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Abstract

Kinesins are molecular motors that use energy derived from ATP turnover to walk

along microtubules, or when at the microtubule end, regulate growth or shrinkage.

All kinesins that regulate microtubule dynamics have long residence times at microtu-

bule ends, whereas those that only walk have short end-residence times. Here, we

identify key amino acids involved in end binding by showing that when critical resi-

dues from Kinesin-13, which depolymerises microtubules, are introduced into

Kinesin-1, a walking kinesin with no effect on microtubule dynamics, the end-

residence time is increased up to several-fold. This indicates that the interface

between the kinesin motor domain and the microtubule is malleable and can be

tuned to favour either lattice or end binding.
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1 | INTRODUCTION

Kinesins are a large superfamily of microtubule-associated molecular

motors which can be grouped into 17 families based on the sequence

of their characteristic motor domain (Lawrence et al., 2004;

Wickstead & Gull, 2006). Proteins of the kinesin superfamily are

found in all eukaryotes and perform vital roles in the transport of cel-

lular cargo (Hirokawa, Noda, Tanaka, & Niwa, 2009), assembly and

action of cilia and flagella (Verhey, Dishinger, & Kee, 2011), develop-

ment and function of axons (Hirokawa, Niwa, & Tanaka, 2010) and in

cell division and chromosome segregation (Cross & McAinsh, 2014).

The kinesin superfamily can be divided into two general classes of

activity: translocating kinesins, which move directionally along micro-

tubules, and regulating kinesins, which alter microtubule dynamics,

with some families displaying both types of activity. A key feature of

the molecular mechanism of kinesins that regulate microtubule

dynamics is the ability to recognise the microtubule end. This is dem-

onstrated by an ability to remain at or near the microtubule end for

extended times. The Kinesin-5, Eg5, a microtubule polymerase,

resides at microtubule ends for up to 7 s (Chen & Hancock, 2015),

and the Kinesin-8, Kip3, a microtubule depolymerase, resides at the

microtubule end for tens of seconds (Su et al., 2011; Varga, Leduc,

Bormuth, Diez, & Howard, 2009). Other examples of kinesins with

extended microtubule end residence include the Kinesin-7, CENP-E

(Sardar, Luczak, Lopez, Lister, & Gilbert, 2010), the Kinesin-4, Kif4

(Subramanian, Ti, Tan, Darst, & Kapoor, 2013), and NOD (Cui et al.,

2005), all of which alter microtubule dynamics.

The Kinesin-13, MCAK, is a microtubule depolymerase and plays a

prominent role in regulating microtubule length, in particular during

mitosis (Andrews et al., 2004; Domnitz, Wagenbach, Decarreau, &

Wordeman, 2012; Li et al., 2016; Maney, Hunter, Wagenbach, &

Wordeman, 1998; Shao et al., 2015). In common with other microtu-

bule regulating kinesins, MCAK can distinguish the microtubule end

from the lattice (Desai, Verma, Mitchison, & Walczak, 1999) and

reside at the microtubule end for up to 15-fold and on average three-

fold longer than on the microtubule lattice (Friel & Howard, 2011;

Hunter et al., 2003; Patel et al., 2016). By contrast, members of the

Kinesin-1 family are considered purely translocating kinesins and the
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classic cargo carriers. The translocating activity and cargo carrying

function of the Kinesin-1 family does not require the ability to recog-

nise the microtubule end and this ability has not been detected for a

Kinesin-1. Here we show that the α4-helix of the kinesin motor

domain is a critical region in regulating the balance between microtu-

bule lattice and microtubule end binding. Substitution of Kinesin-13

family specific residues from the α4-helix into equivalent positions in

a Kinesin-1 confers the ability to distinguish the microtubule end from

the lattice, such that the microtubule end-residence times of Kinesin-

1 mutants are increased several-fold.

2 | RESULTS

2.1 | Substitution of Kinesin-13 residues into a
Kinesin-1 motor domain increases microtubule end-
residence time

A key characteristic of kinesins that regulate microtubule dynamics is

to recognise the microtubule end as distinct from the microtubule lat-

tice. This ability enables regulating kinesins to reside for extended

times at microtubule ends and places them at the correct location to

influence microtubule growth and/or shrinkage dynamics. The

α4-helix of the motor domain plays a major role in the interface

between the kinesin motor domain and the microtubule. Three resi-

dues from the α4-helix of the microtubule depolymerising Kinesin-13,

MCAK, (K524, E525 and R528) are critical to its ability to reside at the

microtubule end and essential for depolymerase activity (Patel et al.,

2016). To determine if these residues can increase microtubule end

binding for a purely translocating kinesin, we substituted the Kinesin-

13 residues into a Kinesin-1, rkin430. The Kinesin-1 motor domain

has not been shown to recognise the microtubule end and accord-

ingly, we measured an end-residence time for rkin430 of ≤0.46

± 0.01 s, which is over four-fold shorter than MCAK (Figure 1a).

