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ABSTRACT

DNA-protein cross-links are formed by various
DNA-damaging agents including antitumor platinum
drugs. The natures of these ternary DNA-Pt—protein
complexes (DPCLs) can be inferred, yet much
remains to be learned about their structures and
mechanisms of formation. We investigated the
origin of these DPCLs and their cellular processing
on molecular level using gel electrophoresis shift
assay. We show that in cell-free media cisplatin
[cis-diamminedichloridoplatinum(ll)] forms DPCLs
more effectively than ineffective transplatin [trans-
diamminedichloridoplatinum(ll)]. Mechanisms of
transformation of individual types of plain DNA
adducts of the platinum complexes into the DPCLs
in the presence of several DNA-binding proteins
have been also investigated. The DPCLs are formed
by the transformation of DNA monofunctional
and intrastrand cross-links of cisplatin. In contrast,
interstrand cross-links of cisplatin and mono-
functional adducts of transplatin are stable in
presence of the proteins. The DPCLs formed by
cisplatin inhibit DNA polymerization or removal of
these ternary lesions from DNA by nucleotide
excision repair system more effectively than plain
DNA intrastrand or monofunctional adducts.
Thus, the bulky DNA-protein cross-links formed
by cisplatin represent a more distinct and persisting
structural motif recognized by the components
of downstream cellular systems processing DNA
damage considerably differently than the plain
DNA adducts of this metallodrug.

INTRODUCTION

cis-Diamminedichloroplatinum(II) (cisplatin) (Figure 1A)
has been widely used in chemotherapy for almost 30 years.
Hence, mechanisms underlying biological effects of this

purely inorganic, simple, but outstanding compound have
been intensively examined. In spite of this intensive
research lasting more than three decades, many important
details of the mechanism of anticancer effects of cisplatin
have not been so far clarified. It is generally accepted
that the major pharmacological target of cisplatin and
other platinum anticancer compounds is DNA (1) and
that the cytotoxicity of platinum compounds is thought
to be determined primarily by their DNA adducts
(2). Numerous studies show that cisplatin forms in
DNA ~90% intrastrand cross-links (CLs) between
neighboring purine bases (1,2-GG or 1,2-AG intrastrand
CLs) and remaining lesions are intrastrand CLs between
purine bases separated by a third base, interstrand CLs
and monofunctional adducts (3) Structures, other physical
properties of these adducts and their recognition by the
components of downstream cellular systems processing
DNA damage have been intensively studied (4-6).
Importantly, some studies indicate that cisplatin forms
besides these DNA adducts also ternary DNA—platinum—
protein CLs (DPCLs) [see Wozniak and Walter (7) for
review]. For instance, cisplatin has been reported to
cross-link chromosomal proteins, including histones or
cytokeratins, to DNA (8,9). Interestingly, DPCLs have
been shown to play an important role in cytotoxicity
within the clinical dosage range of cisplatin (10),
but frequency of these ternary complexes depends on
the cell type (11) and time of the treatment (7,9).

Several models of the mechanism underlying antitumor
effects of cisplatin have been already presented, but
several have not taken into account the existence and
specific properties of the DPCLs formed by this drug
(4,12,13). Nevertheless, a few studies have been per-
formed. For instance, it has been shown that the
participation of nuclear proteins in DPCLs induced by
cisplatin can disturb the nuclear metabolism and
the spatial organization of chromatin (14). Also interest-
ingly, the DPCLs (formed by antitumor trans-
[PtCly(E-iminoether),]) inhibit DNA replication, DNA
repair and are recognized by cellular components
distinctly differently than plain Pt—-DNA adducts
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5" -GGCCAATTTAAGCAATTTGGTTTAAGCCGTATAATCCGG-3"
3" -CCGGTTAAATTCGTTAAACCAAATTCGGCATATTAGGCC-5"
duplex NF-xB(21)

5" -AARATTGGGACTTTCCTATTA-3"

3" -TTTTAACCCTGAAAGGATAAT-5"

duplex TGGT(20)

5"-CCTCTCTCTGGTCTTCTTCT-3"

3" -GGAGAGAGACCAGAAGAAGA-5"

duplex TGTGT(20)

5"-CCTCTCTCTTGTGTTCTTCT-3"

3" -GGAGAGAGAACACAAGAAGA-5"

duplex TGCT(20)

5" -TCTCCTTCTGCTCTCTTCTC-3"

3" -AGAGGAAGACGAGAGAAGAG-5"

duplex TGT(20)

5"-CCTCTCTCTTGTCTTCTTCT-3"

3" -GGAGAGAGAACAGAAGAAGA-5"

Figure 1. Structures of platinum compounds and sequences of
the synthetic oligodeoxyribonucleotides with their abbreviations.
(A) Structures: a, cisplatin; b, transplatin. (B) Sequences: the top and
bottom strands of each pair in the figure are designated ‘top’ and
‘bottom’, respectively, throughout. The boldface letters in the top
strands of the duplexes TGGT(20), TGTGT(20), TGCT(20), TGT(20)
and TGGT(NER) indicate the platinated residues.

(containing no proteins) (15). In aggregate, DPCLs
formed by cisplatin have not been so far studied as
intensively as the adducts formed by this metallodrug only
within DNA. Hence, despite the biological significance
of DPCLs, much remains to be learned about the
mechanism of formation of these ternary complexes.

To further elucidate the nature of DNA-cisplatin—
protein CLs, we have examined mechanism of the origin
of these DPCLs and their cellular processing on
molecular level. A long-term goal of our studies in the
field of platinum anticancer drugs is to contribute to
the improvement of the structure—pharmacological
relationship of platinum compounds. Such studies
also often employ comparisons between the effects
of cisplatin and clinically ineffective frans analogue
(trans-diamminedichloridoplatinum(I), transplatin)
(Figure 1A) (16). Therefore, we also performed in parallel
some studies aimed at the effects of transplatin.

