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Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell
proliferation, tumor angiogenesis, and metastasis and are closely associated with the
development, progression, and metastasis of many cancers. Tumor-associated
macrophages (TAMs) in the tumor microenvironment play an important role in cancer
progression. The Hippo signaling pathway regulates cell proliferation and apoptosis,
maintains tissue and organ size, and homeostasis of the internal environment of
organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling
pathway key component, is widely observed in various malignancies. Further, TAM,
lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review,
we have logically summarized recent studies, clarified the close association between the
three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.
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INTRODUCTION

The human genome, which typically encodes both coding and non-coding transcripts, contains a
large amount of apparently functional but non-coding DNA that is much larger than coding RNAs
and estimated to be at least four times larger than protein-coding sequences (1). Long noncoding
RNAs (lncRNAs) are endogenous nonprotein-coding RNAs larger than 200 nt that regulate
biological processes such as tumor growth, proliferation, invasion, and metastasis at the
epigenetic, transcriptional, or post-transcriptional level (2).

Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are a major
infiltrating non-cancerous cells and are closely associated with tumor proliferation, metastasis,
invasion, and immune escape (3). LncRNAs have a regulatory relationship with TAMs during
tumor development, and both have emerged as new therapeutic targets for cancer. TAMs are
classified into M1 and M2 phenotypes in different tissue environments (4, 5). As shown in Figure 1,
under the proinflammatory and antitumor conditions induced by lipopolysaccharide (LPS) and
tumor necrosis factor-a (TNF-a), TAMs differentiate to the M1 phenotype (6); however, with the
anti-inflammatory and protumorigenic effects induced by IL-10 and IL-4, TAMs polarize towards
the M2 phenotype. Most macrophages exhibit the M1 phenotype early and inhibit tumor growth. In
contrast, as tumor progression continues, macrophages gradually converge to the M2 phenotype,
promoting tumor development (7). Increasing evidence suggests that the induction of macrophages
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from an M1 to M2 phenotype might promote cancer initiation
and progression by inducing cell proliferation, metastasis, drug
resistance, and immune evasion. The regulatory mechanisms of
macrophage polarization are not clear, but lncRNA and Yes-
associated protein (YAP) proteins play a significant role in the
M1/M2 switch. An in-depth study of the mechanisms mediating
TAM phenotypic transition will provide a new direction for the
treatment of malignancies.

The Hippo pathway is highly conserved and plays an essential
role in organ size regulation, tissue homeostasis, and
tumorigenesis (8, 9). In mammals, through activation of the
MST-LATS kinase cascade, multiple upstream stimulus signals
(e.g., mechanical environment, cellular energy levels, G protein-
Frontiers in Oncology | www.frontiersin.org 2
coupled receptor signals, oxidative stress, and hypoxia) can
regulate the localization of YAP, which in turn regulates organ
size by controlling cell proliferation and apoptosis. Upon
activation, MST1/2 kinase is phosphorylated and forms a
complex with SAV1 to phosphorylate LATS1/2, which in turn
phosphorylates the transcriptional co-activator YAP in Figure 2.
This protein is then coupled with 14-3-3 proteins and retained in
the cytoplasm or degraded by ubiquitination-dependent
proteasomes. Activation of the Hippo pathway inhibits the
nuclear YAP import and downregulates the expression of
target genes, such as CTGF and CYR61 (10). In contrast, when
the Hippo pathway is inhibited, YAP is not phosphorylated and
can escape proteasomal degradation and translocate to the
FIGURE 1 | Polarization of tumor-associated macrophages (TAMs): In the tumor microenvironment, macrophages are usually recruited by CSF1. In response to
different signaling stimuli, macrophages polarize into M1 and M2 phenotypes. Factors such as LPS and IFN-g regulate TAM polarization toward the M1 type. The
M1-phenotype macrophages secrete INOS, IL-1b, and TNF-a as proinflammatory stimuli, which promote inflammatory responses and inhibit tumor growth. Factors
such as IL-4 and IL-13 regulate TAM polarization toward the M2 type. The M2-phenotype macrophages release TGF-b, Arg-1, and IL-10, which inhibit the
inflammatory response and promote tumor formation. Yap protein and lncRNA affect M1/M2 phenotypic transition.
FIGURE 2 | HIPPO-YAP signaling pathway and its regulation by lncRNA.
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nucleus, where it binds to the transcriptional enhanced
associated domain (TEAD) family of transcription factors and
induces the expression of downstream target genes.

LncRNAs regulate the polarization subtypes of TAMs and affect
the proliferation, metastasis, and prognosis of tumors. The Hippo-
YAP pathway also affects the TAM polarization. YAP can promote
tumor cells to release pro-inflammatory factors and recruit TAMs.
In cancer, TAM, YAP, and abnormally expressed lncRNAs can act
as molecular markers for diagnosis and prognosis, as well as
potential targets for tumor therapy. However, at present, there are
not many pieces of literature and experimental studies reported that
look at these three as a whole in this context. So, we have logically
summarized recent studies, clarified the close association between
the three factors and tumorigenesis, and analyzed the outlook of
tumor immunotherapy.
THE CLOSE ASSOCIATION BETWEEN
LncRNA AND TUMOR MACROPHAGES

