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Morphometric changes in the cortex following acute 
mild traumatic brain injury

Meng-Jun Li, Si-Hong Huang, Chu-Xin Huang, Jun Liu*

Abstract  
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after 
acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and 
few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive 
impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients 
with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched 
healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South 
University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of 
mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-
stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced 
executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability 
indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively 
correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and 
CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory 
mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya 
Hospital of Central South University, China (approval No. 086) on February 9, 2019.
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Introduction 
Traumatic brain injury is the most common type of brain 
injury, and 75–90% of traumatic brain injury patients have 
mild traumatic brain injury (mTBI) (Mondello et al., 2014). 
Although more than 85% of mTBI patients no longer show 
symptoms several days or weeks after the mTBI incident 
(Williams et al., 2010), some patients develop a series of 
permanent symptoms including somatic (headache, dizziness, 
fatigue) (Cooksley et al., 2018; Ofoghi et al., 2020), sleep-
related (difficulty falling asleep) (Chaput et al., 2009), 
emotional (irritability, depression, anxiety, and posttraumatic 
stress) (Carroll et al., 2014; Wang et al., 2017), and cognitive 
problems (memory deficits, concentration difficulties) 
(McDonald et al., 2012; Bryer et al., 2013).

Magnetic resonance imaging (MRI) techniques allow the 
possibility of identifying potential cortex and white matter 
lesions in mTBI patients. Multiple neuroimaging modalities, 

including high-resolution structural imaging (Clark et al., 
2018; Eierud et al., 2019), diffusion tensor imaging (Asken et 
al., 2018; Yin et al., 2019), high angular resolution diffusion 
imaging (Mohammadian et al., 2017; Wu et al., 2018; Palacios 
et al., 2020), and resting state functional MRI (Rosenthal 
et al., 2018; Lu et al., 2020) have been applied to evaluate 
pathophysiological changes in the brain in patients with mTBI. 
These studies have revealed changes in cortical thickness (CT), 
cortical surface area (CSA), cortical volume (CV), macro- and 
micro-structural white matter integrity, functional networks, 
connectivity alterations, and cerebral blood flow in mTBI 
patients. 

Among the various structural surface-based morphometric 
analysis studies, CT, CSA, and CV have been used as biomarkers 
to reflect pathological changes after mTBI (Epstein et al., 
2016; Hellstrøm et al., 2016; Dall’Acqua et al., 2017). Previous 
studies have defined CT as the average distance between 
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the white-gray matter interface to the nearest point of the 
gray matter-cerebrospinal fluid interface, and from that point 
on the gray matter-cerebrospinal fluid interface back to the 
white-gray matter interface (Fischl et al., 1999). CSA has been 
calculated as the area of triangles making up the gray matter-
cerebrospinal fluid surface, which represents the outer layer of 
the cerebral cortex (Fischl and Dale, 2000). CV is the volume of 
gray matter that lies between the white-gray matter interface 
and gray matter-cerebrospinal fluid interface (Winkler et al., 
2010). Most studies (Hayes et al., 2017; Clark et al., 2018; 
Eierud et al., 2019) report lower CT in mTBI patients when 
compared with matched healthy controls, and the lower CT 
was associated with worse cognitive performance, although 
a few studies found no changes or increased CT (Dall’Acqua 
et al., 2017; Clark et al., 2021). A recent study showed that 
reduced CT was found in regions vulnerable to tissue loss in 
Alzheimer’s disease among individuals with a history of mTBI 
and a high genetic risk for Alzheimer’s disease, which implies 
that mTBI may influence the relationship between CT and 
the genetic risk for Alzheimer’s disease (Hayes et al., 2017). 
Another study reported that mTBI patients at 3–6 months 
post-injury had lower CSA in right postcentral regions, inferior 
temporal cortex, and superior frontal areas in comparison 
with healthy controls (Bajaj et al., 2018). In the same study, 
the mTBI patients at 6–18 months post-injury showed 
significantly higher CSA in left postcentral regions, superior 
temporal areas, and the right isthmus of the cingulate gyrus in 
comparison with CSA measurements at 3–6 months (Bajaj et 
al., 2018). These findings imply that alterations in CSA can be 
used to reflect cortical recovery during the chronic stages of 
mTBI. Reduced CV has also been found in the bilateral anterior 
cingulate gyrus, left cingulate gyrus, and right precuneus over 
the first 13 months after a single mTBI event (Zhou et al., 
2013). 