MATERIALS AND METHODS
Starting material

Cisplatin, transplatin and dimethyl sulfate (DMS) were
from Sigma (Prague, Czech Republic). The stock solutions
of platinum compounds were prepared at the concentra-
tion of 5x 107*M in 10mM NaClO, and stored at 4°C
in the dark. The synthetic oligodeoxyribonucleotides used
in this work (Figure 1B) were purchased from VBC-
genomics (Vienna, Austria). The purity of compounds was
verified by high-pressure liquid chromatography (HPLC)
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or gel electrophoresis. T4 polynucleotide kinase and
Ndel restriction endonuclease were purchased from
New England Biolabs (Beverly, MA). The Klenow
fragment from DNA polymerase [ (exonuclease minus,
mutated to remove the 3 — 5 proofreading domain)
(KF™), Ndel and EcoRI restriction endonucleases were
purchased from Takara (Japan). Histone H1 was from
Roche diagnostics, GmbH (Manhnheim, Germany).
NF-kB protein (p50 homodimer) was kindly provided by
Prof. Vasak (University of Ziirich, Switzerland).
Acrylamide, bis(acrylamide), dithiothreitol (DTT), urea
and NaCN were from Merck KgaA (Darmstadt,
Germany). Agarose and Metaphor® agarose were
from FMC BioProducts (Rockland, ME, USA). Sodium
dodecyl sulphate (SDS) was from Serva (Heidelberg,
Germany). Wizard® SV and PCR Clean-Up System used
to extract and purify 213-base pairs (bp) DNA fragment
(vide infra) was purchased from Promega. Nonidet P-30
was from Fluka (Prague, Czech Republic). [y**P]-ATP
and [0*’P]-dATP were from MP Biomedicals, LLC
(Irvine, CA). Proteinase K was from Boehringer
(Mannheim, Germany).

Isolation and purification of a 213-bp DNA fragment

A double-stranded DNA probe was prepared by digesting
the pUCI19 plasmid with Ndel and EcoRI. The resulting
two fragments, 2473- and 213-bp long, were separated
on a 1% agarose gel in the buffer containing 40 mM
Tris—acetate (pH 8), 1mM EDTA and 0.5pM/ml
ethidium bromide. The 213-bp fragment was purified
using Wizard® SV and PCR Clean-Up System and
radiolabeled. The fragment (1 pug) was incubated at 37°C
for 1h in the buffer containing 5S0mM NaCl, 10 mM
Tris—HCI (pH 7.9), 10mM MgCl, and 1 mM DTT, 10 uCi
of [¢**P]-dATP (3000 Ci/mmol) and 5U of KF~. Another
10 uCi of [¢*?P]-dATP (3000 Ci/mmol) and 5U of KF~
were added and incubated for additional 1h.
Unincorporated label was removed on column filled with
Sephadex G50 coarse, DNA was extracted with phenol/
chloroform (1:1), ethanol precipitated and dissolved in
0.1 M NaClOy. The fragment was then globally modified
with cisplatin or transplatin for 24h in 0.1 M NaClOy4
to an r, value of 0.02 (r, is defined as the amount of
platinum atoms bound per one nucleotide in DNA).

Platination of oligonucleotides

Single-stranded oligodeoxyribonucleotide probes
(40mer for the reaction with KF~ and histone H1 and
21mer for reaction with NF-kB) were 5'-end labeled with
T4 polynucleotide kinase and y-*P-ATP and allowed
to anneal with complementary strands in 0.1 M NaClOy,.
This annealing procedure included a rapid heating of the
mixture of the complementary oligonucleotides to 75°C
followed by the incubation at 25°C for 2h. Double-
stranded oligonucleotides were then globally modified
with cisplatin or transplatin for various time intervals in
the range of 0—24 h. The final r, values at the end of these
reactions were in the range of 0.01-0.05. The platination
reaction was terminated by addition of sodium acetate



1814 Nucleic Acids Research, 2007, Vol. 35, No. 6

so that its resulting concentration was 0.3 M followed by
ethanol precipitation.

The 20-bp duplexes containing single, site-specific
monofunctional, intrastrand or interstrand CLs were
prepared as described in the previously published articles
and also in the Supplementary Material

Preparation of the protein samples

The final composition of the storage buffers: KF: 10 mM
Tris pH 8, 0.5mM EDTA, 100pug/ml bovine serum
albumin (BSA), 50% glycerol and 2mM MgSOy; histone
H1: 10 mM Tris pH 7.9, 20 mM NaCl, 0.1 mM PMSF for
histone H1; NF-xB protein (p50 dimer): 25mM Tris/HCI
pH 8.0, 50 mM NaCl. The commercially available sample
of KF™ was in the manufacturer’s storage buffer contain-
ing DTT; the manufacturer’s storage buffer was
exchanged for that specified earlier using microcon
concentrators.

