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Abstract Recent theory has overturned the assumption that accelerating returns from individual 
specialisation are required to favour the evolution of division of labour. Yanni et al., 2020, showed 
that topologically constrained groups, where cells cooperate with only direct neighbours such as for 
filaments or branching growths, can evolve a reproductive division of labour even with diminishing 
returns from individual specialisation. We develop a conceptual framework and specific models to 
investigate the factors that can favour the initial evolution of reproductive division of labour. We find 
that selection for division of labour in topologically constrained groups: (1) is not a single mecha-
nism to favour division of labour—depending upon details of the group structure, division of labour 
can be favoured for different reasons; (2) always involves an efficiency benefit at the level of group 
fitness; and (3) requires a mechanism of coordination to determine which individuals perform which 
tasks. Given that such coordination must evolve prior to or concurrently with division of labour, 
this could limit the extent to which topological constraints favoured the initial evolution of division 
of labour. We conclude by suggesting experimental designs that could determine why division of 
labour is favoured in the natural world.

Editor's evaluation
This manuscript presents a theoretical study of the evolution of division of labor, exploring the 
impact of topology, the convexity and concavity of fitness returns on investment, and different 
biological modes through which division of labor may arise. This is a difficult topic to study as divi-
sion of labor evolved long ago, and many theoretical predictions have proven difficult to directly 
test. The results presented here may provide the next step necessary to produce truly testable 
hypotheses on how division of labor evolves, and will be of interest to evolutionary biologists, math-
ematical biologists, and biophysicists.

Introduction
Division of labour, where cooperating individuals specialise to carry out distinct tasks, plays a key 
role at all levels of biology (Bourke, 2011; Queller, 1997; Maynard Smith and Szathmáry, 1995; 
West et al., 2015). Cells are built by genes carrying out different functions (Bourke, 2011; Levin and 
West, 2017). In clonal groups of bacteria, cells specialise to produce and secrete different factors that 
facilitate growth (Dragoš et al., 2018a; Veening et al., 2008; West and Cooper, 2016). Pathogens 
rely on division of labour for protection from the host immune response and competitors (Acker-
mann et al., 2008; Diard et al., 2013). Multicellular organisms are composed of reproductive germ 
cells and sterile somatic cells that are not passed to the next generation (Bourke, 2011; Maynard 
Smith and Szathmáry, 1995). The ecological dominance of the social insects arises from division of 
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labour between queens and the different types of 
workers (castes) (Hölldobler and Wilson, 1990; 
Oster and Wilson, 1978).

It has long been established that the evolution 
of division of labour requires an efficiency benefit 
from individual specialisation (Figure 1A and B for 
reproductive division of labour) (Bourke, 2011; 
Cooper and West, 2018; Ispolatov et al., 2012; 
Michod, 2006; Oster and Wilson, 1978; Schiessl 
et al., 2019; Biggart, 1776; Maynard Smith and 
Szathmáry, 1995; Solari et al., 2013). In partic-
ular, that there is an accelerating (convex) return 
when individuals commit more effort to a partic-
ular task, such that twice the investment more 
than doubles the return (Bourke, 2011; Cooper 
and West, 2018; Ispolatov et al., 2012; Michod, 
2006; Solari et al., 2013). An accelerating return 
from individual investment can exist for several 
reasons. A task could become more effective as 
more effort is put into it, or it could be carried 
out with diminishing costs. This could occur if 
there are large upfront costs from performing a 
task. For instance, any reproduction by a cell in 
Volvocine groups first requires individual growth 
to the size of a daughter colony (Michod, 2006). 
Alternatively, there could be a disruptive cost to 
carrying out multiple tasks at the same time if the 
tasks do not mix well. For instance, in cyanobac-
teria the enzymes that fix environmental nitrogen 
are degraded by oxygen, a bi-product of photo-
synthesis (Flores and Herrero, 2010).

In contrast, Yanni et al. found that division of 
labour between helpers and reproductives can 

sometimes be favoured even when there are diminishing (concave) returns from individual special-
isation (Yanni et al., 2020). Specifically, reproductive division of labour could arise in topologically 
constrained groups—where each cell in a spatially structured group shares cooperative benefits with 
only their direct neighbours (Staps and Tarnita, 2020; Yanni et al., 2020). Their analyses suggested 
that this is particularly likely to occur in sparsely structured groups, where cells have a small number of 
neighbours (Yanni et al., 2020). This is a novel result. Diminishing returns means that specialised indi-
viduals are inefficient, and earlier work suggested that division of labour could not be favoured in this 
situation (Figure 1A, Cooper and West, 2018; Michod, 2006; Schiessl et al., 2019). Consequently, 
this result has the potential to overturn our understanding of the factors that favour the evolution of 
division of labour.

However, there are several issues that still need to be resolved with how topological constraints 
can favour division of labour. Why exactly do the predictions of this new theory differ from previous 
theory? Are special group structures the only way to alter the predictions of the previous theory, 
or is this an example of a more general phenomenon (Rueffler et  al., 2012)? Do these findings 
rely upon implicit assumptions, which may not be reasonable during the initial evolution of division 
of labour? Answering these questions is not only of theoretical importance: it is also key for plan-
ning future empirical studies. Quantifying the shape of the returns from individual specialisation has 
been assumed to be a fundamental step in determining why division of labour was favoured in some 
species, but not others (Diard et al., 2013; Dragoš et al., 2018a; Flores and Herrero, 2010; Koufo-
panou, 1994; Mridha and Kummerli, 2021; Strassmann et al., 2000; Veening et al., 2008).

We first use the methodology developed by Rueffler et al., 2012, to derive the general conditions 
that favour the initial evolution of reproductive division of labour between helpers and reproductives. 

A)

B)

Individual 
returns

More  cooperation

Accelerating

Individual
returns
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More  cooperation

Division of labour

Uniform cooperation

generalist

reproductivehelper

Figure 1. Division of labour is favoured by accelerating 
returns from individual specialisation. (A) Theory has 
shown that either a linear or diminishing return from 
more cooperation (or reproduction) favours uniform 
cooperation, with all individuals investing the same 
amount of effort into cooperation and reproduction 
(i.e. no division of labour) (Cooper and West, 2018; 
Michod, 2006; Schiessl et al., 2019). (B) In contrast, 
an accelerating return from more cooperation (or 
reproduction) favours reproductive division of labour, 
with some individuals specialising in high levels of 
cooperation (helpers) and others in low levels of 
cooperation (reproductives) (Cooper and West, 2018; 
Michod, 2006; Schiessl et al., 2019).

https://doi.org/10.7554/eLife.71968
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We then use this framework to examine when and why topological constraints can favour division of 
labour. More specifically, we determine the ultimate cause of division of labour in specific topologi-
cally constrained groups, such as filaments and branching growths, as well as in a general analysis of 
arbitrary group structures. We then ask whether division of labour without an accelerating return from 
individual specialisation could arise in groups without topological constraints. To test our hypothesis 
that between-individual coordination is required for division of labour in these cases, we re-examine 
our models while assuming that cells adopt helper and reproductive roles randomly (no coordination). 
We finish by suggesting experimental designs for determining why division of labour has evolved in 
specific species.

Results and discussion
General invasion analysis
We follow previous studies by assuming that individual fitness is the product of individual viability, 
which is the chance of surviving to maturity, and individual fecundity, which is proportional to the 
number of offspring if the individual reaches maturity (Cooper and West, 2018; Michod, 2006; 
Yanni et al., 2020). We examine the specific case of reproductive division of labour between helpers 
and reproductives, where helpers are more cooperative, contributing to a higher viability for group 
members, and reproductives are less cooperative, contributing to higher individual fecundity.

We consider an initial population of clonal groups each containing ‍n‍ individuals, in which all indi-
viduals cooperate at the evolutionarily stable (ES) level (‍z∗‍), which is the level that cannot be outcom-
peted by a mutant strain that uses a different level of uniform cooperation across the group (Maynard 
Smith, 1982). We then ask when this population of uniform cooperators can be invaded by a mutant 
strain that employs a reproductive division of labour.

Without loss of generality, we assume that the mutant strain is composed of ‍nh‍ helpers that invest 

‍zh ≥ 0‍ into cooperation and ‍nr‍ reproductives that invest ‍zr ≥ 0‍ into cooperation (where ‍nh + nr = n > 2‍ 
and ‍zh > zr‍). We set individual fitness as the product of individual fecundity, ‍F > 0‍, and individual 
viability, where helpers and reproductives may in principle have different viability functions, ‍Vh > 0‍ and 
‍Vr > 0‍ (but see Appendix C.2) (Michod, 2006; Yanni et al., 2020). The fitness of the clonal group is 
given by the sum of individual fitness:

	﻿‍ W(zh, zr) = nhF(zh)Vh(zh, zr) + nrF(zr)Vr(zh, zr),‍� (1)

where the first term on the right-hand side is the total fitness of the prospective helpers and the 
second term on the right-hand side is the total fitness of the prospective reproductives.

Fecundity is determined by an individual’s investment in cooperation (‍F = F
(
z
)

,‍ where ‍z‍ is the focal 
individual’s level of cooperation) and viability is determined by the level of cooperation at the level of 
the group (‍Vh = Vh

(
zh, zr

)
‍ and ‍Vr = Vr

(
zh, zr

)
‍). We assume that there is a tradeoff between fecundity 

and viability such that higher individual cooperation leads to lower individual fecundity (‍F
′ (

z
)

< 0‍), 
but that more cooperation leads to a higher viability for all individuals (i.e. ‍V

zh
h , Vzr

h , Vzh
r , Vzr

r > 0‍, where 
superscripts denote partial derivatives). We assume that viability selection occurs just prior to repro-
duction. This is consistent with previous models and ensures that there there is no feedback between 
a cell’s viability and its ability to produce cooperative benefits for the group (Cooper and West, 2018; 
Michod, 2006; Yanni et al., 2020).

We determine the invadability conditions that favour reproductive division of labour by applying 
the general approach of Rueffler et al., 2012. The key step is to approximate the relative fitness of a 
reproductive division of labour mutant by taking a second-order Taylor expansion of fitness, centred 
on the resident strategy of uniform cooperation, ‍z∗‍:

	﻿‍ W
(
z∗ + ∆zh, z∗ + ∆zr

)
− W

(
z∗, z∗

)
≈‍�

	﻿‍

Wzh∆zh + Wzr∆zr + 1
2 Wzhzh∆z2

h + 1
2 Wzrzr∆z2

r + Wzhzr∆zh∆zh,

2(a) 2(b) 2(c) 2(d) 2(e) ‍�
(2)

where ‍∆zh > ∆zr‍ captures the change in the level of cooperation for mutant helpers and reproduc-
tives, respectively, which we assume are small in magnitude. The superscripts represent first- and 
second-order partial derivatives, where all partial derivatives are evaluated at the resident strategy 

https://doi.org/10.7554/eLife.71968
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of uniform cooperation (‍zh = zr = z∗‍). If a mutant 
strain exists such that Equation 2 is positive 
(‍W

(
z∗ + ∆zh, z∗ + ∆zr

)
> W

(
z∗, z∗

)
‍), then divi-

sion of labour between helpers and reproduc-
tives is favoured to evolve. Conversely, if for all 
possible mutant strains, Equation 2 is nega-
tive (‍W

(
z∗, z∗

)
> W

(
z∗ + ∆zh, z∗ + ∆zr

)
‍), then 

uniform cooperation is evolutionarily stable.