Aberrant Expression of lncRNA in
Tumors and TAM
LncRNA is a vital component of cancer immunotherapy (11),
regulates gene expression in the form of RNA, participates in cell
proliferation, differentiation, tumor angiogenesis, and metastasis,
and plays a significant role in the occurrence, development, and
metastasis of cancers (12). It is widely believed that lncRNA
mediates tumor progression. In non-small cell lung cancer
(NSCLC), GNAS-AS1 expression is negatively related to
patient overall survival and is significantly enhanced in TAMs
from clinical tumor tissues (13). Moreover, prostate cancer-
associated transcript 1 (PCAT-1), a newly identified lncRNA,
is dysregulated and functions as an oncogene in cancer (14);
specifically, high expression of PCAT-1 is correlated with
colorectal cancer (CRC) progression (15). As a prostate-
Frontiers in Oncology | www.frontiersin.org 3
specific regulator of cell proliferation, PCAT-1 is a target of the
polycomb repressive complex 2 (PRC2) (16). Moreover, in
gastric cancer (GC), higher PVT1 expression is significantly
associated with greater infiltration depth and advanced TNM
stage based on tissues and cell lines, as well as in animal
experiments than in normal (17). LncRNA is abnormally
regulated in cancer, and in-depth studies on these molecules
could help us to better understand and optimize new strategies
for tumor treatment.

Macrophages influence tumor metabolism through specific
lncRNAs. Researchers found that glycolysis in tumor cells results
in the release of lactate, which stimulates the upregulation of
hypoxia inducible factor-1a (HIF-1a)-stabilizing long
noncoding RNA (HISLA) expression in macrophages, in turn
inhibiting the hydroxylation and degradation of HIF-1a by
blocking the interaction between PHD2 and HIF-1a, thereby
promoting extracellular vesicle (EV) transport and enhancing
glycolysis, which results in the production of lactate.
Accordingly, this constitutes a feed-forward loop between
TAMs and tumor cells. Finally, TAMs facilitate glycolysis and
the evasion of apoptosis in breast cancer cells via the lncRNA
HISLA (18).

LncRNA Affects Macrophage Recruitment,
Polarization, Phenotypic Transition, and
Thus, Tumor Immune Escape
LncRNAs can recruit macrophages into tumors to promote
metastasis. Studies have generally found that the induction of a
macrophage phenotypic switching from M1 to M2 might
promote cell proliferation, metastasis, immune evasion, and
thus cancer initiation and progression. Table 1 shows data on
the regulation of macrophages by relevant lncRNAs. By directly
inhibiting the expression of miR-4319, a miRNA that targets the
N-terminal EF-hand calcium-binding protein 3 (NECAB3) to
suppress its expression, GNAS-AS1 promotes macrophage M2
TABLE 1 | LncRNA affects macrophage recruitment, polarization, phenotypic transition.

Positive Role LncRNA Tumor Mechanism Reference

Macrophages
recruitment

LNMAT1 Bladder Cancer LNMAT1 induces upregulation of CCL2 to recruit macrophages into tumors (19)

M2 polarization LncRNA
XIST

Lung Cancer LncRNA XIST downregulation inhibits IL-4-induced M2 polarization (20)

M2 polarization GNAS-AS1 NSCLC GNAS-AS1/miR-4319/NECAB3 axis promotes macrophage M2 polarization (13)
M2 polarization RP11-

361F15.2
Osteosarcoma RP11-361F15.2 promotes CPEB4-mediated tumorigenesis and M2-like polarization of TAM

through competitive binding to miR-30c-5p
(21)

M2 polarization RPPH1 Colorectal Cancer CRC cell-derived exosomes translocate RPPH1 into macrophages and mediate macrophage
M2 polarization

(22)

M2 polarization LINC00662 Hepatocellular
carcinoma (HCC)

LINC00662 promotes M2 polarization by inducing the secretion of WNT3A (23)

Inhibit M2
polarization

CASC2c GBM CASC2c binds to FX and inhibits its expression and secretion, which in turn inhibits M2
polarization

(24)

Inhibit M1
polarization

LincRNA-
p21

Breast Cancer LincRNA-p21 knockdown promotes M1 polarization by promoting MDM2 antagonism p53
activation.

(25)

Inhibit M1
polarization

LncRNA
ANCR

Gastric Cancer LncRNA ANCR overexpression inhibits M1 polarization by decreasing IL-1b and IL-6 (26)

M1/M2 phenotype
transition

LncRNA
cox-2

Hepatocellular
carcinoma (HCC)

LncRNA cox-2 siRNA down-regulates IL-12 and TNF-a in M1 and up-regulates IL-10 and Arg-
1 in M2 macrophages.

(27)
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polarization and NSCLC cell progression (13). In addition, the
overexpression of lncRNA ANCR in macrophages decreases the
concentration of IL-1b and IL-6, M1-type macrophage
polarization marker molecules, and inhibits macrophage M1
polarization (26). In osteosarcoma, the lncRNA RP11-361F15.2
promotes cytoplasmic polyadenylation element-binding protein
4 (CPEB4)-mediated M2-like polarization of TAMs and
tumorigenesis by competitively binding to miR-30c-5p (21).

However, in some cases, lncRNAs can also inhibit M2 cell
polarization and macrophage recruitment. LncRNA cox-2 in
HCC alters M1/M2 macrophage polarization by regulating the
expression of macrophage polarization-related genes (iNOS,
TNF-a, Arg-1, and Fizz1). As shown in Figure 3, lncRNA
cox-2 siRNA decreases IL-12 levels and mRNA expression of
TNF-a and iNOS in M1 macrophages and increases IL-10 level
and mRNA expression of Arg-1 and Fizz-1 in M2
macrophages (27). By promoting M1 macrophage polarization
and inhibiting M2 macrophage polarization, lncRNA cox-2
inhibits the HCC cell proliferation, invasion, migration,
angiogenesis, and EMT. Furthermore, silencing the lncRNA
Xist in M1 macrophages in breast and ovarian cancers
stimulates TAM polarization towards the M2 phenotype and
thus proliferation and migration. This suggests that augmented
Xist expression in M1 macrophages could be targeted in the
treatment of breast and ovarian tumors (2). It can be inferred
that the recruitment and polarization of macrophages induced by
lncRNA is not a one-sided positive or negative trend.

