “elite dis-
eases”, and its edges are likewise termed “elite edges”. An indication of the effectiveness 
of the data/text mining sources is that after the filtering step they still retain 75% of the 
elite edges in the network.

The VarElect NGS interpretation tool—direct gene to phenotype associations

NGS analyses identify non-reference variants in a specific subject. The total count of 
such variants ranges from tens of thousands for whole-exome sequencing to hundreds 
of thousands for whole-genome sequencing. Typically, only one or just a few variants are 
expected to be significant for the relevant disorder. In a filtering stage, parameters such 
as genetic model, rarity in the population, predicted protein impact, and gene evolution-
ary conservation help shorten the variants list to a few hundred variants, or even just a 
few dozen variants. Further focusing towards the identification of the causative disease 
genes requires NGS interpretation, i.e. seeking relationships between a variant-harbor-
ing gene and specific phenotype/disease terms. This is sometimes done manually, by 
consulting numerous heterogeneous databases. An alternative pipeline is to take advan-
tage of a computerized knowledgebase. The GeneCards suite, including GeneCards, 
MalaCards and PathCards (the database of human biological pathways) [9] offers an 
effective way to do the latter, with a wealth of automatically-mined information, integra-
tion algorithms, as well as powerful unconstrained search and scoring capabilities linked 
to the VarElect NGS interpreter [11] (Fig. 4).

VarElect, as well as TGex—a broader VarElect-based NGS annotation and interpreta-
tion platform [11], infer direct and indirect links between genes, and diseases/pheno-
types. The direct mode relies on the combined power of GeneCards and MalaCards, i.e. 
their shared gene-disease network, as well as their textual association capacities. The 
evidence for the obtained gene-phenotype relations is portrayed via the “MiniCards” 

Fig. 3  a Gene promiscuity filtering. Elite genes (red) connections via reliable sources such as OMIM, 
Orphanet, UniProtKB SwissProt and more. Text mining processes highlight additional associations. The 
number of genes associated with a disease before (blue), and after (black) filtering (see “Methods”) is shown. 
b Sources for gene information. About two-thirds of MalaCards diseases have associated genes. The data are 
based on MalaCards version 1.09
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mechanism originally instituted in the GeneCards search [5], and which displays the 
hit context within the card, with hyperlinks to the source databases. VarElect compares 
favorably with several popular NGS phenotyping tools [11], and it therefore provides an 
efficient way of ranking NGS-inferred genes by the strength of relatedness to disease 
keywords.

To date, VarElect has helped solve ~20 clinical cases in our own laboratory (e.g. [16–
19]). In one such case, we studied a 6  year-old boy of Bukharian ancestry with atypi-
cal epilepsy combined with retinitis pigmentosa. Following whole-exome sequencing 
of the patient and his two healthy parents, we identified 81 rare homozygous variants 
in the patient, which were in a heterozygous state in both parents. We submitted this 
“medium-sized list” of 63 mapped genes along with the phenotype search terms; ‘epi-
lepsy OR macular OR retinitis’ to VarElect. The resulting analysis placed CLN6 first 
with a long margin (Fig. 4). The patient had a homozygous missense variation (V148D) 
in this gene with zero population frequency, and protein impact genomic evolutionary 
rate profiling (GERP) score [20] of 5.14 (“highly damaging”). The mutation has not been 
previously reported in the context of this specific syndrome. Further functional studies 
are being performed to prove causality. Importantly, the result would not have materi-
alized with GeneCards data or MalaCards data alone, underscoring the importance of 
their joint contribution to VarElect. Following this discovery, the patient was clinically 
diagnosed with accuracy, enabling appropriate genetic counselling and preimplantation 
diagnosis for the family in the event of future pregnancies.

Indirectly‑inferred connections in VarElect

In the indirect (or “guilt by association”) mode, VarElect can capitalize on the GeneCards 
suite’s varied gene-to-gene relationships to identify the relevance of NGS-derived genes 
that have no relationship to the entered phenotype terms on their own (Fig. 4). A major 

Fig. 4  VarElect is used for prioritization of a filtered list of variation-harboring genes resulting from NGS 
experiments. A major strength of VarElect is its capacity to use implicating genes for creating indirect as well 
as direct connections between a gene and simple or complex phenotypes
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contribution to this comes from protein–protein interactions, as well as integrated path-
way information from PathCards [8].

