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Abstract
Objective
To characterize the clinical phenotype, genetic origin, and muscle pathology of patients with
the FKRP c.1387A>G mutation.

Methods
Standardized clinical data were collected for all patients known to the authors with c.1387A>G
mutations in FKRP. Muscle biopsies were reviewed and used for histopathology, immunos-
taining, Western blotting, and DNA extraction. Genetic analysis was performed on extracted
DNA.

Results
We report the clinical phenotypes of 6 patients homozygous for the c.1387A>G mutation in
FKRP. Onset of symptoms was <2 years, and 5 of the 6 patients never learned to walk. Brain
MRIs were normal. Cognition was normal to mildly impaired. Microarray analysis of 5 ho-
mozygous FKRP c.1387A>G patients revealed a 500-kb region of shared homozygosity at
19q13.32, including FKRP. All 4 muscle biopsies available for review showed end-stage dys-
trophic pathology, near absence of glycosylated α-dystroglycan (α-DG) by immunofluores-
cence, and reduced molecular weight of α-DG compared with controls and patients with
homozygous FKRP c.826C>A limb-girdle muscular dystrophy.

Conclusions
The clinical features and muscle pathology in these newly reported patients homozygous for
FKRP c.1387A>G confirm that this mutation causes congenital muscular dystrophy. The
clinical severity might be explained by the greater reduction in α-DG glycosylation compared
with that seen with the c.826C>A mutation. The shared region of homozygosity at 19q13.32
indicates that FKRP c.1387A>G is a founder mutation with an estimated age of 60 generations
(;1,200–1,500 years).
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Dystroglycanopathies are muscular dystrophies resulting
from hypoglycosylation of α-dystroglycan (α-DG), a protein
in the dystrophin-glycoprotein complex.1–3 More than 17
genes are required for proper α-DG functional glycosylation;
FKRP is one of the most commonly mutated genes.4 It was
recently shown that FKRP functions as a ribitol 5-phosphate
transferase.5

FKRPmutations result in highly variable phenotypes, ranging
from severe congenital muscular dystrophy (CMD) to mild
limb-girdle muscular dystrophy type 2I (LGMD2I).6,7 The
most common founder mutation (c.826C>A, p.Leu276Ile) is
associated with an LGMD2I phenotype.8,9 Muscle biopsies
from patients with LGMD2I show mild to moderate dystro-
phic changes and highly variable partial reduction in immu-
nostaining for glycosylated α-DG.10

In 2007, a novel homozygous FKRP mutation (c.1387A>G,
p.Asn463Asp) was identified in 2 Mexican American girls; the
authors suggested a possible founder mutation.11 The 2
patients had hypotonia at birth and never achieved the ability
to stand or walk. Both girls had a marked reduction in gly-
cosylated α-DG and decreased laminin α2 (merosin) immu-
nostaining.11 A third Mexican patient homozygous for FKRP
c.1387A>G had a slightly milder clinical course with in-
dependent ambulation between 14 and 24 months of age12;
no muscle biopsy immunostaining was reported.

We have identified 6 additional patients homozygous for the
FKRP c.1387A>G variant and 3 compound heterozygous
patients with the FRKP c.1387A>G and the FKRP c.826C>A
mutations. Here, we describe the clinical and pathologic fea-
tures of these cases and provide genetic evidence that
c.1387A>G is a founder mutation originating in pre-
Columbian central Mexico.

Methods
Patient data collection
Standardized clinical data were collected for all patients
known to the authors with a c.1387A>G mutation in FKRP.
Patients were identified through diagnostic testing in the
Department of Pathology at The University of Iowa, personal
communications, or through patient participation in the Iowa
Wellstone Center dystroglycanopathy natural history study
(clinical trials identifier NCT00313677). The clinical teams
involved in the patients’ care abstracted the clinical data, in-
cluding results from genetic testing, from the medical records

using a standardized data collection form, and the deidentified
information was collated centrally.