The residues critical to MCAK's microtubule end recognition abil-

ity, K524, E525 and R526, correspond by sequence alignment to the

rkin430 residues G262, N263 and S266 (Figure 1b) and the structures

of the Kinesin-1 and Kinesin-13 motor domains confirmed the spatial

correspondence of these residues (Figure 1c). We therefore created

the rkin430 variants G262K, N263E and S266R to substitute these

Kinesin-13 family specific residues into a Kinesin-1. We also made a

triple mutant containing all three individual mutations.

All four Kinesin-1 variants had a significantly longer microtubule

end-residence time than wild-type Kinesin-1: 0.78 s, 0.95 s, 1.41 s,

and 1.09 s for G262K, N263E, S266R and the triple mutant, respec-

tively (p < 0.001, Kolmogorov–Smirnov test) (Table 1 and Supporting

Information Figure S1a). Increased residence times resulting from

these substitutions are specific to the microtubule end: lattice resi-

dence was either decreased or unaffected for each of these kinesin-1

variants (Supporting Information Table S1). The substitution S266R

had the largest effect on end-residence time, causing a ≥ three-fold

increase relative to wild-type Kinesin-1. Kymographs show that

S266R stays on the microtubule end for an average of 5 frames

F IGURE 1 Comparison of microtubule end residence for a purely translocating versus a regulating kinesin. (a) Distribution of microtubule
end-residence times observed for the Kinesin-1, rkin430 (n = 273) and the Kinesin-13, MCAK (n = 289). (b) Sequence alignment of the α4 helix of
MCAK and rkin430. Asterisks indicate the positions at which Kinesin-13 residues were substituted into Kinesin-1 (red: positive, blue: negative,
black: neutral). (c) Structure of MCAK (pdb: 5MIO) and the Kinesin 1, KIF5B (pdb: 4HNA) in complex with tubulin (green: kinesin motor domain,
blue: α-tubulin, orange: β-tubulin). The substituted residues in the α4 helix are shown in magenta ball and stick format [Color figure can be viewed
at wileyonlinelibrary.com]
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(5 pixels in the vertical) compared to only a single frame for wild-type

Kinesin-1 (Figure 2a). The distribution of microtubule end-residence

times for each variant shows that increased microtubule end resi-

dence resulted from an increased proportion of longer end residence

events rather than a general increase in the duration of all end binding

events (Figure 2b).

2.2 | Increased end residence is not due to
misfolding or disruption of translocation activity and is
specifically favoured by Kinesin-13 residues

To determine whether the amino acid substitutions had a deleterious

effect on the functionality of the Kinesin-1 motor domain, we mea-

sured the ability of each mutant to turnover ATP. The basal ATPase

rate was not significantly different to wild type for any of the mutants

(Table 1) and there was no correlation between ATPase rate and

microtubule end-residence time (Supporting Information Figure S1b).

The ability of the Kinesin-1 mutants to turnover ATP at an equivalent

rate to wild type indicates that the motor domain is correctly folded

and functional.

Each of the amino acid substitutions caused a moderate reduction

in translocation velocity (Table 1). However, there was no relationship

between translocation velocity and end-residence time (Figure 2c).

This indicates that the increased end-residence times do not simply

result from slower translocation velocities causing the mutants to take

longer to move over the microtubule end. Taken together, these data

indicate that substitution of Kinesin-13 specific residues into the α4

helix of Kinesin-1 caused a specific increase in microtubule end-

residence time.

To establish whether the observed increased end-residence times

were specifically due to introduction of Kinesin-13 residues rather

than loss of Kinesin-1 residues, we created the rkin430 variant

S266A. The microtubule end-residence time for this variant was

increased relative to wild-type Kinesin-1 (Table 1 and Figure 2b) but

not to the same degree as the increase caused by introduction of the

Kinesin-13 family specific residue at this position. The end residence

of S266A was 0.9 s compared to 1.4 s for the Kinesin-13 specific sub-

stitution, S266R. These data suggest not only that the Kinesin-13 resi-

due at this position specifically favours microtubule end binding over

lattice binding, but also that the Kinesin-1 residue disfavours binding

at the microtubule end.