Pathway databases represent collections of genes and their interactions, mapped onto 
biological processes. Most of the information relevant to pathway definition comes from 
high-throughput protein–protein interactions [21–23], and from specific studies of cel-
lular function having different emphasis and coverage [24]. There are significant incon-
sistencies caused by author preferences, and incompatibilities in data formats. Thus, 
pathways often provide an idiosyncratic view of biological mechanisms. PathCards was 
constructed to address such challenges, by aggregating 3215 pathways from 12 sources 
into 1073 SuperPaths, thus reducing redundancy, and maximizing informativeness [8].

VarElect’s indirect mode may further avail itself of the GenesLikeMe suite member 
(formerly GeneDecks Partner Hunter [13]). This tool relates genes to each other by 
shared attributes. These include sequence paralogy, GO terms, protein domains, mouse 
phenotypes, publications and tissue expression patterns. RNA expression patterns are 
derived from adapting GTEx data [25], and protein expression patterns stem from our 
human integrated protein expression database (HIPED), encompassing the integra-
tion of 4 proteomic data sources [26]. In VarElect, GenesLikeMe facilitates the genera-
tion of scored gene-to-gene matrices based on user-selected weighted combinations of 
attributes.

A good illustration of the strength of this approach is the case of a family diagnosed 
with systemic capillary leak syndrome. As previously reported [11], VarElect identified a 
promising candidate gene for this condition (TLN1), which was indirectly related to the 
phenotype through implicating genes associated with the phenotype.

Disease‑based pathways

In PathCards, pathways are defined by biological insights regarding the functionalities of 
sets of genes. We note that PathCards regards each pathway as a “bag of genes” without 
regard to topological features such as “gene A activates gene B”. We have explored the 
use of this kind of simplified yet highly useful “compositional” view to delineate an alter-
native definition of pathway boundaries that reflect the disease-gene network. We pro-
pose to regard all of the genes for a given disease as a “disease pathway” (Fig. 5a). This is 
done by using the MalaCards integrated and filtered list of genes for each disease. While 
PathCards already includes a small number of pathways named after a disease, such as 
“Parkinson’s Disease Pathway”, our endeavour is much more comprehensive, defining 
thousands of novel pathway-like entities. We note that genes associated with a specific 
disease may be completely unrelated molecularly. In other words, genes belonging to a 
disease pathway seldom belong to the same standard biological pathways (Fig. 5b). Thus, 
in the realm of VarElect, a tool aimed at disease-gene relations, such newly inferred 
gene-to-gene relations may be beneficial for NGS disease interpretation. An example is 
as follows: In VarElect, if the search term is a disease name, all genes related to the dis-
ease in our disease-gene network will become hits. On the other hand, if one searches 
with a phenotype term, the indirect mode kicks into action. This shows not only the 
genes directly related to the term, but also all genes that reside within the same disease 
pathway shared with a gene associated with the phenotype (Fig. 4).
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To further enhance the gene-to-gene relations gleaned through disease pathways, we 
used the PathCards algorithm [8] in order to coalesce disease pathways into disease 
SuperPaths (Fig. 6). The power of such action is in casting a wider net, whereby genes 
that do not share any individual disease pathway become related through the sharing 
of a disease SuperPath. Such a process may also be viewed as a means for augmenting 
the scope of disease relatedness (Fig. 1). Disease pathways become connected by mutual 
gene sharing (signifying an edge in a disease SuperPath), thus defining a collection of 
disease SuperPaths (Fig. 6 bottom left). This brings about a situation of indirect disease 
relations. This is exemplified in the specific case shown in Fig. 6 central part, whereby 
Gaucher disease type iiic and Gaucher disease type 3 have overlapping disease path-
ways (i.e. are related by gene sharing, Fig. 6 top right), signified by having a direct edge 
between them. The same is true for Gaucher disease type 3 and chitotriosidase defi-
ciency. But significantly, Gaucher disease type iiic and chitotriosidase deficiency are only 
indirectly related (Fig. 6): they are 2 edges away, thus they share no associated genes. But 
they are linked via the fact that there is a third disease pathway (Gaucher disease type 3) 
that significantly shares genes with both.

Preparing for whole‑genome sequencing analyses

GeneCards encompasses a comprehensive collection of 101,976 ncRNA entries, inte-
grated from 15 different data sources [3]. An integration algorithm is used, based on 
mapping to genomic coordinates via GeneLoc, another GeneCards suite tool [9]. Var-
Elect can make use of this wealth of information to assist in identifying the involvement 
of ncRNA gene variations in disease.