As expected, lncRNAs are closely correlated with macrophage
polarization and tumor progression. Similarly, these
macrophage-associated lncRNAs were also cross-linked to the
Hippo-YAP pathway. By recruiting heterogeneous nuclear
ribonucleoprotein L to the chemokine CCL2 promoter, lymph
node metastasis-associated transcript 1 (LNMAT1) activates the
CCL2 upregulation, recruits macrophages to the tumor, and
promotes lymphatic metastasis via vascular endothelial growth
factor C (VEGF-C) excretion (19). Coincidentally, researchers
have demonstrated that YAP occupies the CCL2 gene and
promotes CCL2 expression in mouse cardiac fibroblasts (28).
CCL2 is related to increased macrophage infiltration and pro-
Frontiers in Oncology | www.frontiersin.org 4
inflammatory cytokine expression, and YAP expression
upregulates the fibrosis and inflammation index. Both
LNMAT1 and YAP can promote the expression of CCL2 and
then act on macrophages, indirectly affecting inflammation and
tumors, suggesting that there may be a closer relationship among
lncRNA, YAP, and the macrophages.

Moreover, regarding the induction of M2 polarization,
downregulation of lncRNA XIST inhibits interleukin-4 (IL-4)-
induced M2 polarization and downregulates the expression of
M2-specific markers (e.g., IL-10, Arg-1, and CD163) (20). In the
blood and tissue samples of Wilms tumor (WT) patients,
researchers found that lncRNA XIST upregulation is correlated
with miR-194-5p downregulation and YAP upregulation,
suggesting that XIST regulates the miR-194-5p/YAP pathway
(29). Furthermore, CRC cell-derived exosomes promote the
metastasis and proliferation of CRC cells by translocating
lncRNA RPPH1 to macrophages to mediate macrophage M2
polarization. In addition, investigators have found that lncRNA
RPPH1 interacts with b-III microtubulin (TUBB3) to inhibit its
ubiquitination and induce epithelial-mesenchymal transition
(EMT) (22). EMT plasticity plays a critical role in connecting
lncRNAs to YAP. As a potent transcriptional coactivator, YAP
forms a complexwith the zinc-dependent EMT transcription factor
ZEB1 to activate integrina3 (ITGA3) transcription throughTEAD
binding sites (30). The cancer-promoting zinc transporter ZIP4
promotes EMT plasticity through the ZEB1/YAP1-ITGA3
signaling axis. Through EMT, the indirect connection point, we
determined the potential link between lncRNAs and YAP.

Linc00662 promotes hepatocellular carcinoma (HCC)
progression and M2 macrophage polarization by upregulating
WNT3A expression and secretion through competitive
endogenous RNA (ceRNA) mechanism (23). By sponging miR-
497-5p, LINC00662 regulates YAP1-mediated GC cell proliferation,
and the knockdown of LINC00662 suppresses the Hippo-YAP
pathway (31). In addition, as MDM2 (mouse double minute 2)
induces proteasome-dependent degradation of p53 and activates the
NF-kB and STAT3 pathways, lincRNA-p21 knockdown promotes
macrophage polarization to a pro-inflammatoryM1phenotype (25).
These observations suggest that lncRNAs inhibit macrophage M1
FIGURE 3 | The function of lncRNA cox-2 in TAM phenotype switching.
January 2022 | Volume 11 | Article 810893
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polarization and promote M2 polarization in the TME,
reprogramming their specific functional phenotypes to promote
cancer progression and metastasis.
COMPLEX INTERACTIONS BETWEEN YAP
AND LncRNA

The Hippo pathway is a tumor suppressor signaling pathway
that restricts its downstream oncogenic effector YAP, as detailed
in Table 2. In 2021, Lin et al. discovered that lncRNA SNHG9
promotes LATS1 liquid-liquid phase separation and inhibits
LATS1-mediated YAP phosphorylation, promoting the
oncogenic signaling of YAP. SNHG9 deletion inhibits the
growth of xenograft breast tumors (33). Studies have identified
crosstalk between the ROR1/HER3-LLGL2-MAYA-NSUN6
signaling axis and the Hippo-YAP pathway, with the former
methylating the MST1 site to eliminate MST1 kinase activity and
activate YAP and its target genes to promote bone metastasis
(32). Another study illustrated that LINC01559, lncRNA
B4GALT1-AS1, and lncRNA USP2-AS1, a Yes-associated
protein 1 (YAP1)-binding lncRNA, can interact with YAP
proteins, hinder YAP phosphorylation, recruit YAP to the
nucleus, and trigger the expression of downstream target genes
to accelerate tumor progression (35–37). Interestingly, in OS
stem cells, B4GALT1-AS1 recruits HuR to enhance the stability
Frontiers in Oncology | www.frontiersin.org 5
of YAP mRNA and its transcriptional activity, thereby
promoting OS cell stemness and migration (38). In addition,
lncRNA can upregulate YAP levels in other ways.