Formation of the ternary DNA—platinum—protein complexes

Platinated DNA (213-bp fragment or oligodeoxyribonu-
cleotide duplexes) at the concentration of 10nM was
incubated with the proteins (KF™, histone H1 or NF-xB)
at the concentration of 100nM overnight at room
temperature in the appropriate buffer: 10mM Tris pH 8,
10mM EDTA, 0.1uM BSA, 0.8% glycerol and 2mM
MgSO4 (KF7); 10mM Tris pH 7.9 and 20mM NaCl
(histone H1); 42mM HEPES, 42mM KCI, | mM MgCl,,
0.02mM EDTA, 210mM DDT, 2.5% glycerol and 2%
Ficoll (NF-xB). The ability to form CLs by cisplatin or
transplatin between oligonucleotide duplexes (20—40 bp)
and proteins was assessed by 10% SDS/polyacrylaminide
(PAA) gel electrophoresis after mixing the samples with
the loading buffer (50mM Tris—HCI, pH 6.8, 100 mM
DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol)
and denaturing by heat at 90°C for 5min. Gels were
electrophoresed for 1-2 h at 140V, dried and visualized by
using the bio-imaging analyzer. The ability to form CLs
by cisplatin between 213-bp DNA fragment and proteins
was assessed by 1% agarose (agarose and Metaphor
agarose 1:1) gel electrophoresis after mixing the samples
with the loading buffer (50 mM Tris—HCI, pH 6.8, 100 mM
DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol)
and denaturing by heat at 90°C for 5min. Gels were
electrophoresed for 2h at 50V, dried and visualized by
bio-imaging analyzer.

Transformation of single, site-specific adducts of cisplatin
and transplatin into DNA—platinum—protein cross-links

The series of single, site-specific adducts of cisplatin and
transplatin were examined for their ability to isomerize
and form ternary DPCLs; the 20-bp duplexes containing
single, site-specific 1,2-GG and 1,3-GTG intrastrand CL,
interstrand CL of cisplatin or monofunctional adduct of
cisplatin or transplatin were prepared as described earlier.
The platinated duplexes at the concentration of 100 nM
were incubated with KF~ (100nM) at 25°C for various
time intervals and the formation of the DNA-Pt—protein
ternary complexes was assessed by 10% SDS-PAA gel
electrophoresis as described earlier.
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Figure 2. Formation of DPCLs of unmodified and platinated
oligodeoxyribonucleotide duplexes 40bp (A and B) or NF-kB (20)
(C) (see Figure 1B for their nucleotide sequence) globally modified by
cisplatin or transplatin (r, =0.025) with KF~ (A), histone H1 (B) and
NF-kB (C) assessed by SDS/PAA gel electrophoresis. Lanes: 1-3,
the duplex modified by cisplatin incubated with the protein for 1, 4 and
24 h, respectively; 4-6, the duplex modified by transplatin incubated
with the protein for 1, 4 and 24 h, respectively; 7, control, unplatinated
duplex, no protein added; 8, control, unplatinated duplex incubated
with the protein for 24h; 9, control, duplex modified by cisplatin
(ry =0.025), no protein added; 10, control, duplex modified by cisplatin
(ry=0.025) incubated with the protein for 24h. See the text for
other details.

Inhibition of DNA polymerization

The 44mer templates unplatinated or containing single
1,2-GG intrastrand CL of cisplatin were prepared in the
same way as described in the Supplementary material.
The 44mer template cross-linked to histone HI1 by
cisplatin was isolated from the gel, purified and hybridized
with 17mer primer, the sequence of which is complemen-
tary to the 3’ termini of 44mer templates (Figure 2), in the
following way. The templates (5 x 10~* M) were annealed
with 5-end-radiolabeled 17mer primer at a molar ratio of
3:1 and incubated at 37°C in a volume of 50 pl in a buffer
containing 50mM Tris-HCl (pH 8.0), 10mM MgCl,,



S0mM KCl, 3mM DTT, 0.1% Nonidet P-30, 100 pM
dATP, 100puM dCTP, 100puM dGTP, and 100uM TTP
and 1.0 unit of RT HIV-1 in the presence of all four
deoxynucleotide 5-triphosphates (100 uM). Reactions
were terminated by the addition of EDTA so that its
resulting concentration was 20uM and by heating at
100°C for 30s. Products were resolved by denaturing 12%
PAA/8M urea gel and visualized by using a phosphor
imager. Other details were published previously (15,17).

Nucleotide excision repair (NER) assay

The 20mer oligonucleotides (the top and bottom strands
of the duplex TGGT(NER), for its sequence, see
Figure 1B) were used for preparation of linear 148-bp
duplexes with centrally located DNA-protein CLs as
described previously (18). Uniquely modified 20mers were
annealed with a set of five complementary and partially
overlapping oligonucleotides, and ligated with T4 DNA
ligase. Full-length substrates were separated from unli-
gated products in a 6% denaturing PAA gel, purified by
electroelution, reannealed, and stored in annealing buffer
[50 mM Tris—HCI (pH 7.9), 100 mM NaCl, 10 mM MgCl,,
and I mM DDT] at —20°C.

Duplexes containing single, site-specific adducts of
cisplatin were then incubated with KF~ overnight and
products were then resolved by denaturing 12% PAA/8M
urea gel. The oligonucleotides cross-linked to KF™~ by
cisplatin were isolated from the gel, purified and
reannealed.

Oligonucleotide excision reactions were performed in
a cell-free extract (CFE) prepared from CHO AAS cell line
as described (19,20). This extract was kindly provided by
J.T. Reardon and A. Sancar from the University of North
Carolina (Chapel Hill, USA). In vitro repair was measured
with excision assay using this CFE and 148-bp linear
DNA substrates (vide supra) in the same way as described
previously (15,20). The reaction mixtures (25 pl) contained
10 fmol of radiolabeled DNA, 50 pug of CFE, 20 uM each
of dATP, dCTP, dGTP, and TTP in the reaction buffer
[23mM HEPES (pH 7.9), 4mM KCI, 4.8 mM MgCl,,
0.16mM EDTA, 0.52mM DTT, 1.5mM ATP, 5Sug of
BSA and 2.5% glycerol] and were incubated at 30°C for
40min. DNA was deproteinized by proteinase K and
precipitated by ethanol. Samples were still treated over-
night with 0.4 M NaCN, pH 10-11, at 45°C to remove
platinum from excised fragments. The excision products
were separated on 10% denaturing PAA gels and
visualized by using a phosphor imager. The NaCN
treatment was included to eliminate both the effect
of the positively charged platinum complex bound to
the excised fragments and the protein cross-linked to the
excised fragments on their migration in the gel.