2.3 | Increased microtubule end residence alone
does not confer depolymerase activity

The ability to recognise the microtubule end is a property that dis-

tinguishes purely translocating kinesins from regulating kinesins and

microtubule end recognition is a critical part of the molecular mech-

anism of the microtubule depolymerising Kinesin-13, MCAK. To

establish whether increased microtubule end residence is sufficient

to confer depolymerase activity, we determined the effect of the

Kinesin-1 variants on microtubule stability by two different

methods. When fluorescently labelled microtubules were incubated

with wild-type Kinesin-1 or any of the Kinesin-1 variants no signifi-

cant depolymerisation of microtubules was observed (Figure 2d).

The appearance of fluorescently labelled microtubules after incuba-

tion with Kinesin-1 or variants was not significantly altered, except

in the case of S266R which appears to have a microtubule bundling

effect. By contrast, under the same conditions microtubules were

completely depolymerised by MCAK. The lack of depolymerisation

activity of these kinesin-1 variants was also demonstrated using a

light scattering assay in which the presence of microtubule is detect

by their ability to scatter light at 350 nm (Supporting Information -

Figure S2). No significant change in light scattering signal was

observed for Kinesin-1 and variants, whilst the Kinesin-13, MCAK,

caused a large decrease in light scatter due to depolymerisation of

microtubules. There is a small but significant decrease in the change

in light scatter for WT Kinesin-1 relative to a microtubule only sam-

ple (p =0 .02). This may be due to stabilisation of microtubules by

Kinesin-1 binding. No significant difference is observed for Kinesin-

1 variants indicating neither a stabilising nor destabilising effect on

microtubules.

3 | DISCUSSION

Despite high sequence and structural conservation of the superfamily

defining motor domain, kinesins from different families display a

TABLE 1 Compiled data for microtubule end residence, velocity, run length, ATPase rate and depolymerisation activity for WT-rkin430 and
variants

WT G262K N263E S266R Triple S266A MCAKa

End residence (s) 0.46 ± 0.01

(n = 273)

0.78 ± 0.03

(n = 285)

0.95 ± 0.03

(n = 272)

1.41 ± 0.06

(n = 284)

1.09 ± 0.03

(n = 296)

0.92 ± 0.02

(n = 252)

2.03 ± 0.13

(n = 238)

Basal ATPase rate (s−1) 0.14 ± 0.07

(n = 3)

0.11 ± 0.06

(n = 3)

0.18 ± 0.13

(n = 3)

0.11 ± 0.08

(n = 3)

0.23 ± 0.20

(n = 3)

0.24 ± 0.06

(n = 3)

0.0021 ± 0.0003

(n = 4)

Velocity (nm/s) 810 ± 227

(n = 382)

522 ± 237

(n = 363)

686 ± 276

(n = 342)

676 ± 179

(n = 375)

646 ± 341

(n = 363)

548 ± 223

(n = 367)

n/a

Run length (μm) 3.06 ± 1.16

(n = 382)

1.29 ± 0.49

(n = 363)

1.05 ± 0.39

(n = 342)

1.54 ± 0.89

(n = 375)

0.92 ± 0.38

(n = 363)

1.48 ± 0.99

(n = 367)

n/a

Depolymerisation activity − − − − − − +++

aData from Patel et al. (2016).
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remarkable diversity of kinetic and functional properties (Cross &

McAinsh, 2014; Hirokawa et al., 2009; Peterman & Scholey, 2009). A

key property of kinesins that regulate microtubule dynamics, such as

the Kinesin-13 family of microtubule depolymerases, is their ability to

recognise the microtubule end. To better understand microtubule end

recognition by kinesins, we introduced Kinesin-13 family specific resi-

dues into the motor domain of a Kinesin-1 rkin430. Each of the

Kinesin-1 variants G262K, N263E and S266R, increased the microtu-

bule end-residence time with the largest effect caused by substitution

of serine by arginine at position 266. Interestingly, the effect of intro-

ducing all three mutations in a triple mutant construct was not additive.

Rather, the behaviour of a triple mutant was similar to the single mutant

N263E suggesting that this position on the tubulin binding face of the

motor domain is pivotal to the balance between microtubule lattice and

microtubule end affinity. In a structure of Kinesin-1 in complex with the

microtubule lattice conformation of the α/β-tubulin heterodimer (Shang

et al., 2014), the N263 side chain points towards the binding interface,

which may explain its dominance. By contrast, the S266 side chain is

oriented parallel to the tubulin binding face, which could explain why

mutation of this residue has a pronounced effect on end binding whilst

having little effect on translocation activity. The residue at this position

may become more important in an interaction with a curved tubulin

conformation likely found at the microtubule end.