However, lncRNA can also inhibit tumor cell viability and
growth through YAP inactivation. The miRNA–host gene
lncRNA (lnc–miRHG) association produces miRNAs and
regulates cancer progression. MiR-497 and miR-195, derived
from MIR497HG, synergistically inhibit Hippo/Yap and
transform growth factor b (TGF-b) signaling, thereby
attenuating the interaction between YAP and Smad3 (44).
CUL4A is a scaffolding protein of the ubiquitin-proteasome
system and a ubiquitin E3 ligase that mediates LATS1
ubiquitination (53). A novel lncRNA, uc.134, inhibits HCC
progression by suppressing CUL4A expression and increasing
YAPS127 phosphorylation (46). Furthermore, talazoparib, a
novel and potent poly(ADP-ribose)polymerase-1/2 (PARP1/2)
inhibitor, induces the lncRNA PLK4, which inhibits the viability
and growth of HCC cells through YAP inactivation and cellular
senescence, thus acting as an oncogene suppressor (54). To
summarize, lncRNAs can positively or negatively regulate YAP
levels and directly or indirectly affect tumor progression.

Not only can lncRNAs affect YAP expression levels, but YAP can
also interfere with the Hippo-YAP pathway to indirectly act on
tumors; and the two can even interact with each other. The multiple
repeat sequences of the lncRNA NORAD bind to and segregate
S100P, and the S100P decoy function inhibits the migration,
TABLE 2 | Regulation of HIPPO-YAP pathway by lncRNA.

Role Target
molecules

LncRNA Disease Role Reference

Contribution
to YAP

MST LncRNA
MAYA

Bone metastasis The ROR1/HER3-LLGL2-MAYA-NSUN6 signaling axis methylates the MST1 site and
eliminates MST1 kinase activity

(32)

Contribution
to YAP

LATS LncRNA
SNHG9

Breast Cancer LncRNA SNHG9 promotes LATS1 liquid-liquid phase separation for oncogenic YAP (33)

Contribution
to YAP

LATS HOTTIP Osteosarcoma (OS) HOTTIP catalyzes LATS2 promoter methylation (34)

Contribution
to YAP

YAP LINC01559 Pancreatic cancer LINC01559 interacts with YAP protein and blocks YAP phosphorylation (35)

Contribution
to YAP

YAP lncRNA
USP2-AS1

Colon Adenocarcinoma
(COAD)

lncRNA USP2-AS1 binds YAP1 and decreases p-YAP (S127) (36)

Contribution
to YAP

YAP B4GALT1-
AS1

Osteosarcoma (OS) B4GALT1-AS1 recruits HuR to enhance the stability of YAP mRNA (37)

Contribution
to YAP

YAP B4GALT1-
AS1

Colon Cancer B4GALT1-AS1 binds to YAP and recruits YAP to the nucleus (38)

Contribution
to YAP

YAP LncRNA-
ATB

Hepatocellular
carcinoma (HCC)

LncRNA-ATB reduces p-YAP expression and induces YAP nuclear translocation (39)

Contribution
to YAP

YAP METTL3 NSCLC METTL3 promotes YAP mRNA translation and increases YAP mRNA stability by
regulating the MALAT1-miR-1914-3p-YAP axis

(40)

Contribution
to YAP

YAP MALAT1 Diabetic
cardiomyopathy (DCM)

MALAT1 positively regulates the nuclear translocation of YAP by binding to CREB (41)

Contribution
to YAP

HIF-1a LncRNA
JPX

Intervertebral disc
degeneration (IDD)

Overexpression of lncRNA JPX suppresses miR-18a-5p, upregulates HIF-1a and
thereby inhibits Hippo-YAP pathway

(42)

Contribution
to YAP

HIF-1a LncRNA
GHET1

Triple-negative breast
cancer (TNBC)

LncRNA GHET1 knockdown reduces the level of HIF-1a phosphorylation to retain
YAP in the cytoplasm.

(43)

Suppression
of YAP

YAP Lnc-
mi497RHG

Bladder Cancer Lnc-mi497RHG synergistically inhibits Hippo-Yap and TGF-b pathways, especially
attenuating the interaction between Yap and Smad3

(44)

Suppression
of YAP

YAP GAS5 Colorectal Cancer GAS5 directly interacts with the YAP WW structural domain, promoting YAP
phosphorylation and ubiquitin-mediated degradation

(45)

Suppression
of YAP

LATS LncRNA
uc.134

Hepatocellular
carcinoma (HCC)

LncRNA uc.134 inhibits CUL4A-mediated LATS1 ubiquitination and increases
YAPS127 phosphorylation

(46)
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invasion, andmetastasis in lung and breast cancers. Transduction of
the Hippo pathway YAP/TAZ-TEAD complex transcriptionally
represses the NORAD expression, together with the action of the
NuRD complex (47). Furthermore, researchers have found that the
YAP/TEAD1 complex and lncRNA both influence each other to
form a feed-forward circuit. As a ceRNA of miR-484, THAP9-AS1
attenuates the inhibitory effect of miR-484 on YAP, leading to the
YAP upregulation. Moreover, THAP9-AS1 binds to YAP protein
and inhibits LATS1 phosphorylation. Notably, the YAP/TEAD1
complex promotes THAP9-AS1 transcription, forming a feed-
forward circuit (55). The regulatory relationship between
lncRNAs and the Hippo-YAP pathway is complex and variable,
and there is still much scope for research and exploration. Further, a
better understanding of the mechanisms underlying their roles in
tumors is of strategic importance for future immune-
targeted therapies.