Other physical methods

Absorption spectra were measured with a Beckmann
DU-7400 spectrophotometer. FAAS measurements were
carried out with a Varian AA240Z Zeeman atomic
absorption spectrometer equipped with a GTA 120
graphite tube atomizer. For FAAS analysis DNA was
precipitated with ethanol and dissolved in 0.1 M HCI.
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Purification of oligonucleotides with the aid of HPLC was
carried out on a Waters HPLC system consisting of
Waters 262 Pump, Waters 2487 UV detector and Waters
600S Controller with MonoQ HR 5/5 column. The gels
were visualized by using the BAS 2500 FUJIFILM
bio-imaging analyzer, and the radioactivities associated
with bands were quantitated with the AIDA image
analyzer software (Raytest, Germany).

RESULTS
DNA-protein cross-linking by cisplatin or transplatin

Cisplatin and transplatin were investigated for their ability
to form ternary DNA-protein complexes covalently
linked by the platinum moiety. The proteins were chosen
for these studies that bind to DNA with a relatively high
affinity. KF™ and the linker histone H1 were chosen as the
representatives of non-sequence specific DNA-binding
proteins with enzymatic or structural function, respec-
tively, whereas transcription factor NF-xB (p50 dimer)
was chosen as the representative of a sequence-specific
DNA-binding protein with a regulation function.
Also interestingly, histone H1 has been shown to bind
more strongly to DNA modified by cisplatin than to
non-modified DNA (21). The 40-bp duplex 5'-end-labeled
at its top strand was globally modified by cisplatin or
transplatin for 24 h so that 1, 2 and 4 platinum atoms were
bound per duplex on average (1, =0.0125, 0.025 and 0.05,
respectively). The duplex modified by cisplatin or trans-
platin (10nM) was mixed with KF~ or histone HI
(the molar ratio protein/duplex was 10). For the studies
of the formation of ternary DNA-cisplatin—-NF-xB
complexes, the 20-bp duplex NF-kB (20) (its nucleotide
sequence shown in Figure 1B corresponds to DNA
consensus sequence of NF-kB) 5-end-labeled at its top
strand was used.

Ternary DNA-Pt—protein cross-linking efficiency was
assessed by SDS/PAGE shift assay. Fractions
were detected by SDS/PAGE with significantly retarded
mobility (shown for r, =0.025 in Figure 2A—C, lanes 1-6)
compared with that of the free probe (Figure 2A—C, lanes
7-10). The intensity of the bands with the retarded
mobility increased with the incubation time and at
a given time of this incubation (in the range of 1-24h)
it also increased with growing r, value (not shown).
These more slowly migrating fractions were eliminated
after treatment with NaCN or proteinase K converting
them to those of the unmodified probes (not shown).
These results suggest that the species is a protein-DNA
CL tethered by platinum—DNA and platinum—protein
coordination bonds. While the proteinase K and NaCN
experiments clearly indicate that protein is the species
cross-linked to DNA, the amino acids participating in the
cross-linking reaction have not been determined.
Importantly, the amount of radioactivity associated with
the bands corresponding to DPCLs formed by cisplatin
was markedly higher than that by transplatin (cf. in
Figure 2A-C, lanes 1-3 and 4-6) demonstrating that
cisplatin exhibits a considerably higher efficiency to form
ternary DNA—Pt—protein CLs than transplatin.
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The yields of DNA—protein cross-linking by cisplatin
using short 20- or 40-bp fragments were relatively low
(Figure 2, Table 1). Therefore, we also used for similar
studies DNA fragments 213-bp long. This fragment had
a random nucleotide sequence so that we examined its
cross-linking only to KF™ and histone H1 (since we had
available no plasmid from which a similar DNA fragment
containing the consensus nucleotide sequence for NF-kB
protein could be obtained). The 213-bp duplex 3’-end-
labeled at one strand was globally modified by cisplatin or
transplatin for 24 h to the ry, value of 0.025. The fragment
modified by cisplatin or transplatin (10nM) was mixed
with KF™ or histone H1 (the molar ratio protein/duplex
was 10) and incubated overnight. Ternary DNA-
Pt—protein cross-linking efficiency was assessed by 1%
agarose (agarose and Metaphor agarose 1:1) gel shift
assay. Similarly, as in the similar experiments using short
duplexes, fractions were detected with significantly
retarded mobility (Figure 3, lanes 1, 2, 5, 6) compared
with that of the free probe (Figure 3, lanes 3, 4, 7-10).
These more slowly migrating fractions were also
eliminated after treatment with NaCN or proteinase K
converting them to those of the unmodified probes

Cisplatin Transplatin noPt
: KF~ HI1 CKF'CHll IKF' H1 CKF-Cx—nl lKF' HlI

Al
i

+

1 2 3 4 5 6 7 8 9 10

Figure 3. Formation of DPCLs of unmodified and platinated 213-bp
DNA fragment globally modified by cisplatin or transplatin (r, =0.025)
with KF™ and histone H1 assessed by agarose gel electrophoresis; the
fragment was incubated with the protein for 24h. Lanes: 1, 2, the
fragment modified by cisplatin incubated with KF~, histone HI,
respectively; 3, 4, the fragment modified by cisplatin incubated in the
buffer used for reaction with KF~ or histone HI, respectively,
no protein added; 5, 6, the fragment modified by transplatin incubated
with KF~, histone HI1, respectively; 7, 8, the fragment modified
by transplatin incubated in the buffer used for reaction with KF™ or
histone HI, respectively, no protein added; 9, 10, the unplatinated
fragment incubated with KF~ or histone HI, respectively. See the text
for other details.

