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Enhanced MAPK signaling drives ETS1-mediated induction
of miR-29b leading to downregulation of TET1 and changes in
epigenetic modifications in a subset of lung SCC
MA Taylor1, M Wappett1, O Delpuech1, H Brown2 and CM Chresta1

Non-small-cell lung cancer is the leading cause of cancer death worldwide and is comprised of several histological subtypes, the
two most common being adenocarcinoma (AC) and squamous cell carcinoma (SCC). Targeted therapies have successfully improved
response rates in patients with AC tumors. However, the majority of SCC tumors lack specific targetable mutations, making
development of new treatment paradigms for this disease challenging. In the present study, we used iterative non-negative matrix
factorization, an unbiased clustering method, on mRNA expression data from the cancer genome atlas (TCGA) and a panel of
24 SCC cell lines to classify three disease segments within SCC. Analysis of gene set enrichment and drug sensitivity identified an
immune-evasion subtype that showed increased sensitivity to nuclear factor-κB and mitogen-activated protein kinase (MAPK)
inhibition, a replication-stress associated subtype that showed increased sensitivity to ataxia telangiectasia inhibition, and a
neuroendocrine-associated subtype that showed increased sensitivity to phosphoinositide 3-kinase and fibroblast growth factor
receptor inhibition. Additionally, each of these subtypes exhibited a unique microRNA expression profile. Focusing on the immune-
evasion subtype, bioinformatic analysis of microRNA promoters revealed enrichment for binding sites for the MAPK-driven ETS1
transcription factor. Indeed, we found that knockdown of ETS1 led to upregulation of eight microRNAs and downregulation of
miR-29b in the immune-evasion subtype. Mechanistically, we found that miR-29b targets the DNA-demethylating enzyme, TET1, for
downregulation resulting in decreased 5-hmC epigenetic modifications. Moreover, inhibition of MAPK signaling by gefitinib led to
decreased ETS1 and miR-29b expression with a corresponding increase in TET1 expression and increase in 5-hmC. Collectively, our
work identifies three subtypes of lung SCC that differ in drug sensitivity and shows a novel mechanism of miR-29b regulation by
MAPK-driven ETS1 expression which leads to downstream changes in TET1-mediated epigenetic modifications.
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INTRODUCTION
Non-small-cell lung cancer is the most prevalent type of lung
cancer in the world and the leading cause of cancer death,
accounting for 1.4 million deaths annually.1 Non-small-cell lung
cancer consists of several histological subtypes, the two most
common being adenocarcinoma (AC) and squamous cell carci-
noma (SCC).2 While targeted therapies, such as those that target
epidermal growth factor receptor (EGFR), have been successful in
improving response rates in patients with AC tumors, the majority
of SCC tumors lack specific targetable mutations. One challenge in
defining treatment paradigms for SCC is the high level of
heterogeneity within this disease. Gene expression profiling has
improved our understanding of cancer and led to the develop-
ment of multigene signatures that predict outcomes and response
to therapy.3–5 However, such signature classifications have not
changed treatment for SCC. Therefore, the development of
therapies targeted for SCC will depend on gaining a greater
understanding of the molecular underpinnings that drive tumor-
igenesis and progression in this disease setting.
MicroRNAs are small (20–30 nucleotide) non-coding RNAs that

can function as either tumor promoters or suppressors during
tumorigenesis by exerting post-transcriptional effects on gene
expression.6 Additionally, microRNAs are often expressed in a

tissue- and disease-specific manner,7 making them ideal candi-
dates as biomarkers.7,8 In this study, we used global gene
expression profiling to define subtypes present within lung SCC.
Importantly, we found each of these subtypes to have a unique
therapeutic sensitivity and microRNA expression profile. We
demonstrate that the ETS1 transcription factor, driven by path-
ways enriched in the immune-evasion subtype, drives the
differential expression of a subset of microRNAs expressed in this
subtype. Through this analysis, we identified miR-29b as a
microRNA whose expression is driven by ETS1, through activated
mitogen-activated protein kinase (MAPK) signaling. Additionally,
we found that miR-29b targets the 5-hydroxymethylcytosine
dioxygenase, TET1 for downregulation and has downstream
effects on TET1-mediated epigenetic modifications.

RESULTS
Iterative non-negative matrix factorization clustering of lung SCC
reveals three genomic subtypes with unique drug sensitivity and
cell signaling profiles
In order to classify genomically distinct subtypes within lung SCC,
we employed iterative non-negative matrix factorization (iNMF),
an unbiased clustering technique, chosen for its ability to
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overcome the limitations of consensus clustering and provide
higher resolution than hierarchical clustering.9,10 iNMF was
applied to mRNA expression data from 258 SCC patient samples
available from the cancer genome atlas (TCGA), revealing three
subtypes, driven by a specific subset of genes (Supplementary
Table S1 and Figure 1a). This technique was validated using an
independent data set,11 which also resulted in three subtypes,
with similar gene enrichment profiles (Supplementary Figure S1
and Supplementary Table S2). Despite the differences in gene
expression between the subtypes, there was no statistical
difference in survival proportion, tumor stage or smoking status
between these subtypes (Supplementary Figure S2). Similar to our
work, iNMF iClustering performed by TCGA research network
yielded three consensus clusters.12 Additionally, a previous study,
using the consensus plus clustering method reported four
subtypes of SCC designated as classical, basal, secretory and
primitive.13 Comparison of our analysis to these studies indicated
a high degree of overlap between the three methods (Figure 1b
and Supplementary Figure S3), with cluster 1 most closely aligning
with the previously reported basal and secretory subtypes, cluster
2 with the classical subtype and cluster 3 with the primitive
subtype. Differences in clustering likely reflect differences in
patient sample numbers, patient population and differences in
methodology. Having demonstrated that our methods agreed