As mentioned above, some lncRNAs can affect the HIPPO-
YAP pathway, and lncRNAs and YAP interact with each other.
However, these alone are not sufficient to help us understand the
relationship between the two. We were surprised to find that
some lncRNAs regulating the HIPPO-YAP pathway could be
directly or indirectly linked to macrophages. The Hippo pathway
YAP/TAZ-TEAD complex transcriptionally represses lncRNA
NORAD expression. NORAD could serve as a diagnostic marker
for neonatal sepsis (NS) patients. NORAD knockdown reversed
the overexpression of IL-6, IL-8, and TNF-a pro-inflammatory
cytokines in macrophages under LPS conditions (48). The
lncRNA GAS5 interacts directly with the WW structural
domain of YAP, facilitating YAP phosphorylation and
subsequent ubiquitination-mediated degradation, thereby
inhibiting CRC progression (45). lncRNA knockdown was
performed in M2 macrophages, and the effect on polarization
was assessed by surface marker analysis. Knockdown of GAS5
results in the downregulation of M2 surface markers (CD163 and
CD206) and a concomitant increase in M1 markers (MHC II or
CD23), which highlights the instrumental role of lncRNA GAS5-
mediated regulation of macrophage differentiation and
polarization (50). Similarly, in cells isolated from diabetic (Db)
Frontiers in Oncology | www.frontiersin.org 6
wounds, lncRNA GAS5 is dysregulated, and GAS5 loss-of-
function may be partly responsible for the persistence of M1
macrophages and enhancement of Db wound healing (51).

In addition to participating in the regulation of the Hippo-YAP
pathway, these lncRNAs are directly related to the M1/M2
polarization of macrophages. However, some lncRNAs are
indirectly associated with macrophages. The lncRNA HOTTIP
(human homeobox A transcript) in osteosarcoma (OS) catalyzes
LATS2 promoter methylation, inhibits LATS2 expression, activates
YAP, initiates downstream target gene expression, and maintains
OS cell viability, proliferation, migration, and invasion (34).
Meanwhile, researchers found that lncRNA HOTTIP can decoy
miR-27a-3p to promote G protein subunit gamma 12 (GNG12)-
mediated metastasis in osteosarcoma. GNG12 suppresses adaptive
immunity to influence the tumor microenvironment by inhibiting
M1 and M2 macrophage infiltration (49). Similarly, in triple-
negative breast cancer (TNBC), hypoxia induces lncRNA
GHET1, and lncRNA GHET1 knockdown reduces HIF-1a
phosphorylation under hypoxic conditions, retaining YAP in the
cytoplasm. LncRNA GHET1 overexpression promotes nuclear
translocation of YAP and TNBC progression (43). In adipose-
derived mesenchymal stem cells (ASCs), researchers demonstrated
that ASCs-derived interleukin 10 (IL-10), mediated by HIF-1a,
plays a crucial role in enhancing macrophage recruitment and
inducing macrophages toward the M2 phenotype (52). Table 3
shows more systematic information.
THE CLOSE RELATIONSHIP BETWEEN
YAP AND MACROPHAGES

YAP Stimulates Macrophage Production of
Proinflammatory Cytokine Factors and
Inflammatory Responses
Various studies have demonstrated that YAP regulates the
inflammatory response of macrophages through various
pathways. Regarding the mechanism through which the
TABLE 3 | Direct or indirect crosstalk among YAP, LncRNA, and TAM.

LncRNA Relate to Hippo-YAP Relate to TAM Reference

LNMAT1 YAP occupies the CCL2 gene and promotes CCL2 expression LNMAT1 induces upregulation of CCL2 to recruit macrophages into
tumors

(19, 28)

LncRNA
XIST

LncRNA XIST upregulation is correlated with YAP upregulation LncRNA XIST downregulation inhibits IL-4-induced M2 polarization (20, 29)

RPPH1 LncRNA RPPH1 and YAP are linked indirectly by EMT CRC cell-derived exosomes translocate RPPH1 into macrophages
and mediate macrophage M2 polarization

(22, 30)

LINC00662 The knockdown of LINC00662 suppresses the Hippo-YAP pathway LINC00662 promotes M2 polarization by inducing the secretion of
WNT3A

(23, 31)

LncRNA
NORAD

Hippo pathway YAP/TAZ-TEAD complex transcriptionally represses
lncRNA NORAD expression

NORAD knockdown reversed the overexpression of IL-6, IL-8, and
TNF-a pro-inflammatory cytokines in the macrophage cells

(47, 48)

HOTTIP HOTTIP catalyzes LATS2 promoter methylation LncRNA HOTTIP promotes GNG12 expression, which inhibits M1
and M2 macrophage infiltration

(34, 49)

GAS5 GAS5 directly interacts with the YAP WW structural domain,
promoting YAP phosphorylation and ubiquitin-mediated degradation

Knockdown of GAS5 shows downregulation of M2 surface markers
and concomitant increase in M1 markers

(45, 50,
51)

LncRNA
GHET1

LncRNA GHET1 knockdown reduces the level of HIF-1a
phosphorylation to retain YAP in the cytoplasm.