(not shown). Importantly, the amount of radioactivity
associated with the bands corresponding to DPCLs
formed by cisplatin was markedly higher (~30% found
for cross-linking of both histone HI and KF™) than that
obtained under similar conditions with short duplexes
(~8-12%, Table 1). Moreover, the experiments with the
213-bp fragment also confirmed that cisplatin exhibits
a considerably higher efficiency to form ternary
DNA-Pt—protein CLs than transplatin (3 and 6% for
cross-linking KF~ and histone H1, respectively).
Cisplatin and transplatin form various types of CLs and
monofunctional adducts on DNA. Obvious candidates
of DNA adducts of bifunctional platinum complexes that
could preferentially bind proteins and form DPCLs
are monofunctional adducts. Therefore, we examined
the efficiency of monofunctional adducts of cisplatin to
from DPCLs. We prepared 40-bp duplex globally
modified by cisplatin. One sample was incubated with
cisplatin at r;=0.025 (r; is defined as the molar ratio of
free platinum complex to nucleotide-phosphates at the
onset of incubation with DNA) for 24 h; it implies that the
resulting ry, was identical (0.025) since after this period all
cisplatin molecules are bound to DNA quantitatively.

Monoaduct monoaduct 1,21AC 1.31AC IEC
of cisplatin ~ of transplatin  of cisplatin  of cisplatin of cisplatin

Incubation g 24112 g 24174 8 244 8 24 "4 8 24

time (hours) .

—

1 234 56 78 910 11 12 13 14 15

Figure 4. DPCL formation of unmodified and platinated oligodeoxy-
ribonucleotide duplexes containing single, site-specific platinum adduct
with KF™ assessed by SDS/PAA gel electrophoresis. Lanes: 1, 4, 7, 10,
13, the duplexes incubated with the protein for 4h; 2, 5, 8, 11, 14 for
8h; 3, 6,9, 12, 15 for 24 h. Lanes: 1-3, the duplex TGT (20) containing
monofunctional adduct of cisplatin; 4-6, the duplex TGT (20)
containing monofunctional adduct of transplatin; 7-9, the duplex
TGGT (20) containing 1,2-GG intrastrand CL of cisplatin; 10-12,
the duplex TGTGT (20) containing 1,3-GTG intrastrand CL of
cisplatin; 13-15, the duplex TGCT (20) containing interstrand CL
of cisplatin. See the text for other details.

Table 1. Formation of the DPCLs of KF~, histone H1 or NF-kB with unmodified and platinated® oligodeoxyribonucleotide duplexes® assessed by

SDS/PAA gel electrophoresis®

Time of incubation with the protein

DNA cross-linked to the protein (%)

KF~ Histone H1 NF-xB
Cisplatin Transplatin Cisplatin Transplatin Cisplatin Transplatin
1 6.5+0.1 <0.1 3.540.1 1.2+0.1 0.5+0.1 0
8.5+0.2 0.5+0.1 5.2+0.1 1.6£0.1 0.8+0.1 0
24 12.4£0.2 0.8+0.1 8.4+0.2 1.9+0.1 1.2£0.1 0.3£0.1

“The duplexes were globally modified by cisplatin or transplatin (1, =0.025).
"The duplex 40 bp was used in the experiments with KF~ and histone H1, whereas the duplex NF—«B (20) was used in the experiments with NF-kB

(see Figure 1B for their nucleotide sequence).

“Each value represents the average of four samples and standard errors are indicated.



The second sample of the same 40-bp duplex was modified
at much higher r; (0.038), but only for 1h so that the
resulting r, value was also 0.025 [after this short period
of reaction of cisplatin with DNA, only a fraction of
the molecules of cisplatin coordinated to DINA bases
(65%—this was verified by FAAS)]. Thus, we had two
samples of 40-bp duplex, both contained the same amount
of platinum adducts [two per duplex on average, this
was verified using the procedures published previously
(22,23)], but spectrum of the adducts in these two samples
was different. Cisplatin and transplatin react with DNA
in a two-step process (24). In the first step, cisplatin
or transplatin forms monofunctional adducts which
subsequently close to bifunctional CLs. Thus, the 40-bp
duplex modified by cisplatin for only 1h contained
markedly more monofunctional adducts (55%) than this
duplex platinated to the same level, but for a substantially
longer time (24 h) (1-2%) (23).

These platinated 40-bp duplexes (5'-end-labeled at its
top strand) were mixed with KF~ or histone HI
(the molar ratio protein/duplex was 10). Ternary DNA—
Pt—protein cross-linking efficiency was assessed by
SDS/PAGE shift assay (not shown). Quite surprisingly,
the amount of radioactivity associated with the bands
corresponding to DPCLs formed by cisplatin adducts in
the duplex treated with cisplatin for only 1h was even
slightly smaller (1.2x) than in the duplex treated for 24 h.
As the latter duplex contained considerably less mono-
functional adducts, it is reasonable to conclude that
not only monofunctional adducts, but also at least some
CLs formed by cisplatin can be efficiently transformed
to DPCLs.