with previously published methods performed on different data
sets, we applied hierarchical clustering based on the features
identified by iNMF to a panel of 24 lung SCC cell lines (GSE57083)
to model these clinically relevant subtypes in cell line models of
disease (Figure 1c). Fifteen cell lines closely aligned with patient
samples from cluster 1, seven cell lines aligned with cluster 2 and
two cell lines aligned with cluster 3 (Figure 1d).
Next, we investigated whether cell lines belonging to each

subtype differed in sensitivity to targeted therapies. To do this, we
devised a compound sensitivity score where the average negative
log GI50 of a compound across all cell lines was subtracted from
the average negative log GI50 of cell lines in each cluster. A
negative value was indicative that cell lines in a particular cluster
were more resistant to a compound than the panel as a whole,
while a positive value indicated that cluster cell lines were more
sensitive to a compound than the panel as a whole. We found that
each cluster exhibited a unique drug response profile (Table 1 and
Supplementary Table S3).
To better understand the underlying molecular pathways

driving the differential drug sensitivity between subtypes, we
used gene set enrichment analysis (GSEA) to determine the
signaling pathways most active in each cluster in both TCGA and
cell line samples (Table 2 and Supplementary Table S4). Cluster 1
samples were enriched for EGFR, MAPK and nuclear factor-κB
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Figure 1. iNMF clustering to identify subtypes of lung SCC. (a) iNMF was used to uncover three core subtypes of gene expression differences
within 258 samples of lung SCC obtained from The Cancer Genome Atlas (TCGA). (b) The map showing overlap of individual TCGA samples
clustered by iCluster,12 Subtype13 and iNMF. Cluster 1 is indicated in blue, cluster 2 in red and cluster 3 in green. (c, d) iNMF clusters were
applied to a panel of 24 SCC cell lines.
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signaling. Nuclear factor-κB signaling is known to subvert
the immune system within the tumor micro-environment.14

Moreover, enhanced signaling through this pathway due to EGFR
and KRAS mutations has been shown to upregulate programmed
death-ligand 1 contributing to tumor immune escape.15–18 Indeed,
both cluster 1 TCGA and cell line samples that had high levels of
signaling through EGFR/MAPK pathways showed higher levels of
programmed death-ligand 1 (Supplementary Figure S4). Based on
this evidence we named cluster 1 the immune-evasion subtype.
Interestingly, cell lines from this immune-evasion subtype, which
had increased EGFR and nuclear factor-κB signaling also showed
enhanced sensitivity to inhibition of EGFR/MAPK signaling
pathways by gefitinib (EGFR tyrosine-kinase inhibitor), AZD9291
(EGFR tyrosine-kinase inhibitor) and the MEK 1/2 inhibitor
selumetinib (AZD6244, ARRY-142886). In addition, this cell line

cluster showed enhanced sensitivity to nuclear factor-κB inhibition
by AZD2230 (Table 1).
GSEA of cluster 2 indicated that these patient samples and cell

lines were enriched for genes regulated by the transcription
factor NRF2. Additionally, GSEA identified high expression of
genes upregulated by knockdown of eIF4G1, a translation
initiation factor linked to nutrient sensing by mammalian target
of rapamycin (mTOR),19 suggesting decreased mTOR signaling in
cluster 2 (Table 2). Concordantly, cell lines from this subtype
showed resistance to mTOR inhibition by AZD2014 (Table 1).
Another key feature of cluster 2 samples was enrichment
for DNA synthesis and replicative stress (Table 2). Tumors
harboring enhanced levels of replication stress are dependent
on ataxia telangiectasia-mediated replication responses for
their survival.20 Indeed, cluster 2 cell lines showed enhanced
sensitivity to ataxia telangiectasia inhibition by AZD6738 (Table 1).
Given this evidence, we entitled this cluster the replication-stress-
associated subtype.
Cluster 3 showed enrichment for signatures associated with a

de-differentiated state: stem cell, β-catenin and neuronal signa-
tures (Table 2). Similar to the neuroendocrine subtype of small cell
lung cancers, these tumors also displayed upregulation of the
neuroendocrine markers chromogranin A and chromogranin B
(Supplementary Figure S4), leading us to name this cluster the
neuroendocrine subtype. Both cell lines in this neuroendocrine
subtype are known to have copy number gains in fibroblast
growth factor receptor 1 indicating enhanced fibroblast growth
factor receptor 1 signaling and explaining sensitivity to fibroblast
growth factor receptor inhibition by AZD4547 in these cells.
Additionally, these neuroendocrine cell lines showed sensitivity to
AKT, phosphoinositide 3-kinase and mTOR inhibition with
AZD5363, GDC0941 and AZD2014 compounds, respectively
(Table 1). Neuroendocrine tumors from small cell lung and
colorectal cancers also display an enhanced sensitivity to mTOR
pathway inhibition, indicating that the phenomenon may apply
more broadly to other neuroendocrine cancers.21–23

Table 1. Compound sensitivity score

Compound Target Cluster1 Cluster2 Cluster3
Iressa (gefitinib) EGFR 0.0311 0.2522 -0.4390
AZD9291 EGFR 0.0360 0.0787 -0.2945
Selumetinib (AZD6244, 
ARRY-142886) MEK 0.0970 -0.2909 -0.2909
AZD2230 IKK 0.1271 -0.5938 -0.1685
AZD6738 ATR -0.0798 0.4966 -0.0177
AZD4547 FGFR -0.1909 -0.1622 1.3076
AZD5363 AKT -0.0296 0.1574 0.0205
Pictilisib (GDC-0941) PI3K -0.0727 0.0953 0.3412
AZD2014 mTOR 0.0034 -0.5340 0.5133

Sensitive

Resistant

Table 2. Gene set enrichment analysis (GSEA)