Genotype and haplotype analysis
The FKRP mutations were identified or confirmed through
clinical testing in Clinical Laboratory Improvement
Amendments-certified laboratories. Identification of the FKRP
mutation for patient 4 was initially done through whole-exome
sequencing using Broad dual-barcoded library construction
followed by the Illumina Rapid Capture Exome enrichment kit
with 38 Mb target territory (29 Mb baited).

Genome-wide single nucleotide polymorphism (SNP) gen-
otyping was performed on genomic DNA using Illumina
Human Infinium Omni2.5Exome-8 v1.3 BeadChips. Samples
were processed on an Illumina iScan system using standard
Illumina protocols, and genotypes were called with Illumina
GenomeStudio software. Genotypes were cleaned using
PLINK 1.9 software,13 yielding an average genotyping rate of
99.8% and between 2,594,691 to 2,602,822 genotypes per
sample. Phased haplotypes for chromosome 19 were com-
puted from unphased genotypes using the Eagle2 software
and the Haplotype Reference Consortium (HRC r.1.1) ref-
erence panel of human haplotypes, executed on the Michigan
Imputation Server.14 The age of the founder mutation was
estimated using the Gamma method assuming a correlated
“tree-like” genealogy applied to the genetic length of the an-
cestral segment lengths surrounding the FKRP mutation.15

Ancestry inference combined patient genotypes with 1000
Genomes Project Illumina Omni2.5 genotypes merged from
ALL.chip.omni_broad_sanger_combined.20140818.snps.ge-
notypes.vcf.gz (ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/supporting/hd_genotype_chip). The merged ge-
notype set was pruned for linked SNPs using PLINK indep-
pairwise functionality with the arguments 1000 50 0.2, keeping
135,080 unlinked SNPs for subsequent ancestry analysis using
the program ADMIXTUREwithK = 3 ancestral populations.16

Muscle biopsy evaluation
All available muscle biopsies from these patients were
reviewed and re-evaluated (K.A.J. and S.A.M.). Frozen sec-
tions of skeletal muscle were evaluated at The University of
Iowa using standard hematoxylin and eosin (H&E) staining
and immunofluorescence (IF). Immunostaining was per-
formed using the following antibodies: dystrophin, carboxy
terminus (rabbit polyclonal ab15277; Abcam, Cambridge,
UK); α-DG (clone IIH6; Developmental Studies Hybridoma
Bank (DSHB), The University of Iowa), β-DG (clone 7D11;
DSHB), and merosin (laminin α2) (clone 5H2; Millipore

Glossary
CMD = congenital muscular dystrophy; DSHB = Developmental Studies Hybridoma Bank; EF = ejection fraction; H&E =
hematoxylin and eosin;HRC =Haplotype Reference Consortium; IF = immunofluorescence; IRB = institutional review board;
LGMD2I = limb-girdle muscular dystrophy type 2I; SNP = single nucleotide polymorphism;WGA = wheat germ agglutinin;
α-DG = α-dystroglycan; β-DG = β-dystroglycan.
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Sigma, Massachusetts, US). Secondary antibodies used
included goat anti-rabbit immunoglobulin G (IgG), goat anti-
mouse IgM, or goat anti-mouse IgG all labeled with Alexa-
Fluor488 (Life Technologies, Carlsbad, CA). Immunostains
were analyzed in a blinded manner by standard fluorescence
microscopy. The intensity of staining with each antibody was
graded from zero (absent) to 3+ (normal expression). Con-
trol human skeletal muscle was included with research patient
material on each glass slide immunostained in the study.

Western blotting
Pooled cryosections cut from selected muscle biopsies were
used for Western blotting at The University of Iowa. Wheat
germ agglutinin (WGA) glycoprotein preparations were
performed and samples run on 3%–15% gradient gels as
previously described.17,18 Antibodies used for blotting in-
cluded IIH6 (gift from Kevin P. Campbell, The University of
Iowa) and AF6868 (R&D Systems, Minneapolis, MN). Blots
were imaged on an Odyssey infrared fluorescence imaging
system (Li-Cor Biosciences, Lincoln, NE).