HIF-1a enhances macrophages recruitment and inducing
macrophages toward M2 phenotype

(43, 52)
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Hippo-YAP pathway regulates macrophage behavior, it was
found that the overexpression of YAP exacerbated the titanium
ion-induced NF-kB pathway-mediated inflammatory response.
Titanium ions induce YAP expression and activate the NF-kB
pathway to upregulate proinflammatory cytokine expression in
macrophages (56). By inducing the interaction between YAP and
NF-kB subunit p65, LPS stimulates NF-kB activation and TNFa
production in macrophages, but this process is dependent on
YAP activation and nuclear translocation (57). Lactate
significantly inhibited macrophage NF-kB and YAP activation
and nuclear translocation owing to YAP inactivation, which is
mediated by GPR81-dependent AMKP and LATS activation-
mediated YAP phosphorylation. Lactate reduces the interaction
between YAP and NF-kB, thereby inhibiting the production of
TNF-a and IL-6. Lactate inhibits YAP and NF-kB activation via
GPR81-mediated signaling and suppresses the inflammatory
response of macrophages following LPS stimulation. In
addition, activator protein 1 in macrophages/Kupffer cells
(KCs) promotes the LPS transcriptional activation of YAP.
This further enhances the expression of proinflammatory
cytokines, including monocyte chemotactic protein 1, tumor
necrosis factor a, and interleukin 6, through binding to the
TEA domain in the promoter regions of genes encoding
inflammatory factors. YAP in KCs enhances the production of
proinflammatory factors and causes nonalcoholic steatohepatitis
(58). YAP/TAZ was found to increase IL-6 expression to
promote the proinflammatory response and interact with the
NCoR1 inhibitor complex to decrease arginase-i (Arg1)
expression and inhibit the reparative response (59). The initial
proinflammatory response, followed by an anti-inflammatory
response, is critical for reducing myocardial infarction injury and
promoting healing and scar formation. YAP/TAZ deficiency
impairs the early inflammatory response and promotes the
timely polarization of macrophages from the proinflammatory
to reactive phenotype. Furthermore, the cellular adhesion
microenvironment regulates the macrophage inflammatory
response through YAP. Soft matrix reduces the expression of
inflammatory cytokines and YAP in macrophages (60). The
identification of YAP as a key molecule in the control of
macrophage inflammation has broad implications for the
regulation of macrophages in health and disease.

YAP Activation Is the Basis for
Macrophage Recruitment
Factors, such as colony-stimulating factor 1 (CSF1) and CCL2,
secreted by the TME recruit macrophages to the tumor, and
activation of the effector YAP in the Hippo pathway underlies the
recruitment of macrophages by tumor-initiating cells (TICs). It
has been demonstrated that TICs recruit M2 macrophages at the
monocytic stage and that the YAP-TEAD transcriptional
complex directly or indirectly activates the transcription of
growth factor CSF1 and chemokine CCL2, respectively, thereby
promoting TIC survival and tumorigenesis (61). When studying
mouse hepatocytes, it was found that gene deletion ofMst1/Mst2
upregulated monocyte chemoattractant protein-1 (Mcp-1)
expression, mixed M1 and M2 phenotypic of macrophage
infiltration, and promoted HCC development. Removal of YAP
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eliminates abnormal Mcp-1 expression and restores normal liver
growth in mice (62). This study identified MCP1 as a direct
transcriptional target of YAP. Moreover, Hippo signaling in
hepatocytes inhibits Yap-dependent Mcp-1 expression, which
in turn inhibits macrophage infiltration and thus maintains
normal liver growth. Similarly, elevated YAP levels have been
shown to exacerbate macrophage infiltration and MCP-1
expression in other studies such as with liver injury (63), acute
kidney injury-chronic kidney disease (AKI-CKD) transition (64),
and atherosclerosis (65). These studies highlight the critical
clinical significance of Hippo signaling in suppressing the
inflammatory and TME. Hippo signaling inactivation and YAP
activation induce MCP-1-mediated macrophage infiltration and
tumor development, suggesting that more effective therapeutic
interventions could be employed in the future to refine
targeted therapies.

YAP Activation and M1/M2 Macrophage
Polarization
High YAP expression in tumors can result in macrophage
polarization to an M2-like phenotype. TNBC cells upregulate YAP
expression inmacrophages, which induces macrophage polarization
to an M2-like phenotype (66). In addition, augmented YAP
activation in M2 macrophages promotes TNBC metastasis via the
MCP-1/CCR2pathway.Nogo-B, an endoplasmic reticulum-resident
protein, also known as reticulon 4 B, promotes HCC progression by
enhancing Yap-mediated TAM M2 polarization, a process that is
blocked by the YAP inhibitor verteporfin (67). A similar
phenomenon has been observed in renal fibrosis. The Wnt5a
signaling protein enhances TGFb1-induced macrophage M2
polarization and YAP transcriptional co-activator expression (68).
Verteporfin also blocks TGFb1- and Wnt5a-induced macrophage
M2 polarization. In aortic dissection, angiotensin type 1 receptor
(AT1R) binding toAng II induces YAP phosphorylation and further
promotes macrophage polarization toward an M1 phenotype with
endothelial cell adhesion (69). In addition, researchers found that
YAP1 overexpression indirectly enhances drug resistance in tumor
cells. YAP overexpression in GC cells induces M2 polarization in
macrophages, which secrete CCL8 and activate phosphorylation of
the JAK1/STAT3 signaling pathway components, thereby enhancing
5-FU resistance in tumor cells (70). Therefore, targeting YAP to
overcome chemoresistance and tumor immunotherapy is a potential
approach in the future.