Gene set TCGA
P-value

Cell line
P-value

Description

Cluster 1—Immune-evasion subtype
EGFR_UP.V1_UP o0.001 o0.001 Genes upregulated in MCF-7 cells (breast cancer)

positive for ESR1 and engineered to express
ligand-activatable EGFR

RAF_UP.V1_UP o0.001 o0.001 Genes upregulated in MCF-7 cells (breast cancer)
positive for ESR1 MCF-7 cells (breast cancer)
stably over-expressing constitutively active RAF1

HINATA_NFKB_IMMU_INF o0.001 0.004 Immune or inflammatory genes induced by
NF-kappaB in primary keratinocytes and fibroblasts

Cluster 2—Replication-stress associated subtype
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS o0.001 0.005 Genes involved in activation of ATR in response

to replication stress
NFE2L2.V2 0.093 o0.001 Genes upregulated in MEF cells (embryonic

fibroblasts) with knockout of NFE2L2
SIRNA_EIF4GI_UP 0.432 o0.001 Genes upregulated in MCF10A cells vs

knockdown of EIF4G1 gene by RNAi

Cluster 3—Neuroendocrine subtype
CAHOY_NEURONAL o0.001 0.036 Genes upregulated in neurons
BCAT_GDS748_DN 0.137 — Genes regulated in HEK293 cells (kidney

fibroblasts) expressing constitutively active form
of CTNNB1 gene

BCAT_GDS748_UP — 0.003
ESC_V6.5_UP_EARLY.V1_UP 0.033 o0.001 Genes upregulated during early stages of

differentiation of embryoid bodies from V6.5
embryonic stem cells
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SCC genomic subtypes have distinct microRNA expression profiles
To determine if differences in cell signaling in each subtype drive
differences in microRNA expression, we used analysis of variance
(ANOVA) analysis with a cutoff of Po0.05 to define the microRNAs
that are most differentially expressed between all three subtypes
in the TCGA data set (Figure 2a) and found 306 differentially
expressed microRNAs (Supplementary Table S5). Next, total RNA
was extracted from a subset of the cell line panel (15 cell lines)
and subjected to microRNA profiling. ANOVA analysis was
performed using a cutoff of Po0.05 and we found 92 microRNAs
differentially expressed between the subtypes in our representa-
tive cell lines (Figure 2b and Supplementary Table S5). By
combining these two lists, we determined which microRNAs most
clearly defined each subtype in both the TCGA samples and cell
lines (Table 3). Overall, these data show that there are molecularly
distinct subtypes present in SCC that have distinct differences in
microRNA expression, which may be useful for identifying
subtypes.

Transcription factors predicted to modulate microRNA expression
are differentially expressed across the three subtypes
MicroRNA gene sequences are located in various genomic
contexts, such as introns, non-coding or coding transcripts, and
exonic regions. While much work has been done in recent years to
characterize microRNA-target regulation, how the majority of
microRNAs are regulated at the level of transcription is only
beginning to be elucidated. To better understand how the
enriched signaling pathways might be driving differences in
microRNA expression, we interrogated the predicted promoter
regions of microRNAs differentially expressed between the three
clusters and compiled a ‘master list’ of transcription factors
predicted to regulate these microRNAs (Supplementary Table S6).
We then examined the expression of these transcription factors in
both TCGA data and cell lines. In the immune-evasion subtype

ETS1 was the only predicted transcription factor that was
significantly upregulated compared with the other subtypes
(Figure 3a) at the level of mRNA expression in both TCGA
(Figure 3b) and cell line (Figure 3c) data. Moreover, ETS1 protein
expression was higher in cell lines belonging to the immune-
evasion subtype (Figure 3d). ETS1 expression has previously been
shown to be driven by EGFR and MAPK signaling,24,25 suggesting
that the enhanced EGFR/MAPK signaling in the immune-evasion
subtype drives expression of ETS1, which may then drive
differences in microRNA expression in this subtype. Consistent
with the replication-stress-associated subtype having an enrich-
ment for genes regulated by NRF2 (Table 2), NFE2L2 (NRF2) was
the only predicted transcription factor significantly upregulated
compared with the other two subtypes (Figure 3e) at the level of
mRNA expression in both TCGA (Figure 3f) and cell line (Figure 3g)
data. However, protein expression of NRF2 was relatively high in
cell lines from all three subtypes (Figure 3h). In the neuroendo-
crine subtype, the transcription factor INSM1, known to be highly
expressed in tumors of neuroendocrine orgin,26 was the only
predicted transcription factor significantly upregulated compared
with both of the other two subtypes (Figure 3i) at the level of
mRNA in both TCGA (Figure 3j) and cell line (Figure 3k) data.
Additionally, protein expression of INSM1 (53kda) was high in cell
lines belonging to this subtype (Figure 3l).

The transcription factor ETS1 modulates expression of microRNAs
in the immune-evasion subtype
To test the supposition that ETS1, NRF2 and INSM1 were
modulating the differential expression of microRNAs in each
subtype, we depleted each of these transcription factors using
siRNA, then measured changes in microRNA expression in cell
lines from each subtype. Depletion of NRF2 and INSM1did not
result in consistent microRNA changes between cell lines (data not
shown), suggesting that additional co-factors or transcription
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Figure 2. SCC genomic subtypes have distinct microRNA expression profiles. (a) The most differentially expressed microRNAs between the
three iNMF clusters in TCGA (ANOVA, Po0.05). (b) The most differentially expressed microRNAs in the SCC cell lines (ANOVA, Po0.05). Cluster
1 (immune-evasion) is indicated in blue, cluster 2 (replication-stress) is indicated in red and cluster 3 (neuroendocrine) is indicated in green.
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Table 3. microRNAs differentially expressed in both TCGA and cell lines