Standard protocol approvals and
patient consents
The University of Iowa institutional review board approved
this study (IRB# 201703860). Initial sequencing for patient 4
was approved by the NIH/NINDS Institutional Review
Board (IRB# 12-N-0095). Informed consent was obtained
from all participants who had muscle biopsy tissue stored in
the Iowa Wellstone Center Tissue Repository. Letters of
agreement were obtained from all collaborating clinicians.

Data availability
Study data for the primary analyses presented in this manu-
script are available upon reasonable request from the corre-
sponding and senior author.

Results
Clinical
Clinical data were collected on 6 patients from 5 families
(patients 1–6) who are homozygous for the c.1387A>G
FKRPmutation and 3 patients from 2 families with compound
heterozygous FKRP mutations, c.1387A>G and c.826C>A
(patients 7–9). Genotypes and clinical data are summarized in
table 1. Homozygous c.1387A>G mutations were found in
a seventh patient (patient 0) through clinical testing in The
University of Iowa’s Molecular Pathology Laboratory, but we
were unable to obtain clinical information. This seventh ho-
mozygous c.1387A>G patient was only included in the ge-
netic analysis.

The average current age of the homozygous patients is 9.3
years (range 4–19 years). All are of Hispanic ethnicity; some
individuals reported a history of family members emigrating
from central Mexico (figure 1A). Three of the 6 patients are
male. All patients for whom details of early course are available
had onset of symptoms (hypotonia and delayed motor

milestones) before age 1 year. All patients learned to sit, but
most (5 of the 6) patients never walked independently. Many
started using a wheelchair by age 1–2 years. One patient
walked at 2.5 years but required a wheelchair fulltime at age 8
years. Cognition is normal to mildly impaired; brain imaging
(MRI or CT) and vision are normal. Most patients are cur-
rently speaking in sentences. Creatine kinase levels were >10×
normal (average 11,695 IU/L). All 3 of the patients who
underwent echocardiogram had normal ejection fractions
(EFs) at ages 3, 9, and 19 years.

The average current age of the 3 patients with compound
heterozygous mutations in FKRP (c.1387A>G and
c.826C>A) is 19.3 years (range 7–29 years). They met initial
developmental milestones on time (sitting, walking, and
talking) when details were known. They presented with hy-
potonia, difficulty with stairs, and muscle hypertrophy in
childhood from age <2 years to <10 years. The youngest
patient (7 years) is still ambulatory. The other 2 patients
became wheelchair dependent at ages 12 and 16 years. Cog-
nition is normal. Ejection fraction on echocardiogram was
normal for the youngest patient (EF 59% at age 7 years) but
was decreased for the 2 other patients (EFs 44% at age 22
years and 35–40% at age 21 years).

Genetic analysis
All homozygous FKRP c.1387A>G patients report Hispanic
ethnicity. Two compound heterozygous FKRP c.1387A>G/
c.826C>A patients (siblings) reported Hispanic ethnicity,
with the mother carrying FKRP c.1387A>G. The other pa-
tient with the FKRP c.1387A>G/c.826C>A genotype repor-
ted a father with Hispanic ethnicity. All 3 homozygous FKRP
c.1387A>G cases in the literature also reported Hispanic
ethnicity. Reported family origins of current and published
cases localize to central Mexico (figure 1A). Genome-wide
SNPs from 5 unrelated homozygous c.1387A>G patients
(patients 0, 3, 4, 5, and 6) and 1 compound heterozygous
c.1387A>G/c.826C>A patient (patient 9) were compared
with 1000 Genomes Project populations with varying degrees
of continental Native American, European, and African ad-
mixture. The genomic ancestry of FKRP c.1387A>G patients
showed largely Native American fractions (37%–74%) fol-
lowed by European (22%–53%), consistent with cosmopoli-
tan Mexican ancestry (figure 1B). Patient 9, with c.1387A>G/
c.826C>A genotype, had a European ancestry fraction of 72%,
consistent with 1 Hispanic parent. Three additional homo-
zygous FKRP c.826C>A patients showed predominantly
European ancestry (patients A, B, and C, figure 1B). Fine-
scale heterozygosity analysis surrounding the FKRP locus on
chromosome 19 revealed a ;500-kb region of shared ho-
mozygosity between the FKRP c.1387A>G patients, and the
decay of haplotype sharing (figure 1C) indicated that
c.1387A>G is a founder mutation. In the 3 homozygous
FKRP c.826C>A patients of European ancestry, a smaller
;150-kb region of shared homozygosity confirmed that
c.826C>A is also a founder mutation. Phased haplotypes from
the compound heterozygous FKRP patient (c.1387A>G/
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c.826C>A) revealed a compound diplotype of the 2 founder
mutations (figure 1D) and confirmed that these 2 founder
mutations occurred on different ancestral chromosomes. The
range of physical lengths of the c.1387A>G ancestral seg-
ments were 0.98 Mb in patient 3, 1.38 Mb in patient 5, 1.52
Mb in patient 6, 2.32 Mb in patient 0, and 4.48 Mb in patient
4. The estimated age of the c.1387A>G founder mutation was
59.9 generations (95% confidence interval 10.8–123.5),
which is ;1,200–1,500 years old, assuming 20- to 25-year
average generation spans.