The three pathways to division of 
labour
We found that reproductive division of labour 
could be favoured for three distinct reasons, 
corresponding to different subsets of terms on 
the right-hand side of Equation 2. Our results 
for reproductive division of labour, where fitness 
is partitioned as the product of fecundity and 
viability, align with those found by Rueffler et al., 
2012, for division of labour more generally. We 
now go through these three distinct scenarios.

Scenario 1: Accelerating returns from 
individual specialisation
The first and most studied scenario that can 
favour division of labour is when there are accel-
erating returns from individual specialisation. This 
occurs if there is an accelerating fitness return 
from either helper specialisation in cooperation or 
reproductive specialisation in fecundity (Figure 1; 

Cooper and West, 2018; Michod, 2006; Oster and Wilson, 1978).
Mathematically, this scenario is a consequence of the third and fourth terms of the Taylor expan-

sion (‍2c‍ and ‍2d‍), which capture the second-order fitness effect of a small, unilateral change in coop-
eration by either prospective helpers or reproductives, respectively. Division of labour is favoured 
to evolve whenever at least one of ‍2c‍ and ‍2d‍ is greater than zero (‍Wzhzh > 0‍ or ‍Wzrzr > 0‍), and where 
we have assumed that the first two terms are both zero (‍Wzh = 0‍ and ‍Wzr = 0‍; see between-individual 
differences below; Figure 2A). In either scenario, an efficiency benefit to group fitness arises from 
individual specialisation because the more effort that each individual puts into a task, the better they 
can perform that task. Rueffler et al. termed these kinds of scenario as ‘accelerating performance 
functions’ (Rueffler et al., 2012).

Scenario 2: Between-individual differences
The second scenario that can favour reproductive division of labour is when there are pre-existing 
differences between individuals in the group, such that some individuals are predisposed to one task 
or the other. For example, if some individuals can secure larger viability benefits for the group at the 
same fecundity cost as others (Figure 2B).

This scenario is captured by the first two terms of the Taylor expansion ‍
(
2a and 2b

)
‍ , which are the 

first-order fitness effects from a small, unilateral change in the level of cooperation by prospective 
helpers or reproductives. If the direct fitness effects are non-zero (positive or negative) at the resident 
strategy of uniform cooperation (‍Wzh ̸= 0‍ or ‍Wzr ̸= 0‍), then division of labour can invade independently 
of any higher-order effects (the remaining terms in Equation 2).

We term this scenario ‘between-individual differences’ because it requires that there is pre-existing 
phenotypic or environmental variation between individuals in the group. For the within-species case, 
ancestral groups are usually composed of clonal or highly related individuals, who will be phenotyp-
ically similar or identical. Consequently, this mechanism could be less important for the division of 
labour except when there are consistent differences in the microenvironment experienced by different 

Figure 2. Division of labour is favoured by between-
individual differences. Division of labour is favoured 
if some individuals are predisposed to being 
reproductives or helpers. (A) In the absence of another 
mechanism, if there are no differences between 
individuals (black and grey lines), then division of labour 
is not favoured. (B) If some individuals can produce 
larger viability benefits than others (black line), or if 
some individuals can access greater fecundity benefits 
than others (grey line), then this predisposition favours 
division of labour.

https://doi.org/10.7554/eLife.71968
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individuals (Tverskoi et al., 2018; Tverskoi and Gavrilets, 2021). In contrast, this scenario is likely to 
be widespread in the evolution of non-reproductive division of labour between species, such as for 
mutualisms or symbioses (Kiers et al., 2011; Rueffler et al., 2012; Wyatt et al., 2014). Individuals 
of different species often differ in their abilities to perform certain tasks (Kiers et al., 2011). Rueffler 
et al. termed this scenario ‘positional’, but we avoid that term to prevent confusion with topological 
position (Rueffler et al., 2012).

Between-individual differences provide a first-order fitness benefit to dividing labour, and so it does 
not matter whether the subsequent benefits of increased cooperation or fecundity are accelerating or 
diminishing (Figure 1), so long as these benefits are different for different individuals (Figure 2). When 
some individuals are predisposed to being either helpers or reproductives, then individual specialisa-
tion provides an efficiency benefit to group fitness by capitalising on these inherent differences.

Scenario 3: Reciprocal specialisation
The final scenario that can favour division of labour is when reciprocal specialisation by both helpers 
and reproductives provides a fitness benefit to the group (Figure 3). This scenario requires two key 
conditions. First, simultaneous specialisation, where some individuals invest more in cooperation 
(more viability benefits for the group), and others invest less in cooperation (greater individual fecun-
dity; but see below). Second, this reciprocal specialisation must provide a group-level fitness benefit, 
because the increased benefits of cooperation are preferentially directed towards reproductives.

Mathematically, this scenario involves the last term of the Taylor expansion (‍2e; Wzhzr∆zh∆zr‍). This 
term is generated by a between-individual, second-order fitness effect, capturing how increased 
investment in viability by some individuals affects the returns from increased investment in fecundity 
by others, and vice versa. Rueffler et al. referred to this as a ‘synergistic benefit’ to division of labour 
(Queller, 1985; Queller, 2011; Rueffler et al., 2012).

A)

B)

Uniform cooperation

Division of labour

Unilateral specialisation

Reciprocal specialisation

Reproductive 
specialisation

generalist

reproductivehelper

Diminishing group
fitness benefits

Unilateral specialisation

Accelerating group 
fitness benefits

Reciprocal specialisation

Helper 
specialisationOr

Figure 3. Division of labour is favoured by reciprocal specialisation. We assume that there are diminishing 
returns from specialisation in either viability or fecundity (Figure 1A). (A) In this case, a unilateral increase in 
cooperation by helpers or a unilateral decrease in cooperation by reproductives leads to a diminishing fitness 
benefits to the group, which favours uniform cooperation (no division of labour). (B) In contrast, a reciprocal 
increase in cooperation by helpers (more viability benefits provided by helpers) and a decrease in cooperation by 
reproductives (larger reproductive fecundity) can produce an accelerating return to the fitness of the group if the 
benefits of increased cooperation are preferentially directed to reproductives. Thus, reciprocal specialisation can 
still favour division of labour, even though the returns from individual specialisation are diminishing. In the middle 
plots of (A) and (B), only the shape of the benefits from increased specialisation is plotted.

https://doi.org/10.7554/eLife.71968
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Critically, this scenario still involves an efficiency benefit to specialisation, but at the level of group 
fitness rather than in each fitness component separately (Appendix C.1). By this we mean that there 
is an accelerating fitness benefit to the group when helpers and reproductives reciprocally specialise, 
leading to a higher group fitness than in groups with uniform cooperation (generalists). This occurs if 
the increased help given to reproductives is sufficiently amplified by the increased fecundity of repro-
ductives (Yanni et al., 2020). This synergistic efficiency benefit can favour division of labour even if 
there are diminishing returns from individual specialisation.

Division of labour by reciprocal specialisation can also evolve without a joint mutation in the level 
of cooperation of both helpers and reproductives (no simultaneous specialisation). In this case, the 
chance invasion (to fixation) of a slightly deleterious mutant that specialises in only one phenotype 
can destabilise uniform cooperation, creating a selection pressure for the other phenotype to also 
specialise that is greater than the selection pressure to purge the initial mutant. In this two-step 
scenario, it is nevertheless the synergistic benefit from reciprocal specialisation that makes division of 
labour more efficient.

Group structure in the general framework
Our above analysis has shown that reproductive division of labour can be favoured for three reasons: 
(1) accelerating returns make individual specialisation more efficient; (2) between-individual differ-
ences make individual specialisation more efficient; and (3) there is a synergistic efficiency benefit from 
reciprocal specialisation. These results agree with previous analyses by Rueffler et al., 2012.

We now use this framework to examine how and why topological constraints can favour division 
of labour in the absence of an accelerating return from individual specialisation (i.e. when scenario 1 
does not hold). We ask three questions. First, can topological constraints favour division of labour by 
between-individual differences (scenario 2), and/or by reciprocal specialisation (scenario 3)? Second, 
are topological constraints the only way to evolve a division of labour without an accelerating return 
from individual specialisation? Third, does the evolution of division of labour by between-individual 
differences (scenario 2) and reciprocal specialisation (scenario 3) require coordination between indi-
viduals to determine which cells become helpers or reproductives?

Question 1: How do topological constraints favour division of labour?
We consider two spatial models, based on the group structures proposed by Yanni et al., to examine 
whether topologically constrained groups favour division of labour by: (a) between-individual differ-
ences and/or (b) reciprocal specialisation (Yanni et al., 2020).

Can topological constrains lead to division of labour by between-individual 
differences?
Consider a group in which cells alternately have either two or three neighbours, in a branching struc-
ture (Figure 4). Such a group structure might have occurred for some early forms of multicellular 
life (Yanni et al., 2020). We term cells with three neighbours ‘node’ cells and cells with two neigh-
bours ‘edge’ cells. We assume that cells investing an amount ‍z ≥ 0‍ into cooperation produce an 
amount ‍H

(
z
)
‍ of a public good. We assume non-accelerating returns from individual specialisation (i.e. 

‍H
′′ (

z
)
≤ 0‍ or ‍F

′′ (
z
)
≤ 0‍). The cell keeps a fraction ‍1 − λ‍ of the public good that it produces, and the 

remaining fraction ‍λ‍ is shared equally between its direct neighbours (the ‘shareability’ of cooperation: 

‍0 < λ ≤ 1‍). We assume that the viability of a cell is equal to the sum of the public good that it absorbs.
For this model, we find that for all social traits (‍λ > 0‍), reproductive division of labour by between-

individual differences can evolve (Figure 4A; Appendix A.1). This occurs because different cells have 
different viability-fecundity tradeoffs depending on their position in the group. Edge cells receive 
relatively less public good from their (fewer) neighbours, and so pay a smaller opportunity cost from 
decreased fecundity (increased cooperation). In contrast, node cells receive relatively more public 
good from their (more numerous) neighbours, and so pay a larger opportunity cost from decreased 
fecundity (increased cooperation). Consequently, this between-cell difference favours node cells to 
specialise in fecundity (reproductives) and edge cells to specialise in increased cooperation (helpers). 
Importantly, because this pathway to division of labour is driven entirely by a first-order effect (2a and 
2b), it does not require a second-order efficiency benefit from specialisation (2c, 2d, or 2e).

https://doi.org/10.7554/eLife.71968
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Figure 4. The impact of topological constraints on the division of labour. We show here different scenarios in which division of labour can evolve (non-
white shades) and the size of its fitness benefit if so (darker shades). We consider three specific spatial models, including: a branching structure (A and 
D); a filament structure (B and E); and a well-mixed group (C and F). We consider when cells know their location in the group when specialising (with 
coordination; A–C) and when they do not (without coordination; D–F), in which case cells specialise randomly. (A) In a branching group structure with 
coordination, division of labour with diminishing returns from specialisation (‍α < 1‍) can be favoured by between-individual differences whenever the 
benefits of cooperation are shared (‍λ > 0‍). (B) In a filament structure with coordination, division of labour with diminishing returns from specialisation 
(‍α < 1‍) can be favoured by reciprocal specialisation when cells share a sufficient majority of the public good they produce with neighbours (e.g. when 
linear returns: ‍λ > 1

2‍). (C) In a well-mixed group with coordination, division of labour with diminishing returns from specialisation (‍α < 1‍) can be favoured 
by reciprocal specialisation if cells share an even larger proportion of the public good they produce with neighbours (e.g. when linear returns: ‍λ > n−1

n ‍). 
(D–F) When cells specialise randomly (no coordination) across all three spatial models, then division of labour can only evolve if there is an accelerating 
return from specialisation (‍α > 1‍). Throughout, we have assumed a linear return from fecundity specialisation, ‍F

(
x
)

= 1 − x‍, and allow for a non-linear 
return from investment in cooperation, ‍H

(
x
)

= xα‍ , where ‍α‍ controls the shape of the return.

https://doi.org/10.7554/eLife.71968


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Cooper et al. eLife 2021;10:e71968. DOI: https://doi.org/10.7554/eLife.71968 � 8 of 29

More generally, a formal analysis of arbitrary group structures reveals that division of labour by 
between-individual differences can always evolve whenever the number of neighbours varies for 
different cells in the group (Appendix A.2).