Cell lines TCGA

MicroRNA Fold change P-value MicroRNA Fold change P-value

Cluster 1—immune-evasion subtype
Upregulated miRs
hsa-miR-30a 7.80 0.0211 hsa-miR-30a 1.64 1.58E−07
hsa-miR-29a 7.37 0.0144 hsa-miR-29a 1.44 5.45E− 08
hsa-miR-29b 4.89 0.0166 hsa-miR-29b-2 1.36 0.0004605

0.0166 hsa-miR-29b-1 1.38 0.0004026
hsa-miR-21 3.78 0.0049 hsa-miR-21 1.21 0.0000343
hsa-miR-29c 2.36 0.0175 hsa-miR-29c 1.36 0.0015875
hsa-miR-1976 1.10 0.0232 hsa-miR-1976 1.33 0.0018874

Downregulated miRs
hsa-miR-1301 0.81 0.0065 hsa-miR-1301 0.58 1.62E− 08
hsa-miR-345 0.76 0.0341 hsa-miR-345 0.60 1.52E− 06
hsa-miR-454 0.72 0.0422 hsa-miR-454 0.78 0.0011665
hsa-miR-16 0.70 0.0389 hsa-miR-16-1 0.78 0.0022378

0.0389 hsa-miR-16-2 0.69 3.48E− 06
hsa-miR-421 0.65 0.0012 hsa-miR-421 0.61 9.57E− 07
hsa-miR-944 0.60 0.0263 hsa-miR-944 0.42 0.0000337
hsa-miR-105 0.57 0.0058 hsa-miR-105-1 0.43 0.0053822

0.0058 hsa-miR-105-2 0.40 0.0017061
hsa-miR-215 0.55 0.0132 hsa-miR-215 0.77 0.0362918
hsa-miR-192 0.52 0.0139 hsa-miR-192 0.58 4.74E− 06
hsa-miR-194 0.50 0.0021 hsa-miR-194 0.71 0.0001613
hsa-miR-20a 0.49 0.0261 hsa-miR-20a 0.59 2.51E − 09
hsa-miR-17 0.48 0.0195 hsa-miR-17 0.61 4.22E − 11
hsa-miR-20b 0.46 0.0106 hsa-miR-20b 0.43 8.69E− 07
hsa-miR-301b 0.45 0.0200 hsa-miR-301b 0.38 6.40E− 12
hsa-miR-183 0.40 0.0278 hsa-miR-183 0.52 5.04E− 11
hsa-miR-301a 0.36 0.0233 hsa-miR-301a 0.61 0.0000269
hsa-miR-363 0.30 0.0417 hsa-miR-363 0.65 0.0020219
hsa-miR-196b 0.20 0.0098 hsa-miR-196b 0.54 0.0001893
hsa-miR-9 0.16 0.0096 hsa-miR-9-2 0.42 4.51E− 06

0.0096 hsa-miR-9-1 0.42 0.0000041
hsa-miR-200a 0.11 0.0189 hsa-miR-200a 0.68 0.0000433
hsa-miR-429 0.09 0.0099 hsa-miR-429 0.62 0.0000735
hsa-miR-204 0.08 0.0222 hsa-miR-204 0.31 6.08E− 07
hsa-miR-200b 0.08 0.0389 hsa-miR-200b 0.66 0.0000202
hsa-miR-200c 0.06 0.0403 hsa-miR-200c 0.77 0.000397

Cluster 2—Replication-stress subtype
Upregulated miRs
hsa-miR-205 221.50 0.0107 hsa-miR-205 3.35 5.56E− 11
hsa-miR-203 14.99 0.0084 hsa-miR-203 2.77 5.08E− 11
hsa-miR-944 3.03 0.0000 hsa-miR-944 5.15 5.37E− 18
hsa-miR-149 3.02 0.0116 hsa-miR-149 2.34 2.92E− 11
hsa-miR-663 2.53 0.0248 hsa-miR-663 1.41 0.0004309
hsa-miR-345 1.53 0.0073 hsa-miR-345 1.43 0.0005957
hsa-miR-3652 1.53 0.0057 hsa-miR-3652 1.31 0.0038245
hsa-miR-421 1.50 0.0389 hsa-miR-421 1.39 0.0008246
hsa-miR-513c 1.36 0.0173 hsa-miR-513c 1.57 0.0000372
hsa-miR-3687 1.33 0.0389 hsa-miR-3687 1.60 0.0001114
hsa-miR-378b 1.14 0.0370 hsa-miR-378b 1.28 0.0008767

Downregulated miRs
hsa-miR-181b 0.24 0.0389 hsa-miR-181b 0.68 5.2E− 08
hsa-miR-181a 0.18 0.0161 hsa-miR-181a 0.71 2.33E− 07

Cluster 3—Neuroendocrine subtype
Upregulated miRs
hsa-miR-9 15.51 0.0014 hsa-miR-9-2 3.55 4.31E− 08

0.0014 hsa-miR-9-1 3.53 4.47E− 08
hsa-miR-335 6.67 0.0109 hsa-miR-335 1.62 0.0000279
hsa-miR-19b 5.70 0.0012 hsa-miR-19b-1 1.34 0.0136969

0.0012 hsa-miR-19b-2 1.33 0.004951
hsa-miR-301b 4.50 0.0000 hsa-miR-301b 1.75 0.0019509
hsa-miR-17 3.78 0.0002 hsa-miR-17 1.46 0.0000667
hsa-miR-20a 3.67 0.0004 hsa-miR-20a 1.48 0.0004789
hsa-miR-18a 3.50 0.0164 hsa-miR-18a 1.67 0.0000272
hsa-miR-20b 3.49 0.0005 hsa-miR-20b 1.89 0.0031859
hsa-miR-18b 2.89 0.0060 hsa-miR-18b 1.47 0.0030779
hsa-miR-592 2.74 0.0024 hsa-miR-592 1.48 0.0266718
hsa-miR-92a 2.47 0.0063 hsa-miR-92a-2 1.63 0.0000072