Muscle biopsy histopathology
Muscle biopsies from patients with FKRP c.1387A>G muta-
tions (4 homozygous and 1 compound heterozygous
c.1387A>G/c.826C>A) were reviewed and compared with the
muscle biopsy from a patient homozygous for the FKRP
c.826C>A common foundermutation (patient D; biopsy at age
25 years). The average age at muscle biopsy for homozygous
FKRP c.1387A>G patients was 2.2 years. The compound
heterozygous patient had a muscle biopsy at age 9 years.

Muscle biopsies from the patient homozygous for c.826C>A
and the patient compound heterozygous for c.1387A>G and
c.826C>A (patient 9) showed similar mild to moderate dys-
trophic changes on H&E (figure 2, A and B, respectively).
These included increased fiber size variation with scattered
atrophic and hypertrophic fibers, necrotic fibers undergoing
myophagocytosis, and grouped regeneration. In contrast,
muscle biopsies from 4 patients homozygous for c.1387A>G
(patients 3–6) showed severe dystrophic pathology on H&E
staining including marked endomysial fibrosis and fatty re-
placement, large variation in fiber size with atrophic and very
large hypertrophic fibers, conspicuous myonecrosis/
myophagocytosis, and grouped regeneration (figure 2, C
and D). Some biopsies could be classified as “end stage” be-
cause of the extensive loss of muscle fibers.

Immunostaining
IF staining was evaluated centrally in a blinded manner (K.A.J.
and S.A.M.). Table 2 outlines IF staining quantification
results. The 4 patients homozygous for c.1387A>G (patients

Table 1 Summary of clinical data

Patient 1 2a 3a 4 5 6 7b 8b 9

Allele 2c c.1387A>G c.1387A>G c.1387A>G c.1387A>G c.1387A>G c.1387A>G c.826C>A c.826C>A c.826C>A

Age (y)/sex 4/M 4/F 6/M 9/M 14/F 19/F 7/F 22/M 29/M

Ethnicity H H H H H H H H H/C

Consanguinity Y N N Y U N N N N

Age at onset <2 y 9 mo 4 mo Birth 8 mo <2 y <2 y <2 y 2–10 y

First sitting 5 mo <1 y Normal age 6 y 1 y 8 mo Normal
age

Normal
age

<1 y

First walking NA NA NA NA NA 2.5 y 1 y 1 y 9 mo

First words 18–21 mo 1 y Normal age 1 y Normal
age

18 mo Normal
age

1 y 1 y

Cognitive
function

Mild
impairment

Normal Mild
impairment

Normal Normal Mild
impairment

Normal Normal Normal

Age FT
wheelchair

NA 1 y 2–3 y 1 y NA 8 y NA 12 y 16 y

Respiratory
support

None None Nocturnal NIV
at 5 y

Cough
assist

None Trach/vent at
14 y

None None NIV at 24
y

CK 2,800e 26,810 (RR:
20–200)