However, the induction of macrophage polarization by YAP was
not the only possibility for M2 macrophages. Mechanical ventilation
causes lung injury and inflammation and upregulates YAP expression
in lungmacrophages. YAP deficiency inmacrophages attenuates lung
injury and reduces the productionof proinflammatory cytokines, such
as IL-1b and TNF-a. YAP deficiency enhancesM2 polarization while
inhibiting M1 polarization (71). The M2 macrophage-derived
exosome miR-590-3p targets LATS1 and subsequently activates
YAP/b-catenin transcription in mouse colonic epithelial cells to
reduce inflammation and promote epithelial regeneration, attenuate
DSS-induced mucosal damage, and promote epithelial repair (72).
Interestingly, however, another study found that YAP inmacrophages
exacerbates inflammatory bowel disease (IBD); however, YAP
promotes epithelial cell regeneration, which enhances IBD recovery
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(73).M1macrophagesandproinflammatorycytokinesexacerbate IBD
symptoms, whereasM2macrophages promote tissue repair, attenuate
inflammation, and alleviate IBD. YAP blocks IL-4/IL-13-induced M2
polarization, while promoting LPS/IFN-g-triggered M1 macrophage
activation. In summary, we found different scenarios in which YAP
inhibits M1 or M2 macrophage polarization. Therefore, we should
consider the possibility that targeting YAP to inhibit tumor growth
mightpromote tumorgrowthbyactivatingTAMs. Inotherwords, this
factor exerts different effects in various cell types, like increasing tumor
proliferation and metastasis, regulating M2/M1 macrophage
polarization, promoting epithelial regeneration, and producing
inflammatory responses, among others. Therefore, therapeutic
approaches targeting YAP should consider the appropriate cell type.

YAP affects macrophage recruitment, polarization, and
production of pro-inflammatory factors. However, it is currently
unknown whether lncRNAs are involved in the mechanism of
macrophage polarization via the Hippo pathway. Researchers are
more likely to look at the effects of each of the three on tumors
independently or at the interconnections between the two. In this
study, the three are seldomcombinedas awhole to carry out in-depth
analysis and experiments. Studies in this direction are insufficient,
and more attention should be paid to the future. In the occurrence
and development of tumors, it is of great significance to study the
independent effects and interaction mechanisms of lncRNA, YAP,
and TAM, three important therapeutic targets, to understand the
initiation,metastasis, treatment, andprognosis of cancer.Only in this
way canwe better advance and expand cancer therapies based on the
three conventional and non-conventional therapies.
DISCUSSION

As potential targets in recent years, lncRNAs, YAP, and TAMs
have been associated with tumor development, proliferation, and
metastasis. It was found that lncRNA, as a potential target, can
affect tumor immunity. LncRNA GAS5 expression is decreased
in NK cells from HCC patients, and the downregulation of GAS5
expression inhibits the cytotoxicity of NK cells. Overexpression
of GAS5 increases the secretion of interferon-c (IFN-c) and
enhances the cytotoxicity of NK cells (74). Moreover,
indoleamine 2,3-dioxygenase (IDO) induces the differentiation
and maturation of T regulatory cells (Tregs) to suppress T-cell
immunity. Interfering with lncRNA SNHG1 promotes the
elevation of miR-448 levels, decreases IDO levels, and thus
inhibits the differentiation of Treg cells and attenuates immune
escape in breast cancer (75). However, lncRNAs also promote
immunosuppression and interfere with the clearance of tumors
by the immune system. LncRNA epidermal growth factor
receptor (EGFR) stimulates Treg differentiation, inhibits
cytotoxic T lymphocyte (CTL) activity, and promotes HCC
growth through EGFR (76). LncRNA NKILA inhibits NF-kB
activity, allowing the immune-mediated clearance of activated T
lymphocytes to promote tumor immune evasion. Meanwhile,
investigators demonstrated that targeting lncRNA in T cells from
secondary metastasis tumors is feasible, greatly regulating
lncRNA expression (77). In addition, the expression of target-
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lncRNAs in metastatic cells can be modified by using gene
modification techniques, such as CRISPR-Cas9 or small
interfering RNA (77).

For macrophages, however, the antitumor activity in malignant
cancers has the potential to act as a therapeutic target. A cluster of
differentiation 47 (CD47) is widely overexpressed in various
malignancies and might be a predictor of poor prognosis and
tumor metastasis (78). CD47 inhibits macrophage phagocytosis in
ovarian cancer cells, and its downregulation or inhibition enhances
the antitumor effect of macrophages (79). Similarly, in malignant
melanoma, activation of killer macrophages, either through the in
vitro activation of macrophages via transmigration or in vivo
activation of macrophages, in combination with other treatments,
such as surgery, chemotherapy, and radiotherapy, might provide an
effective and comprehensive strategy for targeting the aggressive
metastatic capacity and therapy resistance of melanomas (80).
However, another therapeutic strategy is to target TAMs in the
TME. CSF-1 allows macrophages to differentiate and survive.
Researchers used CSF-1 receptor (CSF-1R) inhibitors to target
TAMs in a mouse GBM model, which significantly improved
mouse survival and tumor regression (81). Unfortunately, targeted
TAM treatment strategies are not as effective. To date, immune
interventions for GBM patients have not been successful because of
the presence of a TME that promotes tumor growth and immune
escape. Recently, researchers have developed novel platforms for
evaluating genetically engineered macrophages (GEMs) (82). GEMs
resist reprogramming mediated by tumor secretory factor signaling,
override the immunosuppressive effects of the TME, and support
existing or new immunotherapies.