0.0063 hsa-miR-92a-1 1.73 0.0000134
hsa-miR-105 2.38 0.0003 hsa-miR-105-2 4.31 0.0000456

0.0003 hsa-miR-105-1 5.36 0.0000057
hsa-miR-194 2.13 0.0174 hsa-miR-194-2 1.38 0.0044099

0.0174 hsa-miR-194-1 1.36 0.00697
hsa-miR-181c 1.74 0.0311 hsa-miR-181c 1.44 0.0000283
hsa-miR-1301 1.29 0.0138 hsa-miR-1301 1.38 0.0088744
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Table 3. (Continued )

Cell lines TCGA

MicroRNA Fold change P-value MicroRNA Fold change P-value

Downregulated miRs
hsa-miR-424 0.23 0.0198 hsa-miR-424 0.80 0.040225
hsa-miR-222 0.18 0.0023 hsa-miR-222 0.64 7.04E− 06
hsa-miR-221 0.18 0.0016 hsa-miR-221 0.68 0.0000452
hsa-miR-23a 0.14 0.0001 hsa-miR-23a 0.75 6.79E− 06
hsa-miR-27a 0.13 0.0002 hsa-miR-27a 0.70 0.0000629
hsa-miR-21 0.10 5.27E-07 hsa-miR-21 0.73 1.12E− 08
hsa-miR-22 0.08 0.000038 hsa-miR-22 0.71 7.96E − 08
hsa-miR-29b 0.05 0.0000397 hsa-miR-29b-2 0.68 0.0002611

0.0000397 hsa-miR-29b-1 0.66 0.0001657
hsa-miR-29a 0.02 0.0000187 hsa-miR-29a 0.74 0.0003523
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factors contribute to regulation of microRNA expression in these
clusters. For this reason, we focused our attention on microRNA
changes induced by ETS1 in immune-evasion subtype cell lines.
We depleted ETS1, using four separate siRNAs which resulted in a
significant decrease in transcript levels across six cell lines from
the immune-evasion subtype (Figure 4a). Next, we measured fold
change in microRNA expression resulting from this ETS1 depletion.
In general, there was a trend towards microRNAs that had low
expression in the original signature being upregulated (Figure 4b).
Indeed, ETS1 depletion resulted in significant upregulation of
miR-16, miR-17, miR-194, miR-20a, miR-20b, miR-301a, miR-301b
and miR-421, suggesting that ETS1 represses expression of these
microRNAs (Figure 4b and Supplementary Table S7). Of the four
microRNAs that were shown to be highly expressed in the
immune-evasion subtype as compared with the other subtypes
(miR-21, miR-30a, miR-29a and miR-29b), miR-29b was significantly
decreased by ETS1 depletion (Figure 4b and Supplementary Table S7),
suggesting that ETS1 drives the expression of miR-29b.

MiR-29b targets TET1 for downregulation
Given the inverse expression of miR-29b observed between the
immune-evasion and the neuroendocrine subtypes (Table 3) and

the modulation in expression of this microRNA by ETS1
(Figure 4b), we chose this microRNA for further investigation. To
identify mRNA targets of miR-29b, we used Ingenuity Pathway
Analysis software to compare predicted targets of miR-29b that
showed decreased expression in the immune-evasion subtype,
where miR-29b levels are high, and increased expression in the
neuroendocrine subtype where miR-29b levels are low in both the
TCGA and cell line data sets. This identified 15 possible mRNA
targets of miR-29b (Figure 5a). Of these, the 5-methylcytosine
dioxygenease TET1 enzyme that facilitates DNA demethylation by
converting 5-methylcytosine (5mC) bases to 5-hydroxymethylcytosine
(5-hmC)27 was the most significantly inversely correlated to
miR-29b (Figure 5a). MiR-29b is transcribed from two genomic
loci (miR-29b-1 and miR-29b-2), both of which showed inverse
correlation with TET1 expression in TCGA tumors (Figures 5b and c).
Additionally, TET1 expression was inversely correlated with
miR-29b expression in SCC cell lines (Figures 5a and d).
Transfection of an Anti-miR-29b into immune-evasion subtype
cell lines, EBC1 and SKMES1, where miR-29b levels are high, led to
an increase in TET1 protein levels (Figure 5e). Conversely,
transfection of an miR-29b mimic into neuroendocrine subtype
cells LK2 and NCIH520, where miR-29b levels are low led to
decreased expression of TET1 protein (Figure 5e). Examination of
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the TET1 3′untranslated region (UTR) revealed that it contains
five miR-29b binding sites (Figure 5f). To determine if miR-29b-
mediated downregulation of TET1 occurs through miR-29b
binding to the TET1 3′UTR, we measured luciferase reporter

activity using constructs containing either a wild-type TET1 3′UTR
or a mutated TET1 3′UTR (Figure 5f) and compared activity with a
construct with no 3′UTR. The high basal levels of miR-29b
expression in immune-evasion subtype cell lines EBC1 and
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SKMES1 directly correlated with greater decreases in TET1 3′UTR-
luciferase reporter activity compared with neuroendocrine
subtype cells LK2 and NCIH520, which contain low levels of
miR-29b (Figure 5g). This correlation was not observed when
the miR-29b binding sites in the TET1 3′UTR-luciferase reporter
were mutated (Figures 5f and g). Additionally, co-transfection of
Anti-miR-29b with the TET1 3′UTR-luciferase reporter in EBC1 cells
led to increased expression of luciferase containing the TET1 3′
UTR. Importantly, mutating the miR-29b seed sequence-binding
region of the TET1 3′UTR abrogated this increase in luciferase
expression (Figure 5h). Taken together, these results indicate that
miR-29b targets TET1 for downregulation through an interaction
with the TET1 3′UTR.