Addressing transcription regulation, GeneCards is in the process of introducing regu-
latory element entries, with a special focus on the rather uncharted realm of distant-act-
ing enhancers. This is based on the Ensembl regulatory build [27] as well as several other 
sources. GeneCards now displays a UCSC custom track showing all genes along with 
regulatory elements, so that users can inspect and judge relationships among them. In 
parallel, we are constructing a probability-based model for these associations, which will 

Fig. 5  a Genes within a biological pathway allow for inference of disease relation to other pathway members 
(guilt by association). The same role can be played by genes associated with a disease, defined here as a “dis‑
ease pathway”. b Genes within a disease pathway need not show significant overlap to canonical biological 
pathways. It was found that only 11.4 ± 5.5% of gene pairs in disease pathways also belonged to the same 
SuperPath. Therefore, disease pathways entail a new point of view for functional gene grouping
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provide scores for regulatory element variations in relation to individual genes, allowing 
pipeline analyses by VarElect of variants residing outside the exome [28].

Conclusions
GeneCards, MalaCards, and the other members of the GeneCards suite provide a rich 
resource for biomedical discovery within the gene-disease universe. Furthermore, with 
the envisioned addition of regulatory elements to the GeneCards database, connections 
between regulatory elements and diseases could also be established, thereby enriching 
the information regarding associations between diseases and genetic variation. VarElect, 
in conjunction with such databases and their connectivity, is an effective tool for sup-
porting the interpretation experimental NGS analyses of disease. As demonstrated, Var-
Elect is capable of rapidly generating both direct and indirect gene-disease connections, 
thereby facilitating new discoveries which would have otherwise been cumbersome to 
make. This is described in great detail in a recently published paper [11]. As exemplified, 
our databases and tools provide a rich infrastructure for large scale network analysis 
that could prompt promising drug targets and suggest alternative indications for exist-
ing drugs by examining the disease network interconnectivity. Along with preparedness 
for whole-genome sequencing, we believe that our databases and tools will provide an 

Fig. 6  Disease SuperPaths are created by applying the PathCards biological pathway clustering algorithm 
to disease pathways, as explained in the text. Bottom left—the collection of all disease SuperPaths; Center—
a specific disease SuperPath that appears to strongly represent Gaucher disease types, and diseases with 
related etiology. Each rectangular edge is a disease pathway, shown at the top right as an oval circumference, 
containing the disease genes that constitute the disease pathway. A connecting red line is an edge in the 
disease SuperPath, defined by gene sharing between the two disease pathways (genes shared by two ovals); 
The disease SuperPaths provide novel (indirect) disease–disease association, whereby two disease pathways 
that share no associated genes are linked to each other via the fact that there is a third disease pathway that 
shares gene with both (see text)
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invaluable resource for researchers and clinicians, offering an effective capacity to inves-
tigate the molecular underpinning of diseases in the upcoming era of high throughput 
medical genomics.

Methods
Gene‑disease network

As described earlier, two scores are computed for gene-disease associations: D-G is 
computed as a weighted sum of individual scores derived from 8 sources of informa-
tion: OMIM, ClinVar, Orphanet, SwissProt-Humsavar, GeneTests, DISEASE, Novoseek 
and GeneCards [14, 15, 29]. The score values depend on the level of manual curation 
of the information source, and on the significance assigned by the source to its differ-
ent annotation classes. For example, “molecular basis known” in OMIM (score of 500), 
“pathogenic mutation” in ClinVar (score of 400), “causative germ-line mutation” in 
Orphanet (score of 350), “causative variation” in Humsavar (score of 300) or appearance 
in GeneTests (score of 100) get considerably higher scores than “role in phenotype” or 
“Genetic linkage” in OMIM (score of 50). The last 3 sources in the above sources list, 
GeneCards, DISEASE and Novoseek, are based on data/text mining, and give rise to 
even lower source-specific scores as well. The GeneCards score is based on searching 
the disease name within the GeneCard (the specific card) of the relevant gene (excluding 
the disorders section). In MalaCards we define an elite gene for a disease as a gene with 
D-G >2.5. The inverse score, G-D, appears in GeneCards and indicates the importance of 
the genes with respect to the different diseases, giving a bonus to elite associations. Fig-
ure 2 displays the MalaCards elite gene disease network which groups related diseases, 
and thus highlights novel disease–disease associations, as well as novel gene-disease 
associations.