Can topological constraints lead to division of labour by reciprocal 
specialisation?
Consider a one-dimensional chain of cells, as examined by Yanni et al. Chains are found in species like 
cyanobacteria that form filaments of cells, and such structures might have been important at the onset 
of the evolution of multicellularity (Figure 4, Yanni et al., 2020). We assume arbitrarily that ‘odd’ 
cells along the filament are putative helpers and ‘even’ cells are putative reproductives. We other-
wise make the same assumptions as for the branching structure model: there is a non-accelerating 
return from individual specialisation (i.e. ‍H

′′ (
z
)
≤ 0‍ or ‍F

′′ (
z
)
≤ 0)‍, and the cell keeps a fraction ‍1 − λ‍ 

of the public good that it produces, with the remaining fraction ‍λ‍ being shared equally by its direct 
neighbours.

If the amount of public good shared with neighbours is sufficiently large (high ‍λ‍), then we find that 
division of labour via reciprocal specialisation can evolve (Figure 4B; Appendix A. 3). For instance, in 
the case of linear fecundity and public good returns (‍H

′′ (
z
)

= F
′′ (

z
)

= 0‍), division of labour by recip-
rocal specialisation can evolve if helpers share more of the public good that they produce with their 
neighbours than they keep for themselves (‍λ > 1

2‍). If there are diminishing returns from specialisation 
(‍H

′′ (
z
)

< 0‍ or ‍F
′′ (

z
)

< 0‍), then division of labour can still be favoured but then the amount of the 
public good preferentially shared with neighbours must be even greater still (higher ‍λ;‍ Figure 4E).

For an arbitrary group structure, our analysis in the previous section implies that division of labour 
can evolve by between-individual differences, unless every cell in the group has the same number 
of neighbours. Consider a group in which every cell has exactly d neighbours. In this case, we show 
(Appendix A.5) that division of labour can still be favoured due to reciprocal specialisation if:

	﻿‍ λµ > d‍� (3)

λ is the shareability of cooperation as defined previously and μ captures how easily the group can be 
‘bi-partitioned’. That is, μ is a measure of the extent that the group can be divided into two classes 
of cells such that cells are neighbours with many cells of the opposing class and few neighbours of 
their own class. Thus, reciprocal specialisation can favour division of labour if: (1) groups are more 
sparse (low d); (2) groups are structured such that helpers can be neighbours with reproductives 
more than with other helpers, and vice versa (high μ); and/or (3) when the benefits of cooperation are 
preferentially shared with neighbours (high ‍λ‍). In combination, these three factors amplify the syner-
gistic benefits of reciprocal helper and reproductive specialisation, which can produce an accelerating 
fitness return for the group, even when there are non-accelerating returns from individual specialisa-
tion (Appendix C.1).

If one or two of these factors are particularly favourable for reciprocal specialisation, then the 
condition(s) on the remaining factor(s) can be relaxed. For instance, cells in a filament have only 
two neighbours (‍d = 2‍), and the potential alternation of helpers and reproductives in the filament 
means that helpers can share their cooperative public goods with reproductives exclusively (maximal 

‍µ.‍ Consequently, reciprocal specialisation is possible even when the shareability of cooperation is 
reasonably low (e.g. ‍λ > 1

2‍ for linear benefits).
To conclude, topological constraints are not a single explanation for division of labour, in that they 

can favour division of labour for two different biological reasons. Different group structures can lead to 
either between-individual differences favouring division of labour (scenario 2) or reciprocal specialisa-
tion favouring division of labour (scenario 3). In all cases, there is an efficiency benefit from specialisa-
tion at the level of group fitness even if the returns from individual specialisation are non-accelerating.

Question 2: Are topological constraints required for division of labour 
without accelerating returns from individual specialisation?
We considered a well-mixed social group of ‍n‍ cells, where all cells share the benefits of coopera-
tion with one another, and so there are no topological constraints (Figure 4). We then examined 
whether division of labour could be favoured by: (a) between-individual differences; and/or (b) recip-
rocal specialisation. In both cases, we assume that when a cell invests ‍z‍ into cooperation, it produces 
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an amount ‍H
(
z
)
‍ of a public good. A cell keeps a fraction ‍1 − λ‍ of the public good that it produces 

and the remaining fraction ‍λ‍ is shared by the rest of the social group members equally. We again 

consider the case where there is a non-accelerating return from individual specialisation (‍H
(
z
)′′

≤ 0‍; 

‍F
′′ (

z
)
≤ 0)‍.

Can between-individual differences favour division of labour without a topo-
logical constraint?
In the well-mixed group of identical cells, we find that division of labour cannot arise by between-
individual differences (Appendix A.4). This is because all cells have the same number of neighbours, 
which we have shown more generally can never produce between-individual differences. This predic-
tion could be violated if one of our assumptions do not hold: for instance, if there are consistent differ-
ences in the microenvironment that predispose some cells to one task or the other (Tverskoi et al., 
2018; Tverskoi and Gavrilets, 2021; Yanni et al., 2020).

Can reciprocal specialisation favour division of labour without a topological 
constraint?
In the well-mixed group of identical cells, if the amount of public good shared with neighbours is 
sufficiently large (high ‍λ‍), then we find that division of labour via reciprocal specialisation can evolve 
(Figure 4F; Appendix A.4). If there are linear returns from increased specialisation (‍H

′′ (
z
)

= F
′′ (

z
)

= 0‍), 
then division of labour can evolve when the public good produced by an individual benefits an average 
group member more than the producer (‍λ > n−1

n ‍; Figure  4C). These results are like those found 
for a filament of cells (Figure 4B). In both cases, more generous sharing (higher ‍λ‍) means that the 
synergistic benefits of reciprocal specialisation can be great enough to compensate for the non-
accelerating returns from individual specialisation. In well-mixed groups, very generous sharing (‍λ ≈ 1‍) 
also compensates for the fact that helpers are neighbours with all other helpers (no sparsity and mini-
mally ‘bi-partionable’).

To conclude, the well-mixed model shows that a topological constraint is not required for the 
evolution of division of labour with non-accelerating returns from individual specialisation. This result 
is in direct contradiction to that of Yanni et al., 2020. This difference arises because helpers in their 
model always benefit at least as much as any of its neighbours from its own public good produc-
tion (‍λ ≤ n−1

n ‍) (Yanni et al., 2020). Our model allows for biological scenarios where the public good 
benefits an average neighbour more than the producer (‍λ > n−1

n ‍). For instance, reproductive cells 
in cyanobacteria may absorb more of the fixed nitrogen produced by helpers than helpers do to 
meet the large energetic requirements of cell duplication and division (Flores and Herrero, 2010; 
Herrero et al., 2016; Meeks and Elhai, 2002). At the extreme, the public good can be an ‘others-
only’ trait that benefits neighbours but not the producer at all (‍λ = 1‍) (Pepper, 2000). An example 
of this are the dispersal benefits provided by stalk cells in Dyctiostelium discodeum fruiting bodies 
or the self-sacrificing behaviour of helper cells in Salmonella enterica infections (Ackermann et al., 
2008; Strmecki et al., 2005). Consequently, our model allows for a wider spectrum of biologically 
realistic scenarios. Critically, division of labour can be favoured in a group of well-mixed cells because 
it provides an efficiency benefit at the group level, via reciprocal specialisation (scenario 3), in an anal-
ogous way to our model with a one-dimensional chain of cells (question 1b).

Question 3: Is coordination required to favour division of labour without 
accelerating returns from individual specialisation?
We hypothesised that the benefits of between-individual differences (scenario 2) or reciprocal speciali-
sation (scenario 3) rely on the implicit assumption that cells are coordinating which individuals specialise 
to become reproductive and helpers. This matters because mechanisms for coordinating division of 
labour, such as between cell signalling, might not be expected to exist before division of labour has 
evolved (Cooper et al., 2022; Liu et al., 2021). Consequently, if coordination was required, then this 
could limit the extent to which topological constrains favour the initial evolution of division of labour.

We investigated this hypothesis by repeating our above analyses, while assuming that cells do not 
have access to information that allows them to coordinate their phenotypes. Specifically, cells do not 
know if they are ‘odd’ or ‘even’, or if they are ‘edge’ or ‘node’. We assumed instead that a reproductive 

https://doi.org/10.7554/eLife.71968


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Cooper et al. eLife 2021;10:e71968. DOI: https://doi.org/10.7554/eLife.71968 � 10 of 29

division of labour mutant induces each cell in the group to adopt the role of a helper or reproductive 
with a uniform probability (random specialisation). Random specialisation has been observed in a 
number of microbes (Ackermann et al., 2008; Diard et al., 2013; Veening et al., 2008). For fila-
ments, branching group structures, and well-mixed groups, we found that division of labour can no 
longer evolve with non-accelerating returns from individual specialisation (Figure 4D–E; Appendices 
B.1 and B.2). In Appendix B.3, we have shown that this result holds for any group structure.

Consequently, for division of labour to evolve with non-accelerating returns from individual special-
isation, there must exist some mechanism to coordinate which cells specialise to perform which tasks. 
It is possible that the mechanism need not produce a perfect allocation of labour across the group as 
analysed in our models (Liu et al., 2021). However, because division of labour cannot be favoured to 
evolve if role allocation is fully random, at least some degree of even imperfect between-cell coordi-
nation will be required.