miR-29b-mediated downregulation of TET1 leads to changes in
the epigenetic modification 5-hmC
TET1 is highly expressed in embryonic stem cells where it plays an
important role in pluripotency, self renewal and differentiation28

by preventing both aberrant methylation spreading and stochas-
tic hypermethylation.29–30 Given the high expression of TET1 and
the stem-like features in the neuroendocrine subtype compared
with the other two subtypes, we investigated if there were
differences in DNA methylation between subtypes. While we did
not observe any difference in genome-wide methylation between
subtypes (data not shown), we observed lower levels of DNA
methylation in the genes identified by iNMF in the neuroendo-
crine subtype compared with the other two subtypes
(Supplementary Figure S5 and Supplementary Table S8), suggest-
ing that high levels of TET1 in this subtype may contribute to
decreased methylation of genes driving the subtypes. To examine
how changes in TET1 expression might contribute to gene
expression signatures driving the subtypes, we compared our
iNMF gene signature (Supplementary Table S1) with TET1 knock-
down signatures from previously published studies.29–31 We then
compiled a list of 39 genes that showed differential expression
between the immune-evasion subtype and the neuroendocrine
cell lines and that had been previously reported to be modulated
by TET1 depletion (Supplementary Figure S6). Knockdown of TET1
in LK2 and NCIH520 cells where TET1 expression is high (Figure 6a)
resulted in a trend towards increased expression of a subset of the
genes that were low, and a decrease in a subset of genes that
were high after 72 h. Although we did observe a very slight
increase in expression of EGFR, this small increase was unable to
reprogram and resensitize these resistant cell lines to gefitinib
(Supplementary Figure S7 and Supplementary Table S9). Since
TET1 is known to modulate DNA demethylation patterns by
converting 5mC into 5-hmC,27 we confirmed that knockdown of
TET1 (Figure 6a) led to decreased 5-hmC (Figure 6b). Next, we
tested if miR-29b expression altered 5-hmC levels within the

nucleus of cells. In line with miR-29b leading to downregulation
of TET1, overexpression of miR-29b led to significantly decreased
5-hmC levels in the nucleus of EBC1, SKMES1 and LK2 cells
(Figures 6c and d).

MAPK signaling regulates miR-29b-mediated downregulation of
TET1and leads to changes in 5-hmC levels
Given the well-established role of ETS1 as an effector of MAPK
signaling24,25 and our evidence that ETS1 upregulates miR-29b
expression (Figure 4b), we hypothesized that EGFR/MAPK signal-
ing in the immune-evasion subtype would drive miR-29b
expression through ETS1 leading to suppression of TET1. To test
this hypothesis, we treated EBC1 and SKMES1 immune-evasion
subtype cell lines with the EGFR inhibitor gefitinib, which led to a
reduction in MAPK signaling, indicated by decreased phosphor-
ylation of ERK1/2 (Figure 7a). Concomitant with this decrease in
MAPK signaling, we observed a decrease in ETS1 and miR-29b and
a corresponding increase in TET1 levels (Figure 7a). Additionally,
gefitinib treatment of EBC1 cells also led to increased 5-hmC levels
in the nucleus (Figure 7b). Interestingly, gefitinib treatment of
EBC1 and SKMES1 also resulted in gene expression changes in the
opposite direction to TET1 knockdown for a subset of genes
(Supplementary Figure S6 and Supplementary Table S10).
Collectively, these results indicate ETS1 and miR-29b expression
are driven by MAPK signaling and that abrogation of miR-29b-
mediated suppression of TET1 by MAPK pathway inhibition leads
to increased levels of 5-hmC and may impact downstream
methylation and gene expression.

DISCUSSION
Here, we demonstrate that lung SCC is composed of three
subtypes that are driven by diverse cell signaling pathways,
exhibit differential microRNA expression and differential drug
sensitivity profiles. Additionally, we found that the immune-
evasion subtype is enriched for EGFR signaling, which drives the
expression of the transcription factor ETS1. In turn, ETS1 drives the
upregulation of miR-29b, leading to the downregulation of TET1
and downstream decreases in 5-hmC epigenetic modifications
(Figure 7c).
Targeted therapies against EGFR have been one of the most

successful therapeutic strategies in lung AC patients with
activating mutations in EGFR.2 In contrast, lung SCC generally
lack activating mutations in EGFR32 and while a small fraction of
SCC patients, without activating EGFR mutations, do respond to
EGFR targeted therapies, a predictive biomarker for response to
EGFR targeted therapies in SCC has yet to be identified.33

Interestingly, we have found that while very few immune-
evasion subtype patients and cell lines have mutations in EGFR,