Gene‑disease promiscuity filtering

We employ heuristics for filtering the data in order to reduce spurious gene-disease 
associations per disease. This process is achieved by using a filtering threshold as deter-
mined by log10(Nm) = log10(Ne)+

(

log10(Nt)− log10(Ne)
)

/2, where Nm is the num-
ber of remaining genes; Nt is the total number of genes; Ne is the number of elite genes, 
for Ne ≥  Nt. Gene disease associations were mined through GeneCards via running 
Elasticsearch for an exact match with main name of the disease using a non-stemmed 
index.

Exome sequencing and bioinformatics analysis

Whole-exome sequencing was performed using the SureSelect Human All Exon kit 
37–50 Mb (Aligent Technologies, Santa Clara, CA). Samples were sequenced using the 
Illumina HiSeq 2000 platforms (Illumina, Inc. San Diego, CA). The resulting reads were 
aligned to the reference genome (GRCh37/hg19) using the Burrows-Wheeler Align-
ment (BWA-0.5.10). Polymerase chain reaction duplicates were removed using picard-
tools-1.59 (http://picard.sourceforge.net). Genetic differences relative to the reference 
genome were called using UnifiedGenotyper of the Genome Analysis Toolkit (GATK-
1.6–11). High quality SNVs were obtained using the following criteria: consensus 
score ≥20, SNP quality score ≥20, and reads supporting SNP ≥3. High quality indels 

http://picard.sourceforge.net
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were obtained using the following criteria: consensus score ≥20, indel quality score ≥50, 
ratio of (reads supporting variant)/(reads supporting reference): 0.2–5.0, and reads sup-
porting indel ≥3. Annotation was performed using either SnpEff-3.3 (Ensembl 73 data-
base), the SequenceVariantAnalyzer software (SVA), DNAnexus software (Palo Alto, 
CA, USA), and an in-house script using ANNOVAR80 and the GeneCards database 
annotation.

Only protein-altering variants (stop gain/loss, start loss, frameshift, missense, splice-
site) were included. The dbNSFP database was used to access the functional predic-
tion of non-synonymous SNPs. We primarily focused on genotypes absent in control 
data sets including the dbSNP138-142, the 1000 Genomes project, NHLBI GO Exome-
sequencing project (http://evs.gs.washington.edu/EVS/), the ExAc browser http://
exac.broadinstitute.org, 240 in-house controls of different Israeli ethnic origins and the 
internal control cohort comprised of 3027 subjects enrolled in the Center for Human 
Genome Variation (CHGV) through Duke institutional review board-approved proto-
cols. Among all heterozygous variants only de novo or compound heterozygous variants 
were kept. The available protein predicting datasets such as PolyPhen2, SIFT, Mutation-
Taster and LRT were used to predict mutations deleteriousness.

The VarElect tool for NGS interpretation and clinical examples

The methodology used by the VarElect tool is described in [11]. The clinical example 
outlined in this paper included a 6 year-old boy of Bukharian ancestry with atypical epi-
lepsy combined with retinitis pigmentosa (RP epilepsy). The patient’s syndrome also 
includes atonic seizures, abnormal EEG recordings, and hypopigmented macule. Fol-
lowing whole exome sequencing of the patient and his two healthy parents, we identi-
fied rare homozygous variants in the patient which were in a heterozygous state in both 
parents. The list of genes harboring these mutations was used in VarElect together with 
relevant keywords, to obtain a ranked list of candidate genes.

Disease pathways

A disease pathway is defined by us as the set of genes associated in MalaCards with a 
given disease. For analysis of the overlap between disease pathways and biological path-
ways (Fig. 5), 92 randomly selected disease pathways sized 15–20 genes were analyzed 
against all 1073 SuperPaths in PathCards. All pair combinations within a disease path-
way were tested against all pathways. The percentage pairs that belonged to the same 
SuperPath was calculated by the number of pairs that exist in the same biological path-
way divided by the number of all possible pairs within the disease pathway.

For the creation of the disease pathway network (Fig.  6) we applied the PathCards 
algorithm to all sets of elite genes sets for all diseases. Clustering criteria for sets are 
applied according to the algorithm described in [8]. Visualization is done using Gephi 
[30].
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