A clear example of coordinated division of labour in topologically constrained groups is the use 
of between-cell signalling in some cyanobacteria filaments to determine which cells become sterile 
nitrogen fixing heterocysts and which cells become reproductive photosynthesisers (Flores and 
Herrero, 2010; Meeks and Elhai, 2002). However, a signal to coordinate distinct phenotypes must 
exist prior to or concurrently with the emergence of division of labour, and so a topological constraint 
is less likely to have favoured the initial evolution of division of labour in cyanobacteria. Alternatively, 
division of labour could have been favoured by an accelerating return from individual specialisation 
(scenario 1), with coordination only being favoured to evolve subsequently. Empirically, an acceler-
ating return seems likely, as the key tasks performed by reproductives and helpers do not mix well 
(photosynthesis and nitrogen fixation) (Flores and Herrero, 2010; Meeks and Elhai, 2002).

These analyses do not suggest that topological constraints could never favour the initial evolution 
of division of labour. For instance, a pre-existing cue could allow division of labour to initially evolve 
with a metabolically cheaper form of coordination. More specifically, phenotype could be determined 
in response to the number of neighbours or the local concentration of some resource. Further, if there 
are pre-existing differences between individuals due to a pre-existing mechanism of coordination, then 
this mechanism can be co-opted to coordinate division of labour. However, the biological plausibility of 
any pre-existing mechanism would need to be explicitly justified and modelled on a case-by-case basis 
(Duarte et al., 2011). This would include modelling the metabolic cost, benefits and effectiveness of the 
mechanism (Cooper et al., 2022; Duarte et al., 2012; Liu et al., 2021). Empirically, while between-cell 
coordination has evolved in several labour-dividing microbial species, further studies—such as ancestral-
state reconstructions—are needed to show whether coordination evolved prior to, concurrently with, or 
subsequent to division of labour in individual species.

In contrast, an accelerating return from individual specialisation depends on non-adaptive factors 
such as the physics, chemistry, or external constraints associated with the public good and its produc-
tion. For instance, an accelerating return can arise if some intermediate products associated with 
cooperation and fecundity do not ‘mix-well’ on a chemical level. Consequently, no additional adaptive 
or pre-adaptation argument is needed to explain this pathway to division of labour.

Distinguishing the ultimate causes of division of labour in the wild
How can we distinguish empirically which of the different scenarios favoured real-world examples of 
division of labour (Figure 5)? We suggest experimental designs for microbial systems, where mixtures 
of helper and reproductive cells are grown together, and which make use of methods to geneti-
cally manipulate and measure the relative levels of cooperation and reproduction of each phenotype 
(Ackermann et al., 2008; Diard et al., 2013; Dragoš et al., 2018a; Dragoš et al., 2018b; Mavridou 
et al., 2018; Mridha and Kummerli, 2021; van Gestel et al., 2015). These are rough suggestions for 
the kind of experiments required, as details and possibilities will vary system from system, depending 
upon factors such as the degree of specialisation, the mechanism by which labour is divided, and what 
manipulations are possible. In addition, these experiments would need to follow from key first steps, 
such as demonstrating division of labour and a tradeoff between reproduction and cooperation (Diard 
et al., 2013; Dragoš et al., 2018a; Dragoš et al., 2018b; Veening et al., 2008; Zhang et al., 2020; 
Figure 5).

Testing for accelerating returns from individual specialisation (scenario 1): In at least three treat-
ments, vary the level of cooperation performed by the helpers (Figure 5A top-left), to test whether the 
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benefits of increased cooperation are accelerating (Figure 5A right). Across at least three other treat-
ments, vary the level of reproduction by the reproductives (Figure 5A bottom-left), to test whether 
the benefits of increased fecundity are accelerating (Figure 5A right). At least three treatments are 
required to be able to test for non-linear (accelerating) benefits.

Testing for between-individual differences (scenario 2): In some treatments, vary the level of coop-
eration of helpers (Figure 5B top-left). In other treatments vary the level of cooperation of repro-
ductives (Figure 5B bottom-left). If division of labour evolves in this system by between-individual 
differences, then we should observe that group fitness varies differently depending on whether it is 
helpers or reproductives that are cooperating at a higher rate (Figure 5B right).

Testing for reciprocal specialisation (scenario 3): Use a classic ‍N × N ‍ factorial experiment where the 
level of cooperation performed by helpers and the level of reproduction performed by reproductives 
are both varied (Figure 5C left). Division of labour is favoured by reciprocal specialisation if there is 
a significant interaction term between these two factors, with at least one treatment that produces a 
group fitness larger than that for uniformly cooperating cells (Figure 5C right).

A) Accelerating returns from individual specialisation

B) Between-individual differences

C) Reciprocal specialisation

Increased helper specialisation

Increased reproductive specialisation

Treatments:
1 … 𝑁𝑁

1 … 𝑁𝑁

1 … 𝑁𝑁

Increased helper cooperation

Increased reproductive cooperation

1 … 𝑁𝑁

Treatments:

reproductives helpers

Higher fitness 
than uniform 
cooperation?

Relative degree of 
helper-reproductive 
specialisation

Group 
fitness

uniform 
cooperation

Reciprocal 
specialisation

Accelerating 
returns?

Degree of specialisation of 
helpers or reproductives

Group 
fitness

Different 
benefit 
curves?

Level of cooperation

Group 
fitness

helpers

reproductives

Increased helper specialisation

Increased 
reproductive
specialisation

…

…

…

1 …
Treatments:

…

𝑁𝑁×𝑁𝑁

…

…

Figure 5. Experimental guidelines to distinguish the causes of division of labour. (A) To test whether division 
of labour is favoured by an accelerating return from individual specialisation, we must separately determine 
whether an increase in helper cooperation or a decrease in reproductive cooperation leads to an accelerating 
increase in group fitness. (B) To test whether division of labour is favoured by between-individual differences, 
we must determine whether an increase in cooperation by helpers produces a different group fitness benefit 
than an increase in cooperation by reproductives. (C) To test whether division of labour is favoured by reciprocal 
specialisation, we must determine whether there exists at least one relative degree of helper-to-reproductive 
specialisation for which group fitness is greater than the fitness of uniform cooperation.
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Conclusion
Division of labour can be favoured to evolve without accelerating returns from individual specialisa-
tion. Nevertheless, for this to occur requires: (a) between-individual differences in task-efficiency or 
synergistic benefits from reciprocal specialisation and (b) a mechanism to coordinate which individuals 
perform which tasks. In contrast, accelerating returns can favour division of labour without a mecha-
nism to coordinate task allocation, possibly making it more likely to favour the initial evolution of divi-
sion of labour. Ultimately, determining the relative importance of these different pathways to division 
of labour is an empirical question, requiring experimental studies of the type we have outlined above.

Materials and methods
Resident strategy of uniform cooperation
We start by solving for the ESS strategy where both types of individuals invest the same amount in 
cooperation (‍zh = zr = z‍; uniform cooperation). This is the level of uniform investment in cooperation, 
‍z∗‍ , for which there is no selection for a uniform change in the amount of cooperation by all individuals 
in the group:

	﻿‍
∂W

(
z,z

)
∂z |z=z∗ = 0‍.�

More explicitly, we can write this as:

	﻿‍
nhFVh

(
F
′

F + nhVzh
h +nrV

zh
r

nhVh

)
|zh=zr=z∗ + nrFVr

(
F
′

F + nhVzr
h +nrVzr

r
nrVr

)
|zh=zr=z∗ = 0

‍�
(4)

where we have suppressed the functional dependencies for ease of presentation. The first term gives 
the group fitness change due to a marginal increase in ‘helper’ cooperation, and the second term 
gives the group fitness change due to a marginal increase in ‘reproductive’ cooperation. So, at the 
uniform strategy, ‍z∗‍ , any increase in the fitness caused by the increased cooperation of one subgroup 
of the population is balanced by a commensurate decrease in fitness caused by the same increase in 

cooperation for the other subgroup ‍
∂W

(
zh,zr

)
∂ zh

|zh=zr=z∗ = −∂W
(

zh,zr
)

∂ zr
|zh=zr=z∗‍.

The constrained optimum, ‍
(
zh, zr

)
=

(
z∗, z∗

)
,‍ computed using Equation 4 does not necessarily 

correspond to a critical point of ‍W ‍, that is, the first derivates ‍
∂W

(
zh,zr

)
∂ zh ‍ and ‍

∂W
(

zh,zr
)

∂ zr ‍ might not vanish at 
this point. However, if the functions ‍Vh‍ and ‍Vr‍ are symmetrical, in the sense that

	﻿‍ nhVh
(
zh, zr

)
= nrVr

(
zr, zh

)
,‍� (5)

then the fitness function satisfies ‍W
(
zh, zr

)
= W

(
zr, zh

)
‍, and it can be seen that this implies that the 

point ‍
(
zh, zr

)
=

(
z∗, z∗

)
‍ is actually a critical point of ‍W

(
zh, zr

)
‍.

Division of labour by between-individual differences
Division of labour by between-individual differences occurs if either of the first two terms of the Taylor 
expansion (Equation 2) is non-zero (‍Wzh ̸= 0‍ or ‍Wzr ̸= 0‍). In this case, directional selection will increase 
or decrease the level of cooperation of one of the individual types. We give here the associated partial 
differentials of fitness (Equation 1):

	﻿‍
∂W

(
zh,zr

)
∂ zh

|zh=zr=z∗ = nhF
′
Vh + nhFVzh

h + nrFVzh
r ‍.� (6)

	﻿‍
∂W

(
zh,zr

)
∂ zr

|zh=zr=z∗ = nrF
′
Vr + nhFVzr

h + nrFVzr
r ‍.� (7)

These expressions capture the fitness consequences of a marginal increase in cooperation by helpers 
and reproductives, respectively. The first term of each captures the fecundity cost to own type of 
producing more public good, whereas the second term and third term are the viability benefits that 
accrue to both types from this increased cooperation. If directional selection in both traits is zero 

(‍
∂W

(
zh,zr

)
∂ zh

|zh=zr=z∗ = 0‍ and ‍
∂W

(
zh,zr

)
∂ zr

|zh=zr=z∗ = 0‍), then ‍zh = zr = z∗‍ is a critical point, and Equations 6 and 

7 imply that
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	﻿‍
F
′

F |zh=zr=z∗ = − nhVzh
h +nrV

zh
r

nhVh
|zh=zr=z∗‍.� (8)

	﻿‍
F
′

F |zh=zr=z∗ = − nhVzr
h +nrVzr

r
nhVh

|zh=zr=z∗‍.� (9)

These equations mean that, if ‍zh = zr = z∗‍ is a critical point, then any marginal viability benefit to the 
group of increased cooperation by one subgroup is cancelled by the fecundity cost to that same 
subgroup. Moreover, Equations 8 and 9 together imply that

	﻿‍
nhVzh

h +nrV
zh
r

nhVh
|zh=zr=z∗ = nhVzr

h +nrVzr
r

nhVh
|zh=zr=z∗‍� (10)

If this equation does not hold, then ‍zh = zr = z∗‍ is not a critical point, that is, there is a difference in the 
viability-fecundity tradeoffs between subgroups such that some individuals (without loss of generality, 
helpers) can secure larger benefits for the group at the same fecundity cost as others (reproductives). 
This gives our first condition for division of labour being able to evolve:

The between-individual differences condition for division of labour

	﻿‍
nhVzh

h +nrV
zh
r

nhVh
|zh=zr=z∗ > nhVzr

h +nrVzr
r

nhVh
|zh=zr=z∗ .‍� (11)

If individuals are indistinguishable when both types invest equally in cooperation (‍zh = zr = z‍), then the 
viability functions satisfy ‍Vh

(
z, z

)
= Vr

(
z, z

)
‍. In this case, Condition 11 can be restated as:

	﻿‍ Vzh
h + nr

nh
Vzh

r > Vzr
r + nh

nr
Vzr

h ‍.� (12)

This says that the contribution to total viability from the increased specialisation of helper individuals is 
strictly larger than the contribution to total viability from the increased specialisation of reproductives. 
As a result, helpers are predisposed to become more helper-like as they can gain larger viability gains 
for the group than the other type of individual.