22,170 (RR:
20–200)

2,657 (RR:
4–87)

U 4,038 (RR:
28–170)

14,451e U U

Brain imaging Normal CT Normal MRI Normal MRI Normal
MRI

U Normal MRI U Normal
MRI

U

EFd (age) 64% (3 y) U U 64% (9 y) U 61% (19 y) 59% (7 y) 44% (22
y)

35–40%
(21 y)

Muscle bx age NA NA 2 y 2 y 10 mo 4 y NA NA 9 y

Abbreviations: Bx = biopsy; C = Caucasian; CK = creatine kinase; EF = ejection fraction; FT wheelchair = full-time wheelchair use; H = Hispanic; NA = not
applicable; NIV = noninvasive ventilation; normal age = specific age is not known but considered within a normal range; U = unknown.
a Patients 2 and 3 are siblings.
b Patients 7 and 8 are siblings.
c Allele 1 for all patients is c.1387A>G.
d EF measured by echocardiogram.
e CK reference range unknown. RR: CK reference range in U/L.
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3–6) all showed largely decreased to absent glycosylated
α-DG positivity (0–1+) with the IIH6 antibody, and mild
variable decreases in β-DG, dystrophin, and merosin. The
patient heterozygous for c.1387A>G/c.826C>A (patient 9)
and a patient homozygous for c.826C>A (patient D) both
showed a much more variable pattern of α-DG glycosylation
loss with some fibers retaining a normal staining intensity
(0–3+). These biopsies also showedmild variable decreases in
β-DG, dystrophin, and merosin. Representative images of IF
staining are shown in figure 3 with normal control (figure 3,
A–D), homozygous c.826C>A (patient D; figure 3, E–H),
and 2 of the homozygous 1387A>G patients (patients 3 and
4; figure 3, I–L and M–P, respectively).

Western blotting
Gradient gel separation of WGA preparations derived from
frozen muscle biopsies showed that each patient with FKRP
mutations has reduced molecular weight α-DG (figure 4).
These same patients have lost α-DG functional glycosylation
as demonstrated by the absence or near absence of IIH6

binding. The smaller molecular weight of α-DG in the 2
patients homozygous for FKRP c.1387A>G suggests that this
mutation results in a greater degree of α-DG hypoglycosylation.

Discussion
We present the clinical features, genetic analysis, and muscle
pathology of 6 individuals from 5 unrelated families who are
homozygous for FKRP c.1387A>G and 3 compound het-
erozygous patients from 2 unrelated families for FKRP
c.1387A>G and c.826C>A. Our results expand on the phe-
notype of the 3 previously reported cases with this founder
mutation. Five of our cases presented with a typical CMD
phenotype and never walked independently, consistent with
previous reports.6,11,12 The remaining patient presented be-
fore age 2 years with delayed acquisition of motor skills, and
although the patient acquired independent walking, this was
lost by age 8 years. None of our patients had overt abnor-
malities in eye or brain development, reported in some cases
of FKRP-related CMD with different mutations.19–22 Based

Figure 1 Comparative ancestry and FKRP haplotype sharing

(A) Map of reported family origins of patients homozygous for FKRP c.1387A>G. Bluemarkers represent patients 2, 3 (siblings), and 6, pinkmarkers represent
patient 9’s distant grandparents, and purple markers represent 3 previously reported homozygous FKRP c.1387A>G cases. (B) Global ancestry proportions
estimatedwith ADMIXTURE (K = 3) for FKRPpatients 0, 3, 4, 5, 6, 9, A, B, andC, comparedwith 1000Genomes Project samples fromunrelatedNative Americans
(MXL, 34 samples; PEL 20 samples; CLM 20 samples), Europeans (IBS, 20 samples; CEU 20 samples), and African Americans (ASW, 20 samples). Continental
ancestry fraction is shown asNative American (red), European (orange), and African (blue). (C) Heterozygosity for 701 SNPs from chr19:46,664,561-47,933,257
(hg19), with shared homozygous regions for c.1387A>G highlighted in blue and c.826C>A in green. (D) Phased haplotypes from patient 9 (heterozygous
c.1387A>G/c.826C>A), patient 5 (c.1387A>G), and patient B (c.826C>A) with red/gray indicating the allele at each SNP position and the minimally shared
homozygous regions highlighted in blue/green. SNP = single nucleotide polymorphism.
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on all known cases to date, FKRP c.1387A>G mutations do
not appear to be associated with the more severe muscle-eye-
brain phenotype.