Therefore, further experiments were performed to
determine which DNA CLs formed by cisplatin are not
stable enough so that they can be transformed in the
presence of DNA-binding proteins to DPCLs and with
what efficiency. Short 20-bp oligonucleotide duplexes were
prepared (for their sequence, see Figure 1B) containing
single and central, site-specific adduct of cisplatin, namely
1,2-GG or 1,3-GTG intrastrand CLs, interstrand CL
between guanine residues in the 5-GC/5-GC sequence,
monofunctional adduct at the G residue in the TGT
sequence and for comparative purposes also monofunc-
tional adduct of transplatin at the G residue in the TGT
sequence [the monofunctional adducts are very frequent
and persisting adducts formed by this clinically ineffective
platinum complex (25,26)]. These duplexes 5-end-labeled
at the top strand were incubated with KF™ or histone H1
under conditions used in the experiments with the 40-bp
duplex (vide supra) and ternary DNA-Pt—protein cross-
linking efficiency was assessed by SDS/PAGE shift
assay (shown for cross-linking of KF™~ in Figure 4).
Importantly, 10% SDS/PAA gel electrophoresis cannot
distinguish between 20mer single strand containing single
intrastrand adduct of cisplatin and the 20-bp duplex
interstrand cross-linked by this drug in contrast to 24%
PAA/SM urea denaturing gel (Figure S2 in the
Supplementary Material). Strong bands corresponding
to the fractions with significantly retarded mobility
(Figure 4, lanes 3, 9, 12) were only detected when
the duplexes containing 1,2-GG, 1,3-GTG intrastrand
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Figure 5. Primer extension activity of RT HIV-1 wusing the
17mer/44mer primer/template duplex. The experiments were conducted
for the times indicated in the figure (5-90min) using undamaged
templates (lanes 2-5), the template containing single, site-specific
1,2-GG intrastrand CL of cisplatin (lanes 6-9) and the template
containing single DPCL formed by the transformation of the template
containing site-specific 1,2-GG intrastrand CL of cisplatin incubated
with histone HI (lanes 10-13). Lane 1, 17-mer primer. The pause sites
opposite the platinated guanines and the nucleotide preceding the
platinated guanines (thymine residue on the 3’ side of the CL)
are marked 34, 33, 32, respectively. The nucleotide sequences of the
templates and the primers are shown beneath the gels. See the text for
other details.

CL and monofunctional adduct of cisplatin were exam-
ined. In contrast, only faint bands corresponding to the
fraction with significantly retarded mobility were noticed
for the duplex containing monofunctional adduct of
transplatin (Figure 4, lanes 4-6), whereas no more
slowly migrating band was noticed if the duplex contain-
ing interstrand CL of cisplatin was analyzed (Figure 4,
lanes 13-15). It was verified that the more slowly
migrating fractions were eliminated after treatment with
NaCN or proteinase K converting them to those of the
unmodified probes (not shown). Thus, only 1,2-GG,
1,3-GTG intrastrand CLs of cisplatin and monofunctional
adduct of this drug can be transformed to DPCLs,
whereas interstrand CLs of cisplatin and monofunctional
adducts of transplatin are relatively stable in the presence
of DNA-binding proteins so that they can be transformed
to DPCLs only with markedly lower efficiency. Figure 4
also demonstrates that the amount of DPCLs increases
with the time of the incubation of the duplexes with the
proteins and that after 24h the amount of the adduct
transformed into DPCLs reaches 3.4, 3.2, 2.6 and 0.9%
for 1,2-GG, 1,3-GTG intrastrand CL, monofunctional
adduct of cisplatin and transplatin, respectively. It implies
that intrastrand adducts of cisplatin can be transformed
into the DPCLs with approximately identical efficiency,
whereas the frequent monofunctional adducts of clinically
ineffective transplatin much less efficiently.
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It has been suggested by one of the reviewers that the
transformation into DPCLs observed upon addition
of DNA-binding proteins to the samples of 20-bp duplexes
containing single 1,2-GG or 1,3-GTG intrastrand CL of
cisplatin might be affected by the presence of small
amounts (~1%) of other cisplatinated duplexes, such as
the duplexes containing the monofunctional adduct or
intrastrand CL involving platinated pyrimidine base(s).
As we discuss in the Supplementary Material, this
eventuality is unlikely.

Inhibition of DNA polymerization

Damage to DNA has significant effects on processivity
of a number of DNA polymerases depending on the
character of the damage (27,28). With DNA templates
containing site-specifically placed adducts of various
platinum compounds, a number of prokaryotic and
eukaryotic DNA polymerases were blocked but could
also traverse through platinum adducts depending on their
character. It is, therefore, interesting to examine whether
DPCLs will be processed by DNA polymerases in a
different way than plain DNA intrastrand CLs of cisplatin
(containing no proteins). We constructed the 17mer/44mer
primer/template duplexes unplatinated or containing the
1,2-GG intrastrand CL of cisplatin in the central TGGT
sequence (for their sequences, see Figure 5). The first 17 nt
on the 3’ terminus of the 44mer template strand were
complementary to the nucleotides of the 17mer primer and
the guanine involved in the 3’ residue of the 1,2-GG
intrastrand CL of cisplatin on the template strand was
located at the 30th position from the 3’ terminus
(Figure 5). After annealing the 17mer primer to the
3’ terminus of the unplatinated or platinated template
strand positioning the 3’-end of the primer 15 bases before
the adduct in the template strand, we examined DNA
polymerization through the single, 1,2-GG intrastrand CL
of cisplatin by RT HIV-1 in the presence of all four
deoxyribonucleoside 5-triphosphates. The reaction was
stopped at various time intervals, and the products were
analyzed using a sequencing 12% PAA/8M urea gel
(Figure 5).