Division of labour by an accelerating return from individual 
specialisation
Division of labour by an accelerating return from individual specialisation can occur if either of the 
third or fourth terms in the Taylor expansion (Equation 2) are positive in value (‍Wzhzh > 0‍ or ‍Wzrzr > 0‍). 
Taking the second derivative of fitness (Equation 24) with respect to each trait and evaluating at the 
critical point of uniform cooperation ‍z∗‍ gives:

	﻿‍
∂2W
∂z2

h
|zh=zr=z∗ = 2nhF

′
Vzh

h + nhF
′′

Vh + nhFVzhzh
h + nrFVzhzh

r ‍.� (13)

	﻿‍
∂2W
∂z2

r
|zh=zr=z∗ = 2nrF

′
Vzr

r + nrF
′′

Vr + nhFVzrzr
h + nrFVzrzr

r ‍.� (14)

The terms of Equations 13 and 14 capture the second-order effects of increased investment in coop-
eration. The first term of each captures the decline in the fitness benefit of increased cooperation 
due to the cross-interaction between fecundity and viability. For instance, as a helper invests more in 
cooperation (higher ‍x‍), it increases its own viability (higher ‍Vh‍), but its fecundity declines as well (lower 
‍F‍) and so the relative benefit of this increased viability is lessened (the cross term ‍F

′
Vzh

h ‍ is negative). 
This represents a kind of decelerating return from cooperation. The second term of each captures 
the second-order effect of decreased investment in fecundity. If this term is positive, then this means 
that there is a diminishing fecundity cost to increased investment in cooperation, which can favour 
division of labour. The third and fourth terms capture the second-order effect of increased investment 
in viability, that is, does each successive investment in the public good lead to a larger or smaller 
increase in viability than the previous investment of the same size? The return on investment (ROI) 
in viability is accelerating if ‍V

zhzh
h > 0‍, ‍V

zhzh
r > 0‍, ‍V

zrzr
h > 0‍, and ‍Vzrzr

r > 0‍. The ROI is diminishing if these 
second derivates are negative: ‍V

zhzh
h < 0‍, ‍V

zhzh
r < 0‍, ‍V

zrzr
h < 0‍, and ‍Vzrzr

r < 0‍.
Thus if either Equation 13 or Equation 14 is positive, then division of labour is favoured to evolve. 

This gives the second condition for division of labour.
The accelerating returns from individual specialisation condition for division of labour
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	﻿‍
nhVzhzh

h +nrV
zhzh
r

nhVh
|zh=zr=z∗ + F

′′

F |zh=zr=z∗ + 2 F
′

F
Vzh

h
Vh

|zh=zr=z∗ > 0,‍� (15)

	﻿‍
nhVzrzr

h +nrVzrzr
r

nrVr
|zh=zr=z∗ + F

′′

F |zh=zr=z∗ + 2 F
′

F
Vzr

h
Vr

|zh=zr=z∗ > 0.‍� (16)

Fixing our attention on just Equation 15 (or equivalently on 16), this condition states that the sum 
of the second-order viability effect from increased cooperation (first term on left-hand side) and the 
second-order fecundity effect of increased cooperation (second term on left-hand side) must be larger 
than the marginal fecundity cost of increased investment in viability (third term on left-hand side). 
Note that the third term on left-hand side is always negative because increased investment in viability 
decreases the value of increased investment in fecundity. Therefore, division of labour by a single-trait 
mutation can only happen if there is an accelerating ROI in at least one of fecundity, ‍F

(
z
)
‍; helper 

viability, ‍Vh
(
zh, zr

)
‍; or reproductive viability, ‍Vr

(
zh, zr

)
‍.

Division of labour by reciprocal specialisation
The last remaining scenario for division of labour is that the resident strategy of uniform cooperation 
is unstable to mutations in both traits, which can occur depending on the value of the last term of the 
Taylor expansion (Equation 2; ‍Wzhzr∆zh∆zr‍). This kind of instability can arise if there is a joint mutation 
that affects the level of cooperation of both helpers and reproductives at the same time (‍∆zh ̸= 0‍ and 

‍∆zr ̸= 0‍). However, it could also occur if a slightly deleterious mutation in one trait invades by drift and 
destabilises the other trait so much that the population evolves away from the critical point. In either 
case, it will be found that same condition must be satisfied in order for division of labour to evolve. In 
the rest of this section, we give the general analysis of whether ‍

(
zh, zr

)
=

(
z∗, z∗

)
‍ is unstable to two-

trait mutations, and then consider a simplifying special case to clarify the biological interpretation of 
this analysis.

Suppose that the resident strategy of uniform cooperation (‍
(
zh, zr

)
=

(
z∗, z∗

)
‍) is stable against 

single-trait mutations (i.e. Conditions 15 and 16 not satisfied). Then the resident strategy is unstable 
to two-trait mutations if and only if the determinant of the Hessian is negative:

	﻿‍
∂2W
∂z2

h

∂2W
∂z2

r
<
(

∂2W
∂zhzr

)2
.
‍�

(17)

This condition is satisfied if the strength of directional selection pushing the population back to the 
critical point along either of the trait-value directions is less than the strength of directional selection 
on a trait when moved off of the critical point along the other trait direction. To evaluate the Hessian 
condition, we first compute the second-order cross derivatives:

	﻿‍
∂2W
∂zhzr

|zh=zr=z∗ = ∂2W
∂zrzh

|zh=zr=z∗ = F′ (nhVzr
h + nrVzh

r
)

+ F
(
nhVzrzh

h + nrVzrzh
r

)
‍.� (18)

Here, we have used that ‍V
zhzr
i = Vzrzh

i ‍ . Substituting this, and Equations 13 and 14, into the Hessian 
condition gives:

The reciprocal specialisation condition for division of labour

	﻿‍

nhVhnrVr

(
nhVzhzh

h +nrV
zhzh
r

nhVh
+ F”

F + 2 F′

F
Vzh

h
Vh

)(
nhVzrzr

h +nrVzrzr
r

nrVr
+ F”

F + 2 F′

F
Vzh

h
Vr

)
|zh = zr = z∗

<
(

(nhVzrzh
h + nrVzrzh

r ) + F′

F (nhVzr
h + nrVzh

r )
)2

|zh = zr = z∗
‍�

(19)

Assume that neither Condition 15 nor 16 is satisfied, that is, the individual ROI is non-accelerating. 
Then the left-hand side of the inequality is strictly positive, which means that Condition 19 is nontrivial. 
We will see in examples that Condition 19 can be satisfied, which means that division of labour can 
evolve by reciprocal specialisation even when the individual ROI is diminishing.

To clarify further the biological meaning of Condition 19, consider a simple family of models in 
which viability and fecundity are linear functions. In this case, all second derivates are zero, and so we 
get the simplified condition:

Simplified reciprocal specialisation condition for division of labour

	﻿‍ 4nhVzh
h nrVzr

r |zh=zr=z∗ <
(
nhVzr

h + nrVzh
r
)2 |zh=zr=z∗‍.� (20)

https://doi.org/10.7554/eLife.71968
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In the case that the viability functions are (Equation 5) this condition further simplifies to:

	﻿‍ Vzh
h |zh=zr=z∗ < Vzr

h |zh=zr=z∗ .‍� (21)

This inequality is satisfied if the viability of reproductives increases faster with increased cooperation 
from helpers, than it does from increased cooperation from reproductives. This makes clear that recip-
rocal specialisation can evolve if reproductives stand to gain more from help from helpers than they 
would gain by helping themselves.
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Appendix 1
A Group structure models
We now consider models that have specified spatial (or ‘network’) structures. We apply the division 
of labour scenarios outlined in the Materials and methods to study division of labour in these graph 
models. We find simple, general conditions on the graph for when division of labour can invade.

A.1 Division of labour by between-individual differences: stars and 
branching groups
Consider a star of ‍n‍ cells, with 1 focal cell, and ‍n − 1‍ peripheral cells (Appendix 1—figure 1). Assume 
that some function, ‍H(z)‍, determines the amount of a shared resource produced by a cell with level 
of cooperation ‍z‍. And let ‍1 − λ‍ be the proportion of benefits produced by an individual that it keeps 
for itself, so that ‍λ‍ is the proportion of benefits that is shared equally by a cell’s neighbours. If the 
peripheral cells in the star have phenotype zh and the focal cell has phenotype zr, then

	﻿‍

W(zh, zr) = (n − 1)F(zh)
(

(1 − λ)H(zh) + λ
n−1 H(zr)

)

+F(zr)
(
(1 − λ)H(zr) + (n − 1)λH(zh)

)
. ‍�

(22)

Appendix 1—figure 1. A star.

The viability of a peripheral cell is ‍Vh(zh, zr) = (1 − λ)H(zh) + λH(zr)/(n − 1)‍, and the viability of the 
focal cell is ‍Vr(zh, zr) = (1 − λ)H(zr) + (n − 1)λH(zh)‍. Equation 12 then gives the following condition 
for division of labour by between-individual differences:

	﻿‍

1
1 − n−2

n−1λ
> 1

1 + (n − 2)λ
,
‍�

(23)

which holds for every positive ‍λ > 0‍.
In a similar vein, consider a group with a branching structure, where alternating cells have either 

‍a‍ or ‍b‍ neighbours, with ‍a < b‍. We term the cells with ‍a‍ neighbours as edge cells and cells with ‍b‍ 
neighbours as node cells. (In order to avoid edge effects, we assume that the group eventually 
wraps around on itself, creating the shape of a regular polyhedron: in the case of ‍a = 2‍, ‍b = 3‍, 

https://doi.org/10.7554/eLife.71968
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this would be the dodecahedron, with ‍nh = 30‍ edge cells and ‍nr = 20‍ node cells.) This gives the 
following expected fitness:

	﻿‍

W(zh, zr) = nhF(zh)
(

(1 − λ)H(zh) + (a/b)λH(zr)
)

+nrF(zr)
(

(1 − λ)H(zr) + (b/a)λH(zh)
)

,
‍�

(24)

where nh is the number of edge cells and nr is the number of node cells. Note that for any 
graph in which nh cells have degree ‍a‍, and nr cells have degree ‍b‍, we have that ‍nh/nr = b/a‍. The 
viability of an edge cell is ‍Vh(zh, zr) = (1 − λ)H(zh) + (a/b)λH(zr)‍ and the viability of a node cell is 
‍Vr(zh, zr) = (1 − λ)H(zr) + (b/a)λH(zh)‍. Equation 12 then gives the following condition for division of 
labour by between-individual differences:

	﻿‍

1
1 − b−a

b λ
> 1

1 + b−a
a λ

.
‍�

(25)

So, since ‍b > a‍, we find that division of labour by between-individual differences occurs for all 
values of ‍λ > 0‍ (any social trait).