The effectiveness of immunotherapeutic strategies against
TAMs is limited (83); therefore, considering the significant role
of the Hippo-YAP pathway in TAMs, investigators have identified
YAP as a potential target for tumor-targeted therapy. Recent
studies have shown a binary classification of cancers into YAP-
on and YAP-off based on the presence or absence of functioning
YAP proteins. These two cancer states switch to each other, leading
to the development of drug resistance. Yap-off/Yap-on exhibits a
unique vulnerability that facilitates the choice of treatment options.
Thus, the development of tumor cell resistance can be inhibited by
blocking this YAP state transition, which provides a new
therapeutic strategy for tumor types with strong aggressive
properties (84). In addition, YAP1 inhibition can suppress the
recruitment of myeloid-derived suppressor cells (MDSCs), activate
effector T-cell activity, and enhance sensitivity to immune-
oncolog ic agents ( IO) drugs , thereby modula t ing
immunosuppression of the TME. YAP1 inhibition in
combination with anticancer drug therapy might be a promising
therapeutic strategy (85). In addition, many investigators have
gradually discovered the therapeutic value of single-target therapies
in combination with immunotherapy. A recent study showed that
focal adhesion kinase (FAK), a potential therapeutic target
upregulated in tumors of intrahepatic cholangiocarcinoma
(iCCA), promotes tumorigenesis in mice by inducing YAP (86).
The oncogenic potential of FAK was investigated in conditional
FAK-knockout mice and inducible Cre mice, and the potential to
target FAK for iCCA was studied based on in vitro and in vivo drug
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treatments. Activation of the CDK4/6 pathway in mouse and
human iCCA suggests that combined targeting with anti-CDK4/
6 inhibitors could be an effective treatment strategy. Notably, the
HIPPO/YAP pathway is severely dysregulated in alcoholic hepatitis
(AH), with uncontrolled activation of YAP leading to hepatocyte
transdifferentiation to the biliary phenotype and the loss of
hepatocyte identity with impaired regeneration (87). Using
animal models, experimental cells, and human samples of AH
and alcoholic cirrhosis, investigators conjunctively found that the
reversal of hepatocyte defects mediated by YAP inhibition appears
to be a therapeutic strategy for AH regenerative treatment. This is
in contrast to the effects of YAP, which has been shown to promote
early hepatocyte cycle progression. This suggests that the effects of
transient and sustained YAP activation could be quite different,
and for tumors, researchers also need to be aware of the possible
different effects of the differential timings of YAP activation.

In addition, researchers are increasingly aware that the tumor
immune microenvironment is multi-layered and complex, and
we should not target cancer in isolation but consider it as part of
the TME ecosystem. Although research on the complex
composition and activity of the TME is relatively superficial,
the TME is more heterogeneous across species or stages of
progression, and disrupts the tumor ecosystem could be
achieved by targeting multiple heterogeneous cell populations
in the tumor and microenvironment (88). In summary, there are
several possible directions for future immunotherapeutic
strategies for tumors as follows: one is to improve the body’s
immune capacity, promote immune activation, such as with
macrophages and NK cells to kill tumors, and influence the
immune status of the TME; second, to combine multiple targets,
such as through the use of traditional radiotherapy modalities
and immunotherapy, or multiple different immunotherapies
acting in combination, and the detection of various novel
markers to identify potentially effective drug targets, such as
lncRNA and YAP, which are closely related to tumors. Likewise,
this requires a deeper understanding of the TME and its internal
components with respect to the mechanisms of tumorigenesis
and immunotherapy.

However, there are few studies on whether lncRNAs affect
macrophages by regulating the Hippo-YAP pathway, or whether
lncRNAs are involved in the mechanism of macrophage
polarization via the Hippo-YAP pathway. More studies have
focused on the mechanism by which YAP regulates macrophage
polarization or lncRNAs regulating macrophage polarization or
phenotypic transformation to promote tumor proliferation and
metastasis. Perhaps in the research direction of studying
lncRNA, TAM, and YAP, researchers can try to broaden their
thinking and connect the three to build a network instead of
being limited to the most common and classic research
approaches. More in-depth and specific studies are needed to
determine whether the relationship among the three is in the
linear lncRNA-YAP-TAM axis, the interconnected loop, or a
more complex network relationship. Revealing the key role of
lncRNA, YAP, and TAM linkages in tumorigenesis and
development can provide different ideas for tumor treatment,
expand the targets of traditional therapy and immunotherapy,
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improve the prognosis of clinical patients, and reduce mortality,
which has extremely important practical significance. Moreover,
given that tumorigenesis and development is a dynamic process,
the metabolic patterns of cells vary greatly in the early and late
stages. At an early stage, glycogen accumulation and phase
separation in liver tumors can activate YAP to drive liver
tumor initiation. However, in advanced stages, YAP can be
activated by a different mechanism, high levels of glucose, to
promote tumor development (89). It is worth considering
whether lncRNAs and TAMs are involved in such completely
different YAP activation mechanisms in the early and late stages.
Considering the previously identified tumor mechanisms in a
new way in the context of YAP, TAM, and lncRNA, crosstalk
may lead to new and meaningful findings.

CONCLUSION

In summary, lncRNAs, YAP, and TAMs are closely related, and all
three are associated with tumor development, proliferation, and
metastasis. They have also become potential targets for tumor-
targeted therapy in recent years. In the future, we should gain a
deeper understanding of the mutual regulation of lncRNA, YAP,
and TAMs in the TME and systematically investigate their
synergistic tumorigenic mechanism. This has key implications for
the combinationofantitumorandmulti-target immunotherapeutic
agents. It would also be worthwhile to investigate how to override
the immunosuppressive effects of the TME and avoid the adaptive
drug resistance caused by increased YAP expression and M2
macrophages, thus significantly improving the prognosis and
survival of cancer patients. Therefore, an in-depth study of the
response mechanisms of lncRNA, YAP, and TAMs in the unique
ecosystem of the TME could help to address the phenomenon of
suboptimal therapeutics in tumor immunotherapy and provide a
basis for the discovery of new therapeutic targets.
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