Polymerization using the 44mer template containing the
CL of cisplatin proceeded rapidly up to the nucleotide
preceding and at the sites opposite the CL, such that
mainly the 32, 33 and 34mer products accumulated to
a significant extent (shown in Figure 5, lanes 6-9).
The larger or shorter DNA intermediates were not
observed in a considerable extent, whereas no intermedi-
ate products were seen with the 44mer control template as
the full-length products were formed (shown in Figure 5,
lanes 2-5). The full-length products were also noticed with
the 44mer template containing the CL of cisplatin,
although in a significantly smaller amount (Figure 5,
lanes 6-9). This result is in agreement with a previously
published work (15,17,29) and confirms that 1,2-GG
intrastrand CL of cisplatin inhibits DNA synthesis,
but translesion DNA synthesis may occur.

The 44mer template cross-linked to histone H1 by
cisplatin was prepared from the template containing the
1,2-GG intrastrand CL of cisplatin to which histone H1

was added (vide supra). This template was isolated from
the gel, purified, hybridized with 17mer primer and used as
a substrate to investigate the translesion synthesis across
the adducted nucleotide residues. As shown in the lanes
10-13 of Figure 5, polymerization by RT HIV-1 using
the template cross-linked to histone H1 proceeded up to
the nucleotide preceding the CL, such that mainly the
32nt products accumulated. Interestingly, DNA inter-
mediates shorter than 32nt were also formed in a
considerable extent, but no intermediates longer than
32nt or full-length products were observed. Hence,
polymerization by RT HIV-1 using the template cross-
linked to histone H1 was completely inhibited so that no
translesion DNA synthesis occurred.

The lack of accumulation of intermediates shorter than
those formed due to the termination of the polymerization
at the site of the plain 1,2-GG intrastrand CL or one
nucleotide before this CL implies that the extension of
all species ahead of the CL is faster than their rate of
formation. The observation that these shorter intermedi-
ates are formed after this CL is transformed into the
DPCL is consistent with the view that the DPCL
considerably slows down the extension of the species
ahead of this lesion. This may be due to its markedly
increased bulkiness so that this lesion may interfere with
DNA polymerization not only at the nucleotide to which
the protein is covalently bound, but also at the preceding
nucleotides.

Nucleotide excision repair

NER is a pathway used by human cells for the removal of
damaged nucleotides from DNA (30). In mammalian cells,
this repair pathway is an important mechanism for the
removal of bulky, helix-distorting DNA adducts, such as
those generated by various chemotherapeutics including
cisplatin (31). Efficient repair of 1,2-GG or 1,3-GTG
intrastrand CLs of cisplatin has been reported by various
NER systems including human and rodent excinucleases
(17,20,32). The results presented in Figure 6, lanes 2 and 3
are consistent with these reports. The major excision
fragment contains 28nt and other primary excision
fragments are 24-29nt in length (17,20,32). The 148-bp
substrate cross-linked to KF™~ or histone H1 by cisplatin
was prepared from the templates containing the 1,2-GG
or 1,3-GTG intrastrand CL of cisplatin to which KF™ or
histone H1 was added (vide supra). These templates were
isolated from the gel, purified and used as a substrate to
investigate the removal of the DPCL formed by cisplatin
by NER system. No removal of the cisplatin adduct
cross-linked to KF~ or histone H1 from the 148 bp
substrate by human or rodent excinuclease was observed
under conditions when the 1,2-GG or 1,3 GTG intra-
strand adducts (not cross-linked to a protein) were readily
excised (shown in Figure 6, lanes 4 and 5 for the substrate
cross-linked to KF™).

DISCUSSION

In spite of the fact that the role of DNA adducts in
the mechanism of antitumor effects of cisplatin and its
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Figure 6. Excision of the adducts of platinum complexes by rodent
excinuclease. The 148bp substrates were incubated with CHO AAS
CFE and subsequently treated overnight with NaCN prior to analysis
in 10% PAA/8M urea denaturing gel. Lanes: 1, control, unplatinated
substrate; 2, the substrate containing 1,3-GTG intrastrand CL of
cisplatin; 3, the substrate containing 1,2-GG intrastrand CL of
cisplatin; 4, the substrate containing single DPCL formed by the
transformation of the template containing site-specific 1,3-GTG
intrastrand CL of cisplatin incubated with KF™; 5, the substrate
containing single DPCL formed by the transformation of the template
containing site-specific 1,2-GG intrastrand CL of cisplatin incubated
with KF™. See the text for other details.

analogues has been extensively examined, the significance
of the DPCLs in which DNA and proteins are covalently
linked by these platinum complexes has not been always
fully appreciated. Hence, the mechanism of the origin
of these DPCLs has not been so far investigated in such
details as other (plain) DNA adducts of platinum
compounds (containing no protein). We show in this
work that in cell-free media cisplatin forms DPCLs
considerably more effectively than clinically ineffective
transplatin (Figures 2 and 3 and Table 1). It implies that
there is a positive correlation between the efficiency of
mononuclear bifunctional platinum complexes to form
DPCLs and their antitumor effects. Thus, the results of the
present work are consistent with previous findings
demonstrating that DPCLs persist longer in cells exposed
to cisplatin than in those exposed to the chemothera-
peutically inactive trans analogue (9,33,34), which
suggests relevance of such lesions to antitumor effects
of cisplatin.