In order to calculate the benefit of division of labour in Figure 4 of the main text, we evaluate 

‍max(0, W(z∗ + ∆z, z∗) − W(z∗, z∗), W(z∗, z∗ −∆z) − W(z∗, z∗))‍, where we approximate fitness using a 
first-order Taylor expansion and setting ‍∆z = 0.01‍.

A.2 General graph analysis: between-individual differences
Consider a graph with vertices ‍i = 1, 2, ..., n‍, each vertex with degree di. Let ‍Aij‍ be the matrix 
of adjacencies: ‍Aij = 0‍ if there is no edge ‍i − j‍, and for every edge ‍i − j‍ we have ‍Aij = −1/dj‍. 
Moreover, ‍Aii = 1‍, for each ‍‍. Notice that the column sums of the matrix ‍A‍ are zero:

	﻿‍

n∑
i=1

Aij = 0.
‍�

(26)

The fitness function of the group associated with this graph is

	﻿‍
W =

∑
i

F(zi)
∑

j
(δij + Aij)H(zj),

‍�
(27)

where zi is the level of cooperation of the individual at vertex ‍‍, and ‍δij = 1‍ if ‍i = j‍ and 0 otherwise. 
The uniform cooperation strategy, ‍zi = z∀i‍, has fitness

	﻿‍ W = nF(z)H(z),‍� (28)

which is maximised for some ‍z = z∗‍ between 0 and 1, by our assumption that F is decreasing in ‍z‍ 
and H is increasing in ‍z‍.

We now restrict to the ‘marginal’ case that ‍F(z)‍ and ‍H(z)‍ are both linear functions. In this case 
we can, without loss of generality, take ‍F(z) = 1 − z‍ and ‍H(z) = z‍. The uniform cooperation strategy 
is given by ‍z∗ = 1/2‍. The first derivatives of ‍W ‍ at the uniform strategy are given by:

	﻿‍
∂iW

��
z∗ = −1

2
∑

j
Aij.

‍�
(29)

Notice that, for fixed i,

	﻿‍

∑
j

Aij = 1 −
∑

edges i−j

1
dj

.
‍�

(30)

If all the vertices of the graph have the same degree, ‍d1 = d2 = ... = d‍, then ‍
∑

j Aij = 0‍, and so 
the first derivatives all vanish. If one or more of the vertices, ‍j‍, connected to ‍‍, does not have the 
degree di, then the sum, Equation 30, does not vanish. In this case, the uniform strategy is not 
stable, and division of labour can invade.

For example, consider the branching tree with  seven cells, shown in Appendix 1—figure 2. 
The ‍A‍ matrix of this tree is:

https://doi.org/10.7554/eLife.71968
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	﻿‍

A=




1 −1/3 −1/3 0 0 0 0

−1/2 1 0 −1 −1 0 0

−1/2 0 1 0 0 −1 −1

0 −1/3 0 1 0 0 0

0 −1/3 0 0 1 0 0

0 0 −1/3 0 0 1 0

0 0 −1/3 0 0 0 1



‍�

(31)

Using Equation 29, it follows that

	﻿‍

∂iW
∣∣
q∗ =





+1/3 i = 1

+2/3 i = 4, 5, 6, 7

−5/2 i = 2, 3 ‍�

(32)

So vertices 2 and 3 are ‘predisposed’ towards helping less, whereas the more peripheral vertices (i 
= 1, 4, 5, 6, 7) are predisposed towards helping more. The vertices with the fewest neighbours (i = 
1, 4, 5, 6, 7) are also the most predisposed towards helping more.

1

3

76

2

4 5

1

3

76

2

4 5

Appendix 1—figure 2. A tree.

A.3 A ring of cells
Let us assume that the group is composed of ‍n‍ cells that form a one-dimensional filament wrapped 
into a ring, where ‍n‍ is an even number (Appendix 1—figure 3). Label the cells 1 through ‍n‍, and 
assume that 1 is neighbours with ‍n‍. We assume that each cell in the filament shares social benefits 
with only its direct neighbours. Suppose that ‘odd’ cells are putative helper cells, and ‘even’ cells 
are reproductives. This gives the following fitness for the group:

	﻿‍ W(zh, zr) = n
2 F(zh)

(
(1 − λ)H(zh) + λH(zr)

)
+ n

2 F(zr)
(
(1 − λ)H(zr) + λH(zh)

)
‍.� (33)
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Appendix 1—figure 3. A ring of cells.

The viability of helpers is ‍Vh(zh, zr) = (1 − λ)H(zh) + λH(zr)‍ and the viability of reproductives is 
‍Vr(zh, zr) = (1 − λ)H(zr) + λH(zh)‍. We now consider each of the possible routes by which division of 
labour can evolve.

Using Equations 6 and 7, we find that ‍F′/F = −H′/H ‍ at the resident strategy of uniform 
cooperation for both helpers and reproductives and therefore that the condition for division of 
labour by between-individual differences (Equation 11) can never hold.

Assume that ‍F‍ is a linear function. If the returns from cooperation are non-increasing (‍H′′ ≤ 0‍), 
then we use Condition 17 (Figure 5a), to find that division of labour is favoured if and only if

	﻿‍
λ > 1

2
− H′′H

4(H′)2 .
‍�

(34)

In the case that ‍H′′ = 0‍, division of labour is favoured only if ‍λ > 1/2‍. If ‍H′′‍ is less than zero, then the 
ROIs are decelerating, and ‍λ‍ must be larger than ‍1/2‍ in order for division of labour to be favoured.

In order to calculate the fitness benefit of division of labour in Figure 4 of the main text, we 
evaluate ‍max−π≤θ≤πW(z∗ + ∆z cos(θ), z∗ + ∆z sin(θ)) − W(z∗, z∗)‍, where we approximate fitness 
using a second-order Taylor expansion and setting ‍∆z = 0.01‍. In this case, we can show analytically 
that the direction of mutation giving the maximal increase in fitness satisfies ‍θ = {−π/4, 3π/4}‍.

https://doi.org/10.7554/eLife.71968
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Appendix 1—figure 4. Some tessellation patterns, and the associated ranges of λ for which 
reciprocal specialisation is possible in each case. Each figure should be regarded as showing just a 
few cells of the infinite tesselation.

A.4 A well-mixed group of cells
We now consider a group that is ‘well mixed’ such that cells share the benefits of cooperation with 
all other group members. That is, we let ‍1 − λ‍ be the amount of benefits produced by an individual 
that it keeps for itself and ‍λ‍ is the amount of benefits that is shared equally by all other cells in the 
group. This produces the following expected fitness function:

	﻿‍

W(zh, zr) = nhF(zh)
(

(1 − λ)H(zh) + λ (nh−1)H(zh)+nrH(zr)
n−1

)

+nrF(zr)
(

(1 − λ)H(zr) + λ (nr−1)H(zr)+nhH(zh)
n−1

)
,
‍�

(35)

where ‍n = nh + nr‍ and we have that the viability of a helper is 

‍Vh(zh, zr) = (1 − λ)H(zh) + λ (nh−1)H(zh)+nrH(zr)
n−1 ‍ and the viability of a reproductive is 

‍Vr(zh, zr) = (1 − λ)H(zr) + λ (nr−1)H(zr)+nhH(zh)
n−1 ‍. Plugging these into Equation 11, we find that division 

of labour cannot evolve by between-individual differences as both sides are equal to ‍H′/H ‍, and 
thus helpers and reproductives face the same viability-fecundity tradeoff.

If the returns from cooperation and fecundity are linear (‍F′′ = H′′ = 0‍), then we can evaluate 
condition 20 directly to find that division of labour by reciprocal specialisation can evolve if (Figure 5c)

	﻿‍
λ > n − 1

n
.
‍�

(36)

Otherwise, if the returns from cooperation are diminishing (say, ‍H′′ < 0‍, with ‍F‍ linear), then we can 
use the general condition 17 to find,

	﻿‍
λ > n − 1

n
(1 + nhx)(1 + nrx)

1 + n2
h+n2

r
n x

, where x = H′′F
2H′F′ .

‍�
(37)

Notice that, for diminishing returns (‍H′′ < 0‍), we have that ‍x > 0‍, and in this case it follows that

	﻿‍

(1 + nhx)(1 + nrx)

1 + n2
h+n2

r
n x

> 1.
‍�

(38)

In other words, if ‍H′′ < 0‍, then ‍λ‍ must be even higher for division of labour to be favoured, than 
when ‍H′′ = 0‍.

https://doi.org/10.7554/eLife.71968
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In order to calculate the fitness benefit of division of labour in Figure 4 of the main text, we 
evaluate ‍max−π≤θ≤πW(z∗ + ∆z cos(θ), z∗ + ∆z sin(θ)) − W(z∗, z∗)‍, where we approximate fitness 
using a second-order Taylor expansion and setting ‍∆z = 0.01‍.

A.5 General graph analysis: reciprocal specialisation
We now return to the case of a general graph model, and consider when division of labour 
is possible via reciprocal specialisation. Once again, fix some graph ‍G‍. Assume that the first 
derivatives, ‍∂iW ‍, vanish at the strategy of uniform cooperation (‍zi = z∗‍). Recall (Equation 29) that 
this is equivalent to assuming that all the vertices of the graph ‍G‍ have the same degree, ‍d‍. The 
matrix of second derivatives of ‍W ‍ is

	﻿‍
Hess = ∂2W

∂zi∂zj

�����
q∗

= 2F′(z∗)H′(z∗)
(
δij − λMij

)
,
‍�

(39)

where ‍M ‍ is a symmetrised version of the ‍A‍ matrix:

	﻿‍
Mij = 1

2
(Aij + Aji).‍� (40)

All vertices have the same degree, say ‍d‍, so that the matrix ‍M ‍ is given by:

	﻿‍
Mij = 1

d
Lij,‍� (41)

where ‍L‍ is the Laplacian matrix:

	﻿‍

Lij =





d if i = j,

−1 if i − j is an edge,

0 otherwise. ‍�

(42)

The uniform strategy (‍z = z∗‍) is unstable if and only if the matrix Hess has one or more positive 
eigenvalues. When ‍λ = 0‍, ‍Hess = −2I ‍, where ‍I ‍ is the identity. So all eigenvalues of Hess for ‍λ = 0‍ 
are negative, and the uniform strategy is stable. This agrees with the biological intuition: when 
‍λ = 0‍, the group is not interacting socially, and so division of labour cannot evolve. We would like 
to find ‍λ∗‍ (if it exists), such that division of labour is possible for ‍λ > λ∗‍. This corresponds to the 
smallest value of ‍λ‍ for which ‍det(Hess)‍ vanishes. We can explicitly evaluate the determinant as:

	﻿‍
det(Hess)(λ) =

(
2λ
d

)n
P
(

d
λ

)
,
‍�

(43)

where the characteristic polynomial ‍P(x)‍ is a degree ‍n‍ polynomial defined by:

	﻿‍ P(x) = det
(
L − xI

)
.‍� (44)

The roots of ‍P(x)‍ are all non-negative (this is because ‍L‍ is a symmetric matrix). Moreover, ‍x = 0‍ is 
a root of ‍P(x)‍. Let μ be the largest root of ‍P(x)‍, that is, μ is the largest eigenvalue of ‍L‍. Then the 
smallest value of ‍λ‍ for which ‍det(Hess)(λ)‍ vanishes is ‍λ

∗ = d/µ‍. It follows that division of labour can 
evolve if and only if

	﻿‍ λµ > d.‍� (45)

Recall that ‍d‍ is the number of neighbours that an individual cell has in the graph. The eigenvalue 
μ can be thought of (see below) as a measure of how ‘bipartitionable’ the graph is. The inequality 
can then be interpreted loosely as follows: if the graph is made ‘more bipartite’, ‍λ‍ can decrease. If 
the number of neighbours, ‍d‍, is increased, ‍λ‍ must increase.