Figure 5. miR-29b targets TET1 for downregulation. (a) Regression analysis of 15 mRNA targets of miR-29b identified by Ingenuity Pathway
Analysis. R2 and P-values for inverse correlation between miR-29b and each gene are shown for both TCGA samples and cell lines
(significant= Po0.05). (b) Regression plot of TET1 mRNA expression compared with hsa-miR-29b-1 expression in TCGA samples indicates
significant inverse correlation Po0.0001. (c) Regression plot of TET1 mRNA expression compared with hsa-miR-29-2 expression in TCGA
samples indicates significant inverse correlation Po0.0001. (d) Regression plot of TET1 mRNA expression compared with hsa-miR-29b
expression in cell line samples indicates a significant degree of inverse correlation P= 0.0007. (e) Immunoblotting of detergent-solubilized
whole-cell extracts with TET1 antibody 48 h after transfection with either Anti-miR-29b (or non-targeting Anti-miR control) or miR-29b mimic
(or control mimic). Differences in protein loading were monitored by reprobing stripped membranes with antibody against GAPDH. Shown is
a representative image from three independent experiments. (f) Alignment of has-miR-29b to the wild type and mutant TET1 3′UTR
sequences. Asterisks indicate mutated miR-29b seed sequence-binding bases. (g) Cells were transiently transfected with a luciferase reporter
construct containing no 3′UTR, wild-type TET1 3′UTR or a mutated TET1 3′UTR sequence. Luciferase signal was normalized to the construct
with no 3′UTR and the fold decrease in signal was plotted against the miR-29b expression levels of each cell line indicating a significant
(P= 0.03) correlation between miR-29b expression and decrease in wild-type TET1 luciferase reporter, but not the mutated reporter (P= 0.29)
(n= 3). (h) EBC1 cells were transiently co-transfected with Anti-miR-29b (or Anti-miR control) and either a wild-type TET1 3′UTR reporter or a
mutated TET1 3′UTR reporter (TET1 3′UTR mut) and luciferase signal was normalized to Anti-miR control transfected cells. Data are the
mean± s.e.m. of n= 3, *Po0.05, Student’s t-test.
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there is an overall enrichment for signaling through the EGFR and
MAPK signaling pathways. Additionally, We have uncovered a
novel role for the MAPK-driven transcription factor ETS1 in
regulating the expression of miR-29b, which suggests that
miR-29b could be a biomarker for ERK/MAPK pathway activation.
It is well established that epigenetic changes can lead to

promotion of tumor initiation and progression.34 The role of DNA
methyltransferases, which promote DNA methylation, in driving
cancer progression have been well characterized.34 However, until
the recent discovery of the TET family of proteins, the role of DNA
demethylation in cancer was less well characterized. The TET
family is thought to act as tumor suppressors by maintaining other
tumor suppressor genes in their unmethylated state.31,35 Indeed,
loss of function mutations in TET2 are frequently found in
hematological malignancies and have been implicated in promot-
ing tumor progression.35 Recently, analysis of microRNA-target
mRNA expression correlations across 11 human cancer types in
TCGA showed that TET1 was significantly inversely correlated with
miR-29b across all cancer types.36 We provide mechanistic

evidence that miR-29b directly downregulates TET1 expression
(Figure 5). At present, there are ~ 80 validated targets of
miR-29b37–38 with one of the most well characterized being the
DNA methyltransferases DNMT3A and DNMT3B.39 Taken together
this suggests that miR-29b may act to fine tune DNA methylation
status by protecting against aberrant changes in both methylating
and demethylating enzymes.
Previous work has shown that suppression of TET1 expression is

essential for KRAS-induced DNA hypermethylation and that this
occurs through MAPK signaling.31 We provide further evidence
that TET1 is downregulated through MAPK signaling and that this
occurs through the novel mechanism of ETS1-mediated upregula-
tion of miR-29b, which targets TET1 for downregulation through
an interaction with its 3′UTR (Figures 4 and 5), leading
to downstream effects on 5-hmC levels (Figures 6 and 7). Several
studies have shown synergy between histone deacetylase
inhibition and MAPK inhibition40–41 as well as synergy between
DNA-hypomethylating agents like 5-azacytidine and MAPK
inhibitors,42–43 suggesting that DNA demethylation enhances
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Figure 6. miR-29b-mediated downregulation of TET1 leads to changes in the epigenetic modification 5-hmC. (a) Cells were transiently
transfected with siRNA against TET1 or control siRNA and knockdown was determined by semi-quantitative real-time PCR, where individual
signals were normalized to 18S. (b) After transfection with siRNA against TET1 or control siRNA cells were immunostained for 5-hmC and
Hoescht and an algorithm measuring nuclear fluorescence intensity of 5-hmC was used to quantitate the percent of cells with 5-hmC in the
nucleus and plotted as fold change to siRNA control (c) Cells were transiently transfected with miR-29b mimic or control mimic, after 48 h cells
were immunostained for 5-hmC and Hoescht and quantitated as in (b). (d) Representative images of immunostaining after transfections with
control mimic or miR-29b mimic. All experiments are the mean± s.e.m. n= 3, *Po0.05, Student’s t-test.
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the efficacy of MAPK inhibitors. More recently TET upregulation
has been shown to be essential for active demethylation induced
by 5-azacytidine.44 This suggests that drug treatments that
upregulate TET1 may synergize with MAPK suppression. However,
given our finding that neuroendocrine subtype cell lines are not
sensitive to EGFR/MAPK inhibition, high TET1 expression in the
absence of MAPK signaling pathway activation is not likely to
indicate sensitivity to MAPK inhibition.

MATERIALS AND METHODS
Cell culture and constructs
Cell lines were grown in RPMI 1640 media+10% fetal calf serum+2 mM

glutamine at 37 °C 5% carbon dioxide and authenticated at AstraZeneca
cell banking using DNA fingerprinting short-tandem repeat assays.
MiRIDIAN miR-29b microRNA mimic (50 nM final concentration) or hairpin
inhibitor (100 nM final concentration) were obtained from Thermo
Scientific (Waltham, MA, USA) and ON-TARGETplus siRNA constructs were
obtained from Dharmacon (Lafayette, CO, USA). All were transiently

transfected using RNAiMAX (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s recommendations.