In contrast, the patients with compound heterozygous
mutations (c.1387A>G/c.826C>A) had a milder and more
slowly progressive course; all achieved walking at the expected
age of 1 year. This is consistent with what is reported in other
patients who have compound heterozygous mutations with 1
c.826C>A allele.8

Cardiac function may be impaired in both CMD and
LGMD2I because of FKRP mutations.23–25 None of the
patients homozygous for FKRP c.1387A>G who underwent
testing in our series have cardiomyopathy, but they were
young at the last echocardiogram (ages 3, 9, and 19 years) and
may develop abnormal cardiac function later in life. Two of

the 3 compound heterozygous patients had decreased EF on
echocardiogram, ages 21 and 22 years at the time of evalua-
tion. The probability of cardiomyopathy in patients with
FKRP mutations increases with age, most commonly occur-
ring in adulthood,23–25 and therefore, patients should be ap-
propriately screened.

Three of the 6 patients homozygous for the FKRP c.1387A>G
mutation use some sort of respiratory support in our series,
despite the young average age of the cohort, and a single
patient with compound heterozygous mutations started using
noninvasive ventilation at age 24 years. These observations
emphasize the importance of monitoring respiratory status in
these patients.

Microarray analysis confirms that the FKRP c.1387A>G allele
is part of a ;500-kb shared homozygous segment on

Figure 2 Histopathology

(A) Representative image of muscle biopsy from
a patient homozygous for the European common
mutation in FKRP c.826C>A (patient D) showing
mild to moderate dystrophic changes. (B) Repre-
sentative image of muscle biopsy from patient 9
(heterozygous for c.1387A>G and c.826C>A)
showing similar changes to the biopsy in part A.
(C and D) Representative images from patients 3
and 4 (both homozygous for c.1387A>G) showing
a very severe dystrophic, nearly end-stage histo-
pathology. Scale bar = 100 μm, equivalent for all
photomicrographs.

Table 2 Immunofluorescence staining quantification

Patient number 3 4 5 6 9 Da

Genotype c.1387A>G c.1387A>G c.1387A>G c.1387A>G c.1387A>G/c.826C>A c.826C>A

α-DG (IIH6) 0–1+ 0–1+ 0–1+ 0–1+ 0–3+ 0–3+

β-DG 1–3+ 2–3+ 3+ 2 2–3+ 3+

Dystrophin 2–3+ 3+ 2–3+ 3+ 2–3+ 2–3+

Merosin 1–3+ 2–3+ 3+ 3+ 2–3+ 3+

Abbreviation: α-DG = α-dystroglycan.
In this scoring system, zero = absent and 3+ = normal.
a Patient D is representative of a homozygous c.826C>A, LGMD2I patient. The biopsy is included for comparative purposes.
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chromosome 19. The size of the homozygous interval and
haplotype analysis indicate that the allele originated from
a common ancestor approximately 60 generations ago.
Compared with the smaller ;150-kb homozygous segment
associated with the c.826C>A allele of European origin, the
c.1387A>G allele has a more recent origin, but still likely
predates European settlement in the Americas. Family history
information for the cases reported here (and previously11,12)
suggests an origin in central Mexico (figure 1A).