The Kinesin-13 family specific residues K524, E525 and R528 are

not only charged but also larger than the equivalent Kinesin-1 resi-

dues. The impact of this is to create a bulkier α4-helix (Figure 3a,b) in

the Kinesin-13 motor domain relative to Kinesin-1. The Kinesin-1

α4-helix forms a cone-like shape, with the diameter at the C-terminal

end being smaller than at the N-terminal end (Figure 3a), whereas

the Kinesin-13 α4-helix is more cylindrical due to the presence of

these bulkier family specific residues at the C-terminus (Figure 3b).

Structures of the kinesin motor domain in complex with tubulin

F IGURE 2 Substitution of Kinesin-13 residues into the α4 helix of Kinesin-1 increases its microtubule end residence. (a) Kymographs showing
the interaction of the Kinesin-1, rkin430 (green) and the Kinesin-1 variant S266R (green) with a microtubule (magenta). Schematic highlighting
kinesin interaction events is shown alongside each kymograph: events contained within the microtubule (blue) and events that reach the
microtubule end (black). (b) Distribution of microtubule end-residence times for wild-type Kinesin-1 and the variants S266R, G262K, N263E, a
triple mutant (G262K/N263E/S266R) and S266A. (c) Relationship between translocation velocity and end residence for rkin430 and all variants.
(d) End point of incubation of MCAK, rkin430 and variants of rkin430 with fluorescently labelled microtubules [Color figure can be viewed at
wileyonlinelibrary.com]
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(Gigant et al., 2013; Wang et al., 2017) show that the α4-helix con-

tacts the α/β-tubulin heterodimer at the interface between the α and

β subunits, the so-called “intradimer groove” (Figure 3c,d). The bulky

nature of the Kinesin-13 residues may enhance sensing of tubulin

curvature by responding to the reduction of space at the interface

between the α and β subunits in a curved tubulin conformation such

as that proposed to form at the microtubule end compared to a

straight tubulin conformation found within the microtubule lattice.

Whilst introduction of the Kinesin-13 residues into the Kinesin-1

motor domain increased microtubule end-residence time relative to

wild type, none of the variants had significant depolymerisation activ-

ity. The end-residence times for the Kinesin-1 variants are shorter

than for the specialist microtubule depolymerising kinesin, MCAK, and

it is possible that a longer microtubule end residence is required for

depolymerase activity. However, it is more likely that structural ele-

ments in addition to the α4 helix, such as the Kinesin-13 specific

extended Loop 2, are also required for depolymerisation activity

(Ogawa, Nitta, Okada, & Hirokawa, 2004; Patel et al., 2016; Shipley

et al., 2004). It is possible that the α4-helix is principally a curvature

sensing region, which is required to bind at the microtubule end,

whilst the region of the Kinesin-13 motor domain that actively

removes tubulin causing depolymerisation is located elsewhere.

Alignment of the α4-helix from other kinesins that regulate micro-

tubule dynamics, such as the microtubule depolymerising yeast

kinesin, Kip3 and the microtubule polymerising kinesins Kip2 and Eg5,

do not show any similarity of sequence to the Kinesin-13 family spe-

cific residues at the positions studied here (Figure 3e). It is likely that

other microtubule regulating kinesin use different regions of the

motor domain to recognise the microtubule end. In the case of the

microtubule depolymerising kinesin Kip3, Loop 11 which connects

with the N-terminal end of the α4-helix has been shown to be the

critical region for microtubule end binding (Arellano-Santoyo et al.,

2017). Substituting Loop 11 of Kip3 into a Kinesin-1 increases the

microtubule end-residence time comparable to that of Kip3. However,

similar to our observations here, other regions of the motor domain

are also required to confer significant depolymerisation activity.