iNMF
RNA-seq data in RSEM format from the 258 sample TCGA lung SCC gene
expression data set12 where read data were collapsed down to the gene
level was analyzed in R using the package NMF. 45 Prior to NMF, genes that
were expressed at log2o0 across all samples were removed. Factorization
rank estimation was performed, estimating the approximate matrix for up
to a maximum of 10 metagenes (or clusters) using 50 runs and
benchmarked against randomized data to prevent over fitting. With a
cophenetic correlation score of ~ 0.94, the three cluster solution was
selected for the full NMF run using the brunet NMF algorithm and 200
runs. The genes and samples associated with each of the metagenes were
extracted. The associated genes were used to separate the cell line data
(GSE57083) into clusters using the heatmap.2 function from the R package
gplots. For the validation data set,11 only SCC sample data were extracted
for analysis, data were RMA normalized and NMF was performed on the
probeset level and mapped to genes following analysis.
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and immunoblotting was performed to measure differences in phospho-ERK, ETS1 and TET1. Differences in protein loading were monitored
by reprobing stripped membranes with antibody against GAPDH. Shown is a representative image from three independent experiments.
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microRNA expression
Total RNA was purified from cell lines using the miRNeasy kit (Qiagen,
Valencia, CA, USA), and 100 ng was labeled and hybridized to the array
using the miRNA complete labeling and hyb kit (Agilent, Santa Clara, CA,
USA) and spike-in kit (Agilent). Data were generated on a GeneChip
Scanner 3000 (Agilent), Human microRNA Microarray Release 16.0, 8x60K
arrays (Agilent). Data were imported into R, RMA normalized using the
package AgiMicroRna,46 summarized to the log2 scale and returned for
further association analysis as a gene by sample matrix. The miR expression
data are MIAME compliant and have been submitted to the Gene
Expression Omnibus (GSE73774). Differences in microRNA expression were
determined with Omics Explorer (Qlucore, Lund, Sweden), using ANOVA on
549 miRs from TCGA12 and 1368 miRs from cell lines using using a cutoff of
Po0.05 and false discovery rate of 0.09 and 0.73, respectively, calculated
using the Benjamini–Hochberg method. Fold change of miRs found to be
significant (Po0.05) in both TCGA and cell lines was then determined by
comparing expression in each cluster with the other two clusters (Table 3).

GSEA and transcription factor predictions
High-throughput mRNA sequencing data from 258 lung SCC cancer
patients were downloaded from the TCGA data portal. GSEA was
performed using software (v2.1.0) obtained from the Broad Institute using
the c2 and c6 databases from the MsigDB. P-values, enrichment scores and
q-values were computed by permuting the sample labels (cluster number)
1000 times.47,48 The ACTViewer program (Qu lab at Sun Yat-sen University)
was used to identify transcription factor-binding sites in the promoter
regions of differentially expressed microRNAs.

Real-time PCR
Total RNA was purified using the supplementary microRNA protocol for the
RNeasy Plus Mini Kit (Qiagen). Expression of mRNA targets was measured
using QuantiTect one-step reverse transcriptase-PCR reagents (Qiagen)
and primer/probe sets from Life Technologies on a LightCycler 480 (Roche,
Basel, Switzerland). For microRNA, cDNAs were synthesized using miScript
II Reverse Transcription Kit (Qiagen) and diluted fivefold in RNase-free
water prior to preamplification using the miScript Microfluidics PreAMP kit
(Qiagen) and oligonucleotide primers from Life Technologies. Real-time
PCR was carried out using reagents from the Microfluidics qPCR kit
(Qiagen) on a Fluidigm 48× 48 chip or carried out from 10-fold diluted
cDNA following the miScript PCR System protocol (Qiagen) on a
LightCycler480 (Roche). Primers and probes are listed in Supplementary
Table S11.

Luciferase assays
Cells were seeded into 96-well plates and co-transfected using TransIT-X2
(Mirus, Madison, WI, USA) with microRNA mimic (Thermo Scientific) or
Anti-miR (Thermo Scientific) along with 50 ng of pMirTarget (Origene,
Rockville, MD, USA) housing the 3′UTR sequence of TET1 that contained
either a wild-type or mutant version of the miR-29b binding site. Luciferase
and RFP expression were measured using the Steady Glo Luciferase kit
(Promega, Madison, WI, USA) and a Tecan microplate reader.

In vitro assays
Western blotting was performed as previously described.49 Antibodies are
listed in Supplementary Table S12. Proliferation and dose response assays
were performed by plating cells into a 96-well plate. Confluence was
measured every 4 h using the IncuCyte (Essen Bioscience, Ann Arbor, MI,
USA) for 6 days and data were analyzed in Graph Pad Prism 6.

Immunofluorescence
Cells were seeded into a clear bottom, black wall 96-well plate (then
transfected with microRNA mimic (Thermo Scientific) Anti-miR (Thermo
Scientific), or 20 nM siRNA (Dharmacon) using RNAiMAX (Invitrogen) or
treated with drug. Cells were fixed with 3.7% formaldehyde, permeabilized
in 0.5% Triton-X-100, denatured with 2 N HCl and neutralized with 100 mM

Tris-HCl (pH8.5), then blocked with 5% BSA/0.1% Triton X-100 before
probing with an antibody against 5-hydroxymethylcytosine (5-hmC)
(Active Motif, Carlsbad, CA, USA) overnight at 4 °C. Following washing in
phosphate-buffered saline-Tween 0.05%, cells were incubated with a
secondary antibody conjugated to Alexa-Fluor-488 (Invitrogen) and
Hoescht (Invitrogen) before washing and imaging using a × 10 objective

on the Cellomics Cell Insight. An algorithm measuring the nuclear
fluorescence intensity was used for analysis.

Methylation analysis
Methylation by mean β-values were downloaded from TCGA and Omics
Explorer (Qlucore) was used to perform ANOVA to determine genes that
were differentially methylated.

Statistics
Statistical values were defined using ANOVA or a two-tailed Student’s t-test
as specified in the text, Po0.05 was considered significant and distribution
was assumed to be normal for all in vitro experiments.
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