To further understand μ, a useful property of ‍L‍ is that, for any vector of numbers ‍x = (x1, ..., xN)‍:

	﻿‍

xTLx =
n∑

i,j=1
xiLijxj =

∑
edges
i−j

(xi − xj)2.

‍� (46)
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The largest eigenvalue of ‍L‍ is

	﻿‍
µ = max

x
xTLx
xTx

.
‍�

(47)

On the other hand,

	﻿‍

∑
edges
i−j

(xi − xj)2 ≤
∑
edges
i−j

(x2
i + x2

j ) = 2d
n∑

i=1
x2

i .

‍�

(48)

It follows that

	﻿‍ µ ≤ 2d.‍�

Moreover, if the graph is bipartite, choose any bipartite colouring of its vertices. Then, assigning 
‍x = +1‍ to vertices of one colour, and ‍x = −1‍ to vertices of the other colour, we find that

	﻿‍

∑
edges
i−j

(xi − xj)2 =
∑
edges

4 = 2dn.

‍�
(49)

This means that μ achieves its maximum value, ‍µ = 2d‍, for bipartite graphs. It can be shown that 
‍µ = 2d‍ if and only if the graph is bipartite. μ can be regarded, therefore, as a measure of ‘how 
bipartite’ a given graph is. Some representative examples for small (‍N ≤ 8‍) graphs are given in 
Appendix 1—figure 4, Appendix 1—figure 5, Appendix 1—figure 6, Appendix 1—figure 7. 
The rest of this section applies the above analysis to several basic families of examples.

���� � � ���� � � ���� � ��� ���� � �

Appendix 1—figure 5. Values of μ for different filament (d = 2) graphs.

���� � � ���� � � ���� � ��� ���� � �

Appendix 1—figure 6. Values of μ for different trivalent (d = 3) graphs.
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Appendix 1—figure 7. Values of μ for different d = 4 graphs.

Filaments of cells
A ring of ‍n‍ cells has degree ‍d = 2‍, and the largest eigenvalue of the Laplacian matrix depends on 
whether ‍N ‍ is even or odd:

	﻿‍

µ =




4 n even

2 − 2 cos
(

(n−1)π
n

)
n odd

‍�
(50)

For ‍n‍ even, division of labour is possible if ‍λ > 1/2‍. For large odd ‍n‍, μ is approximately 4, and 
so division of labour is again possible for ‍λ > 1/2‍. However, for small odd ‍n‍, μ is less than 4. This 
means that, for small ‍n‍, division of labour is ‘easier’ for even numbers of cells than for odd numbers 
of cells. For some examples, see Appendix 1—figure 5.

Complete graphs
The complete graph with ‍n‍ cells has degree is ‍d = n − 1‍ and the largest eigenvalue is (In terms of 
Equation 47, a possible vector that achieves the maximum is ‍x1 = +1‍, ‍x2 = −1‍, and ‍x3, x4, ... = 0‍. 
For this vector, ‍xTLx = 4 + 2(N − 2) = 2N ‍ and ‍xTx = 2‍.)

	﻿‍ µ = n.‍� (51)

So reciprocal specialisation is possible only if ‍λ > (n − 1)/n‍.

Tessellations
We can carry out similar computations for (infinitely extended) tessellation patterns. There are 
many bipartite tessellations, in both two and three dimensions. All of these have the maximum 
possible μ, that is, ‍µ = 2d‍. Examples of this include the hexagonal lattice, the square lattice, 
and the 3D cube lattice: Appendix 1—figure 4(a), (b), and (e). Reciprocal specialisation is 
also possible in many tessellations which are not bipartite. An example with ‍d = 6‍ is shown in 
Appendix 1—figure 4(c), which has ‍µ = 8‍. Finally, there are tessellations which are so far from 
being bipartite that reciprocal specialisation is not possible. An example with ‍d = 8‍ is shown in 
Appendix 1—figure 4(d), which has ‍µ = 8‍. The condition ‍λµ > d‍ cannot be satisfied with ‍µ = d‍, 
since ‍λ‍ is at most 1.

B Random role allocation
We repeat the above analyses where we now assume that individuals adopt their phenotypes 
with a particular probability, independent of other individuals in the group. We find that, 
with random role allocation, division of labour is not possible (in the absence of accelerating 
individual ROIs).

B.1 A ring of cells
Let p be the probability of adopting the role of a helper and investing ‍x‍ in cooperation and ‍1 − p‍ 
as the probability of adopting the role of a reproductive and investing ‍y‍ in cooperation. In the case 
of a ring of cells, the number of helpers among a given cell’s two neighbours is a binomial random 
variable, ‍k ∈ {0, 1, 2}‍. This gives the expected fitness:

https://doi.org/10.7554/eLife.71968
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	﻿‍

⟨
W
⟩

= pF(zh)
(

(1 − λ)H(zh) + λ
∑2

k=1
(2

k
)
pk(1 − p)2−k(kH(zh) + (2 − k)H(zr))

)

+(1 − p)F(zr)
(

(1 − λ)H(zr) + λ
∑2

k=1
(2

k
)
pk(1 − p)2−k(kH(zh) + (2 − k)H(zr))

)
.
‍�

(52)

The first term is the expected fitness if the focal cell adopts the role of a helper and the second 
term is the expected fitness if the focal cell adopts the role of a reproductive. We can simplify the 
above fitness equation to:

	﻿‍

⟨
W
⟩

(zh, zr) = pF(zh)
(

(1 − λ)H(zh) + λ(pH(zh) + (1 − p)H(zr))
)

+(1 − p)F(zr)
(

(1 − λ)H(zr) + λ(pH(zh) + (1 − p)H(zr))
)

,
‍�

(53)

If we multiply the fitness equation by ‍n2‍ and approximate ‍nh = pn‍ and ‍nr = (1 − p)n‍, then we arrive 
at the final fitness equation:

	﻿‍

⟨
W
⟩

(zh, zr) = nhF(zh)
(

(1 − λ)H(zh)n + λ(nhH(zh) + nrH(zr))
)

+nrF(zr)
(

(1 − λ)H(zr)n + λ(nhH(zh) + nrH(zr))
)

,
‍�

(54)

where we now have that the expected viability of a helper is 

‍Vh(zh, zr) = (1 − λ)H(zh)n + λ(nhH(zh) + nrH(zr))‍ and the expected viability of a reproductive is 

‍Vr(zh, zr) = (1 − λ)H(zr)n + λ(nhH(zh) + nrH(zr))‍.
The function, Equation 53, can be analysed using the results of Section B. We find (as expected) 

that division of labour by between-individual differences is not possible for this function:

	﻿‍
Vzh

h + nr
nh

Vzh
r = nH(z∗) = Vzr

r + nh
nr

Vzh
h .

‍�
(55)

Moreover, we can evaluate Condition 20 directly to find that division of labour by reciprocal 
specialisation can only evolve if (for linear functions ‍F‍ and ‍H ‍)

	﻿‍ (n − λnr)(n − λnh) < nhnrλ
2.‍� (56)

It is impossible to satisfy this inequality for ‍λ ≤ 1‍. Thus, assuming linear or decelerating ROIs, we 
find that division of labour cannot evolve by reciprocal specialisation.

In order to calculate the fitness benefit of division of labour in Figure 4 of the main text, we 
evaluate ‍max−π≤θ≤π,0≤p≤1W(z∗ + ∆z cos(θ), z∗ + ∆z sin(θ)) − W(z∗, z∗)‍, where we approximate 
fitness using a second-order Taylor expansion and setting ‍∆z = 0.01‍. In this case, the above 
expression must now be maximised over two variables. This is done numerically to produce the 
main text figure.

B.2 A branching group of cells
We approximate the fitness of the group as the expected fitness of a randomly chosen cell in 
the branching group. With probability ‍nh/n‍ we choose an ‘edge cell’ with ‍a‍ neighbours and with 
probability ‍nr/n‍, we choose a ‘node’ cell with ‍b‍ neighbours (here ‍nh + nr = n‍, ‍a < b‍ and ‍nh/nr = b/a‍). 
If the cell is an edge cell, the number of neighbouring cells that are helpers is a binomial random 
variable ‍k ∈ {0, . . . , a}‍. If the cell is a node cell, the number of neighbouring cells that are helpers 
is a binomial random variable ‍k ∈ {0, . . . , b}‍. Again, we let p be the probability that the cell adopts 
the role of a helper. Similar to the process above, we can derive a fitness equation of the form:

	﻿‍

W(zh, zr) = nhF(zh)
(

(1 − λ)H(zh)n +
(

nh
n

aλ
b + nr

n
bλ
a

) (
nhH(zh) + nrH(zr)

))

+nrF(zr)
(

(1 − λ)H(zr)n +
(

nh
n

aλ
b + nr

n
bλ
a

) (
nhH(zh) + nrH(zr)

))
,
‍�

(57)

where we have approximated ‍nh = pn‍ and ‍nr = (1 − p)n‍. We thus have that the viability of a helper 
is ‍Vh(zh, zr) = (1 − λ)H(zh)n‍ ‍+

( nh
n

aλ
b + nr

n
bλ
a
)
‍ ‍
(
nhH(zh) + nrH(zr)

)
‍ and the viability of a reproductive 

is ‍Vr(zh, zr) = (1 − λ)H(zr)n‍ ‍+
( nh

n
aλ
b + nr

n
bλ
a
)
‍ ‍
(
nhH(zh) + nrH(zr)

)
‍. For the particular case of ‍a = 2‍ and 

‍b = 3‍ (a branching filament), we can use Equation 11 to show that division of labour by between-
individual differences can never evolve.
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Moreover, if the returns from cooperation and fecundity are linear (‍F′′ = H′′ = 0‍), then we can 
evaluate Condition 20 directly to find that division of labour by reciprocal specialisation can only 
evolve if ‍λ > 1‍, which is outside the physically permissible range of the parameter. Thus, division of 
labour can only evolve in this scenario if there are individual efficiency benefits from specialisation.