The common European founder mutation (c.826C>A,
p.Leu276Ile) is found in many European populations, and the
mutation is thought to have occurred once in a common
ancestor.6,7,26,27 FKRP c.826C>A has an increased prevalence
in Scandinavian countries,28 leading to the speculation that
the founder mutation occurred in the Scandinavian pop-
ulation. Other founder mutations have also been reported as
summarized in table 3.29–31

Muscle biopsies of patients homozygous for FKRP
c.1387A>G showed severe dystrophic histopathology, and
immunostaining showed greatly decreased to absent fully
glycosylated α-DG, consistent with other dystroglycano-
pathies manifesting a CMD phenotype.6 The muscle biopsies

also showed variable, slightly reduced expression of merosin,
which is comparable to findings in 2 previously reported
homozygous FKRP c.1387A>G cases.11 By Western blotting,
α-DG glycosylation was reduced to a greater degree in
patients homozygous for FKRP c.1387A>G compared with
patients with either compound heterozygous mutations
c.1387A>G/c.826C>A or homozygous FKRP c.826C>A
mutations. It has been previously suggested that there is
a relationship between the level of α-DG glycosylation and
clinical phenotype in patients with FKRP mutations32; how-
ever, this relationship could not be confirmed in other
studies.33–35 Our finding of further decreased α-DG glyco-
sylation in those homozygous for c.1387A>G compared with
those with milder phenotypes supports the interpretation that
the degree of α-DG hypoglycosylation is relevant for the se-
verity of the phenotype.

The characterization of the phenotype associated with ho-
mozygous FKRP c.1387A>G mutations provided in this re-
port adds to those previously described and will aid in the
diagnosis and counseling regarding prognosis of patients with
this rare mutation. Genetic analysis indicates that this muta-
tion is of Mexican origin, and further genetic analysis of the
specific population of origin may be of interest. In addition,

Figure 3 Immunofluorescence staining

(A–D)Normal controlmuscle stainingpatterns for each of the antibodies. (E–H) Representative images frompatient Dhomozygous for the European common
mutation (c.826C>A). (I–L) Representative images from patient 3 homozygous for c.1387A>G. (M–P) Representative images from patient 4 homozygous for
c.1387A>G. Scale bar = 50 μm, equivalent for all photomicrographs.
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our findings are consistent with the idea that the more severe
clinical phenotype associated the c.1387A>G mutation is
explained, in part, by the greater reduction of α-DG glyco-
sylation relative to other genotypes examined; however,
clarity on this issue requires additional study.
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Figure 4 Western blotting

The antipeptide antibody (AF6868) shows greatly reducedmolecular weight for α-DG in each of the patients with FKRPmutations. Fully glycosylated control (C)
α-DG is >150 kd, whereas the α-DG from homozygous c.1387A>G patients (3 and 5) ranges from;65–90 kd, and the α-DG from homozygous c.826C>A (D) or
compound heterozygous c.1387A>G/c.826C>A (9) patients ranges from;75–90 kd. The smaller molecular weight α-DG observed in homozygous c.1387A>G
patients suggests a greater degree of hypoglycosylation than that of c.826C>A patients. Each patient with FKRPmutations has lost functional glycosylation and
no longer binds the anti-glycoepitope antibody (IIH6). The AF6868 antibody binds to epitopes on both α-DG and β-DG. The β-DG bands show the relative
amounts of protein loaded in each lane. Laneswere loaded equivalently in both gels. These images are representative of blots performed 3 or 4 times for each
patient sample.

Table 3 Founder mutations in FKRP

Mutation Protein change Population Phenotype Author (year)

c.826C>A p.Leu276Ile Europeana LGMD2I Frosk et al. (2005)26

c.1364C>A p.Ala455Asp Tunisian CMD with brain involvement Louhichi et al. (2004)30

c.545A>G p.Tyr182Cys Chinese Asymptomatic Fu et al. (2016)31

c.1100C>T p.Ile367Thr South African Afrikaner LGMD2I Mudau et al. (2016)29

c.1387A>G p.Asn463Asp Mexican CMD without brain involvement

Abbreviations: CMD = congenital muscular dystrophy; LGMD2I = limb-girdle muscular dystrophy type 2I.
Reported founder mutations in FKRP. Phenotypes described are for patients homozygous for these mutations.
a Genetic analysis was performed in the Hutterites, and a shared region was also identified in samples of other European populations. Further research
showed the highest prevalence of FKRP c.826C>A in Scandinavian populations.28
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