Here we show that the nature of the C-terminal end of the

α4-helix is critical to the microtubule end recognition ability of

the Kinesin-13 family of microtubule depolymerases. Transplanting

the Kinesin-13 specific residues found here into an alternative kinesin

motor confers the ability to recognise the microtubule end. This study

highlights the potential to tune the motor domain-tubulin interface to

favour either microtubule lattice or end binding, which has implica-

tions for our understanding of the molecular mechanism of kinesins

F IGURE 3 C-terminus of Kinesin-13 α4-helix is bulkier than Kinesin-1. (a and b) Space-fill models of the α4-helix of (a) Kinesin-1 (pdb: 4HNA)
and (b) Kinesin-13 (pdb: 5MIO). The Kinesin-1 α4-helix tapers towards the C-terminus, whereas the Kinesin-13 α4-helix remains bulky. (c and d)
End on view of the C-terminus of the α4-helix of (c) Kinesin-1 and (d) Kinesin-13 in complex with α/β-tubulin. Kinesin (green), α-tubulin (light
blue), β-tubulin (orange). The critical kinesin residues mutated in this study are coloured grey (neutral), red (positive charge) or dark blue (negative
charge). (e) Alignment of the C-terminal end of the α4-helix for Kinesin-1, MCAK (Kinesin-13) and three other kinesins that regulate microtubule
dynamics [Color figure can be viewed at wileyonlinelibrary.com]
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with both translocating and regulating activity and for our ability to

manipulate the function of the kinesin motor domain.

4 | MATERIALS AND METHODS

4.1 | Preparation of kinesin

Rat kinesin-1, rkin430-GFP-h6, and all variants were expressed in

BL21 E. coli cells. The bacterial pellet was lysed in 50 mM sodium

phosphate pH 7.5, 100 mM NaCl, 1 mM MgCl2, 10 μM ATP, 5 mM

β-mercaptoethanol, with EDTA-free protease inhibitor cocktail tablet

(Roche) using a cell disrupter at 35kpsi. Kinesin-1 and variants were

purified by anion exchange, followed by Ni-affinity chromatography

(Rogers et al., 2001). Full-length, human MCAK-his6 was expressed in

Sf9 cells and purified using cation exchange, followed by Ni-affinity

chromatography (Helenius, Brouhard, Kalaidzidis, Diez, & How-

ard, 2006).

4.2 | Microtubules

Porcine brain tubulin was purified from homogenised brain tissue

using the high ionic strength method (Castoldi & Popov, 2003). Fluo-

rescently labelled microtubules were prepared as described previously

(Patel et al., 2016).

4.3 | Single molecule TIRF assays

Single molecules of rkin430-GFP and variants were observed on

immobilised, GMPCPP-stabilised, 25% rhodamine-labelled microtu-

bules in BRB12 (12 mM PIPES/KOH pH 6.9, 1 mM EGTA, 2 mM

MgCl2,) plus 1 mM ATP, 0.1% Tween 20, 0.1 mg/ml BSA and antifade

(1% 2-mercaptoethanol, 40 mM glucose, 40 mg/ml glucose oxidase,

16 mg/ml catalase) using TIRF microscopy (Patel et al., 2016). Images

were collected at a frame rate of 2.7 Hz. Time spent by single kinesin

molecules at the microtubule end and on the microtubule lattice was

measured in FIJI (Schindelin et al., 2012) using kymographs of individ-

ual microtubules. The microtubule end was defined as the final pixel

at either end of a microtubule in the rhodamine channel with a fluo-

rescence signal above the background subtracted threshold. An event

was defined as a pixel containing fluorescence intensity above back-

ground in the GFP channel. Events were considered discrete when

separated by ≥1 non-event pixel in either the vertical (time) or hori-

zontal (distance) axis. Translocating events were defined as events

which moved in a unidirectional manner for at least 3 pixels in the ver-

tical (>750 ms). When events crossed and it was not possible to iden-

tify individual events, they were discounted from the analysis. All

other events were captured and classified.

4.4 | ATPase assays

Reactions were initiated by addition of 1 μM Kinesin to BRB12 buffer

containing 2 mM ATP and samples taken every 5 min, quenched with

an equal volume of ice-cold 0.6 M perchloric acid, neutralised with

Tris/KOH and clarified by centrifugation. The progression of the reac-

tion was monitored by separating ADP from ATP by HPLC (Friel,

Bagshaw, & Howard, 2011).

4.5 | Depolymerisation assays

GMPCPP-stabilised, rhodamine-labelled microtubules were incubated

with 40 nM kinesin and 1 mM ATP in BRB12 for 20 min. The reac-

tions were then flowed into channels made from poly-lysine coated

cover glasses and imaged. Microtubule depolymerisation was also

monitored by light scattering at 350 nm. Kinesin protein was added to

microtubules at final concentrations of 50 nM and 1 μM, respectively,

in the buffer BRB80 pH 6.9, 75 mM KCl, 1 mM MgATP, 1 mM DTT,

200 μg/ml BSA. The light scatter signal was recorded at 5 s intervals

using a Hitachi F2500 fluorimeter.
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