In order to calculate the fitness benefit of division of labour in Figure 4 of the main text, we evaluate 

‍max−π≤θ≤π,0≤p≤1W(z∗ + ∆z cos(θ), z∗ + ∆z sin(θ)) − W(z∗, z∗)‍, where we approximate fitness using a 
second-order Taylor expansion and setting ‍∆z = 0.01‍. In this case, the above expression must now be 
maximised over two variables. This is done numerically to produce the main text figure.

B.3 General graph analysis: random allocation
In general, suppose that the assignment of phenotype is done randomly, according to a probability 

density function ‍ρ(z)‍, such that ‍
´

dzρ(z) = 1‍. Write ‍z0 =
⟨
z
⟩
‍ for the average, and 

‍
σ2 =

⟨
z2
⟩
−

⟨
z
⟩2

‍
 for 

the variance of the distribution. The expected fitness for an arbitrary graph model (Equation 27) is

	﻿‍
⟨W⟩ =

n∑
i=1

ˆ
dziρ(zi)F(zi)H(zi) − λ

n∑
j=1

∑
i̸=j

ˆ
dzidzjρ(zi)ρ(zj)F(zi)AijH(zj).

‍�
(58)

Putting ‍F(z) = 1 − z‍ and ‍H(z) = z‍, this becomes

	﻿‍
⟨W⟩ = n

(
z0 − σ2 − (1 − λ)z2

0

)
,
‍� (59)

where we have used that

	﻿‍

n∑
j=1

∑
i̸=j

Aij = −
n∑

j=1
Ajj = −n.

‍�
(60)

This calculation shows that the expected fitness of the group, ‍⟨W⟩‍, is independent of the group’s graph 
structure. Moreover, notice that ‍⟨W⟩‍ is largest (for fixed z0) if the distribution is chosen so that ‍σ2 = 0‍, 
that is, the state of uniform cooperation. Division of labour would correspond to ‍σ2 > 0‍. So division of 
labour cannot be favoured (absent accelerating returns) if phenotypes are assigned randomly.

To see this in greater detail, consider the distribution

	﻿‍ ρ(q) = (1 − p)δ(q − x) + pδ(z − y).‍� (61)

Under this distribution, cells become a helper (phenotype zh) with probability ‍1 − p‍, and a 
reproductive (phenotype zr), with probability ‍p‍. Then ‍z0 = (1 − p)zh + pzr‍, and

	﻿‍ σ2 = p(1 − p)(zh − zr)2.‍� (62)

The total expected fitness is then

	﻿‍
1
n

< W >= z0 − p(1 − p)(z − z)2 − (1 − λ)z2
0.

‍�
(63)

If ‍λ ≤ 1/2‍, the function has a critical point at ‍zh = zr = z = 1/(2(1 − λ))‍, where its first derivatives 
vanish. We compute that the determinant of the Hessian of ‍⟨W⟩‍ at the critical point is

	﻿‍ 4n2(1 − λ)p(1 − p),‍� (64)

which is positive. So

	﻿‍
zh = zr = z = 1

2(1 − λ)‍�
(65)

is a maximum of ‍⟨W⟩‍, for all choices of p, and ‍λ < 1/2‍. If ‍λ ≥ 1/2‍, then ‍⟨W⟩‍ is maximised for 
‍zh = zr = z = 1‍. In either case, division of labour is not favoured.

https://doi.org/10.7554/eLife.71968
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C Additional questions
C.1 Does division of labour by reciprocal specialisation produce an acceler-
ating fitness benefit?
We consider a population of uniform cooperators with ESS level of cooperation ‍z∗‍. We consider a 
mutation where both helpers and reproductives specialise in their respective functions such that 
‍∆zh = −β∆zr = ∆z > 0‍, where ‍β > 0‍ is the degree to which reproductives specialise more than helpers 
(‍β > 1‍) or less than helpers (‍β < 1‍). This gives the fitness of a mutant with reciprocal specialisation as:

	﻿‍
W(z∗ + ∆z, z∗ − β∆z) ≈ W(z∗, z∗) + ( 1

2
Wzhzh + 1

2
β2Wzrzr − βWzhzr )∆z2,

‍�
(66)

where we have assumed that there are no between-individual differences and so ‍Wzh = Wzr = 0‍ at the 
ESS strategy of uniform cooperation, ‍z∗‍. What is the shape of the return from increased specialisation 
in this case? We solve for the second derivative of mutant fitness with respect to the degree of 
specialisation ‍∆z‍:

	﻿‍
∂2W
∂∆z2 (z∗ + ∆z, z∗ − β∆z) ≈ ( 1

2
Wzhzh + 1

2
β2Wzrzr − βWzhzr ),

‍�
(67)

If this expression is positive, then the group fitness returns from reciprocal specialisation are accelerating. 
In contrast, if this expression is negative, then the group fitness returns from reciprocal specialisation are 
diminishing.

Let us now assume that the mutant has a higher fitness than the resident strategy of 
uniform cooperation, such that division of labour by reciprocal specialisation evolves 
(‍W(z∗ + ∆z, z∗ − β∆z) > W(z∗, z∗)‍). This means that the second term on the right-hand side of 
Equation 66 is strictly positive, which occurs when ‍

1
2 Wzhzh + 1

2β
2Wzrzr − βWzhzr > 0‍. Importantly, 

this is the exact same condition as for an accelerating fitness return from reciprocal specialisation. 
Consequently, division of labour by reciprocal specialisation evolves if and only if the group fitness 
return from reciprocal specialisation is accelerating.

C.2 Does division of labour without accelerating returns from individual 
specialisation require that individuals have different viabilities?
In many cases, it makes more sense to consider the viability of the group as a whole rather than the 
viabilities of the individual cells in the group. For instance, in Volvocine algae, sterile flagella beaters 
provide a benefit to the group by keeping it afloat at the appropriate height in the water column for light 
absorption. In this instance, individuals literally sink or swim as a whole group and so all individuals have 
the same viability. Here, we go through the general framework where we now assume that ‍Vh = Vr = V ‍.

Considering Equation 11, we find that division of labour by between-individual differences occurs 
when:

	﻿‍

Vzh

nh
> Vzr

nr ‍�
(68)

This specifies that the average contribution by helpers to group viability by a small increase in 
cooperation is greater than the average contribution by reproductives to group viability by a small 
increase in cooperation. Thus, putative helpers are predisposed to cooperation.

Let us now assume that there are no between-individual differences (‍Vzh /nh = Vzr /nr‍). Considering 
Equations 15 and 16, we find that division of labour by an accelerating return from individual 
specialisation can arise if:

	﻿‍

nVzhzh

nhV

∣∣∣
zh=zr=z∗

+ F′′

F

∣∣∣
zh=zr=z∗

+ 2 F′

F
Vzh

V

∣∣∣
zh=zr=z∗

> 0 or
‍�

(69)

	﻿‍
nVzrzr

nrV

∣∣∣
zh=zr=z∗

+ F′′

F

∣∣∣
zh=zr=z∗

+ 2 F′

F
Vzr

V

∣∣∣
zh=zr=z∗

> 0
‍�

(70)

We thus find that division of labour can evolve if ‍Vzhzh > 0, Vzrzr > 0‍ or ‍F′′ > 0‍. We now assume 
that there is a non-accelerating return from individual specialisation ‍Vzhzh = 0, Vzrzr = 0‍ and 
‍F′′ = 0‍. Considering Equation 20, we find that the condition for division of labour by reciprocal 
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specialisation is: ‍Vzh /nh > Vzr /nr‍. However, this contradicts our assumption that there are no 
between-individual differences (‍Vzh /nh = Vzr /nr‍), and so reciprocal specialisation is not a pathway 
to division of labour. Consequently, if we assume that all individuals in the group have the same 
viability (‍Vh = Vr = V ‍), then division of labour evolves by either: (1) between-individual differences 
or (2) an accelerating return from individual specialisation.

In our main analysis, where different individuals may have different viabilities, the consequence 
to the fitness of the group when helpers have a lower viability is not modelled. Indeed, a helper 
produces the same amount of public good for the group regardless of its expected viability. This 
approximation is also made in the Yanni et al., 2020, models and in earlier models by Michod, 
2006. More realistically, helpers with a lower viability may be expected to produce a smaller total 
amount of public good over the course of the group life cycle. This in principle could limit the 
efficiency benefits of between-individual differences and of synergistic reciprocal specialisation. 
Capturing this feedback between cooperation and viability with a formal model would require 
additional assumptions, which we leave to future work.

C.3 What happens if the fitness costs and benefits of cooperation are additive?
In the main analysis, we have assumed that cooperation provides a viability benefit at a personal 
cost to fecundity, where individual fitness is the product of viability and fecundity. Here, we assume 
instead that the benefits and costs of cooperation are additive, such that increased cooperation 
leads to an increase in group fecundity at a cost to personal fecundity. For ease of comparison, 
we maintain the notation ‍Vh‍ and ‍Vr‍, which now correspond to the fecundity benefit provided to 
helpers and reproductives by the cooperation of group members.

This gives the following fitness of the group:

	﻿‍
W(zh, zr) = nh

(
F(zh) + Vh(zh, zr)

)
+ nr

(
F(zr) + Vr(zh, zr)

)
‍� (71)

We can employ the Taylor expansion of fitness (Equation 2) to determine the three conditions leading 
to division of labour. First, we find that division of labour by between-individual differences can arise if:

	﻿‍

nhVzh
h + nrVzh

r

nh
>

nhVzr
h + nrVzr

r

nr ‍�
(72)

This shows that division of labour can evolve if some individuals (helpers) can provide larger fecundity 
benefits for the group at the same fecundity cost as others (reproductives). Division of labour by an 
accelerating return from individual specialisation can arise if:

	﻿‍

(
nhF′′ + nhVzhzh

h + nrVzhzh
r

)���
zh=zr=z∗

> 0 or
‍�

(73)

	﻿‍

(
nrF′′ + nhVzrzr

h + nrVzrzr
r

)���
zh=zr=z∗

> 0
‍�

(74)

This shows that division of labour by an accelerating return from individual specialisation can arise 
if there is an accelerating return from decreased cooperation due to increased personal fecundity 
‍F′′ > 0‍, or an accelerating return from increased cooperation due to increased viability of the group 
(‍V

zhzh
h , Vzhzh

r , Vzrzr
h , Vzrzr

r > 0‍). If none of the above hold, we find that reciprocal specialisation can evolve if:

	﻿‍ nhVzhzr
h + nrVzhzr

r < 0,‍� (75)

where we have assumed that ‍∆zh = −∆zr‍. This states that there is interference between the 
cooperative efforts of helpers and reproductives such that increased cooperation by helpers 
leads to larger relative fecundity benefits for the group when reproductives cooperate less 
(‍V

zhzr
h , Vzhzr

r < 0‍). There is an analogous effect when fitness is the product of fecundity and viability 
(first term in small brackets on right-hand side of Condition 17).
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