In the present work, we paid attention to some aspects
of the mechanism of the origin of the DPCLs by cisplatin,
in particular to the mechanism of transformation of
individual types of plain DNA adducts of cisplatin
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(and transplatin) into the DPCLs. We assumed initially
that the DPCLs may originate mostly from monofunc-
tional adducts of cisplatin. However, quite strikingly, the
DPCLs also origin with a roughly identical efficiency by
the transformation of DNA intrastrand CLs of cisplatin
(Figure 4). In contrast, DNA interstrand CLs of cisplatin
are markedly more stable in the presence of DNA-binding
proteins than DNA intrastrand CLs of this metallodrug
so that their transformation into DPCLs is markedly
more difficult. This observation may be associated with
a rather severe conformational distortion induced in
DNA by interstrand CLs of cisplatin (35,36). The
interstrand CL is preferentially formed by cisplatin
between opposite guanine residues in the 5-GC/5-GC
sequence (37). The cross-linked guanine residues are not
paired with hydrogen bonds to the complementary
cytosines, which are located outside the duplex and not
stacked with other aromatic rings. All other base residues
are paired, but distortion extends over at least 4 bp at the
site of the CL. In addition, the cis-diammineplatinum(II)
bridge resides in the minor groove and the double helix
is locally reversed to a left-handed, Z-DNA-like form.
This adduct induces the helix unwinding by 76-80°
relative to B-DNA and also the bending of 20-40° of
the helix axis at the cross-linked site toward the minor
groove. If the DPCL is formed from DNA adducts of
cisplatin, it is necessary for DNA-binding protein to
come into a very close contact with DNA at the site of
the platinum adduct and to bind to DNA at this site
relatively strongly. This may not be easily achieved in
the case of DNA heavily distorted by the interstrand
CL of cisplatin in contrast to other, less distorting,
DNA adducts of this drug.

It is also demonstrated in the present work that
frequent monofunctional adducts of clinically ineffective
transplatin are also transformed into DPCLs, but much
less efficiently that intrastrand CLs or monofunctional
adducts of cisplatin (Figure 4). This observation is
consistent with the fact that in general monofunctional
adducts of bifunctional transplatinum complexes undergo
chelation reactions less readily than those of cisplatinum
complexes (38).

It has been also demonstrated by others that the
frequency of DPCLs in tumor cells treated with cisplatin
is comparable with that of plain DNA interstrand CLs
of this drug (33) or is even markedly higher (10).
Thus, considering the bulky nature of DPCLs it is likely
that these lesions formed by cisplatin represent a more
distinct and persisting structural motif recognized by the
components of downstream cellular systems processing
DNA damage considerably differently than the plain
DNA adducts of this metallodrug (39). This conclusion
is corroborated by the results of the present work
(Figures 5 and 6) demonstrating that DPCLs linked by
cisplatin inhibit DNA polymerization or removal of major
cisplatin adducts from DNA by NER systems much
more efficiently than the plain DNA adducts (not linked
to proteins).

Our observation (Figure 6) that the mammalian NER
system did not remove proteins cross-linked to DNA
at a detectable level deserves further discussion.



1820 Nucleic Acids Research, 2007, Vol. 35, No. 6

This phenomenon was first observed by us 3 years
ago (15). We investigated in this recent work excision by
mammalian repair systems of the DNA-protein CL
formed by another antitumor platinum drug, trans-
[PtCly(E-iminoether),], between 148bp DNA fragment
and 20 kDa histone H1 and found that such bulky DNA—
protein CLs were not removed. Quite recently, our earlier
results have been confirmed by others (40) demonstrating
that the human NER system did not remove other, also
bulky 16 kDa protein (T4 pyrimidine dimer glycosylase)
cross-linked to DNA. It has been also suggested (40) that
the failure to remove DNA-bulky protein CLs is due to
the steric hindrance caused by the size of the cross-linked
protein that may interfere sterically with the assembly
of the mammalian excision system. Thus, our results
demonstrating failure of the mammalian NER system to
remove the DNA—-Pt—protein CLs reinforce the view that
DNA-protein CLs formed by platinum drugs may be
among the critical lesions relevant to their antitumor
effects. Other proteins known to specifically bind to
cisplatin—-DNA lesions and proteins involved in damage
recognition and repair signaling will be used in our future
research to obtain more details on processing DNA
damage by cisplatin in vivo.

The results of the present work also demonstrate that in
cell-free media transplatin forms less DPCLs than
cisplatin (Figures 2 and 3). This result may seem to
contradict conclusions published earlier by others accord-
ing to which transplatin forms considerably more DPCLs
than cisplatin (9,33). However, these earlier conclusions
have been drawn on the basis of the results obtained with
the cells treated with equitoxic doses of cisplatin and
transplatin, demonstrating a much higher molar concen-
tration for transplatin. Thus, if these results are normal-
ized to the identical level of DNA platination, then in
accordance with the results of the present work transplatin
is much less effective agent capable of forming DPCLs
than cisplatin. It is generally assumed that cytotoxic DNA
adduct of antitumor drug has to be fairly persistent (41).
Among DNA adducts of cisplatin this requirement is very
well accomplished by DPCLs. Hence, a further systematic
and detailed analysis of the efficiency of cisplatin and
other antitumor platinum compounds to form DPCLs
in cells and the role of these lesions in the mechanism
underlying antitumor effects of platinum drugs is urgently
needed.

There are several reactive agents which produce CLs
between DNA and proteins in van der Waals’ contact.
Thus, the cross-linking procedures involving these agents
provide a tool for identification of proteins or protein
domains closely positioned to DNA including mapping
of protein-binding sites on DNA in vivo (42). The results
of the present work support the view that cross-linking
DNA and proteins by platinum complexes can be also
applied to studies of specific protein—-DNA interactions
both in vitro and in vivo (43).
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Supplementary Data is available at NAR Online.
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