These aforementioned studies explored CT, CSA, and CV 
alterations over the entire cortex and their correlations with 
physical, emotional, and cognitive symptoms after mTBI. 
However, most of the studies investigated the CT, CSA, and CV 
of mTBI patients in the sub-acute or chronic stage, and only a 
few studies focused on CT, CSA, and CV changes in the acute 
stage (Wang et al., 2015; Dall’Acqua et al., 2016; Govindarajan 
et al., 2016; Shao et al., 2018). Furthermore, the published 
studies performing structural MRI evaluations on mTBI 
patients have not reached a consensus regarding CT, CSA, 
and CV alterations in the acute stage. Finally, a few studies 
evaluated associations between alterations in CT, CSA, and CV 
and cognitive functioning in acute mTBI patients and observed 
transient cognitive deficits in the acute stage. 

mTBI patients typically have severe symptoms in the acute and 
sub-acute stages (Ling et al., 2013), although most patients 
report a full recovery from clinical and neuropsychological 
symptoms within several days or weeks. During the acute 
stage, mTBI patients typically complain about physical, 
emotional, and cognitive symptoms (Zemek et al., 2016). 
Our main hypothesis was that mTBI patients would show 
significant alterations in CT, CSA, and CV in the acute stage, 
with these changes resulting in cognitive impairment. Thus, 
this study aimed to investigate alterations in CT, CSA, and 
CV using high-resolution T1-weighted MR images of mTBI 
patients acquired within 7 days after injury, and to evaluate 
correlations between cognitive functioning and changes in CT, 
CSA, and CV. 
  
Participants and Methods  
Participants
All of the mTBI patients in this cohort study were enrolled 
from the Department of Radiology of the Second Xiangya 
Hospital between September and December 2019. The 
sample size calculation was based on previous studies (Zhou 
et al., 2013; Shao et al., 2018; Ofoghi et al., 2020). The mTBI 

patients were pre-screened prior to scanning to rule out any 
contraindications to MRI. The inclusion criteria for the mTBI 
patients were based on the World Health Organization’s 
Collaborating Center for Neurotrauma Task Force (Holm et 
al., 2005): (1) Glasgow Coma Scale (Teasdale et al., 2014) 
score ranging from 13–15; (2) one or more of any of the 
following: (a) existence of confusion or disorientation, (b) loss 
of consciousness of less than 30 minutes, (c) post-traumatic 
amnesia of less than 24 hours, (d) existence of transient 
neurologic abnormalities (focal signs or seizure), (e) existence 
of an intracranial lesion not requiring surgery; (3) mTBI onset 
within 7 days of trauma. The exclusion criteria for mTBI 
patients followed those used in the study of Shao et al. (2018): 
(1) a history of brain injury; (2) penetrating craniocerebral 
injury and/or presence of a skull fracture; (3) mTBI due to 
other injuries (e.g., systemic injuries, facial injuries, or spinal 
cord injury); (4) a history of neurological disease, long-standing 
psychiatric condition, or other problems (e.g., psychological 
trauma, language barrier); (5) coexisting medical conditions 
and/or drug abuse (e.g., alcohol abuse, administration of 
sedatives); and (6) structural abnormality on neuroimaging 
(computed tomography and MRI).

Healthy controls were enrolled from those undergoing health 
check-ups at the Second Xiangya Hospital over the same time 
period, and were pre-screened before scanning to rule out 
any contraindications to MRI, neurological impairment, or 
psychiatric disorders. All procedures performed in the studies 
involving human participants were in accord with the ethical 
standards of the Ethics Committee of the Second Xiangya 
Hospital of Central South University and the 1964 Helsinki 
Declaration and its later amendments or comparable ethical 
standards. Approval was granted by the Ethics Committee 
of the Second Xiangya Hospital of Central South University 
(approval No. 086) on February 9, 2019. Written informed 
consent was obtained from all participants before testing. 
This study followed the STrengthening the Reporting of 
OBservational studies in Epidemiology (STROBE) statement 
(Additional file 1). A flow chart of the study procedure is 
presented in Figure 1.

MRI data acquisition
A high-resolution T1-weighted magnetization prepared rapid 
gradient echo sequence was acquired on a 3.0-T MRI scanner 
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) 
equipped with a 32-channel head coil. A head stabilizer was 
used to reduce head motion. The T1-weighted images were 
acquired with the following parameters: repetition time = 
2400 ms, echo time = 2.27 ms, field of view = 256 mm × 256 
mm, flip angle = 8°, and voxel size = 1 mm × 1 mm × 1 mm. All 
subjects were confirmed to show minimal head movement 
during scanning. Cerebral lesions and micro-bleeds were 
inspected independently by CXH and JL, both with more than 
10 years of experience in neuroimaging. Any disagreement 
between the two doctors was resolved by consensus. 

Clinical assessments
Clinical assessments were performed on all participants 
by two authors (CXH and JL), with more than 5 years of 
experience in the clinical assessments of mTBI patients. To 
avoid multiple testing issues, three tests were selected for 
cognitive assessment: (1) The Digital Symbol Substitution 
Test (DSST); (2) the Trail Making Test A (TMT-A) (Reitan and 
Wolfson, 1993; Delis et al., 2001); and (3) the Trail Making Test 
B (TMT-B) (Reitan and Wolfson, 1993; Delis et al., 2001). 

The participants’ processing speed, sustained attention, 
and working memory were assessed by the DSST (Wechsler, 
1997; Qin et al., 2017). The corresponding relationships of 
nine numbers and symbols were shown for each subject 
participating in the DSST, and the participants were instructed 
to match the correct symbol to the corresponding number 
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in 2 minutes. The total score was the number of correctly 
matched symbols, with a higher number of correctly matched 
symbols indicating better performance in the assessment. 

The TMT-A was administered as a baseline measure of 
motor and visual search speed (Sánchez-Cubillo et al., 2009; 
Misdraji and Gass, 2010). Each subject was instructed to 
draw lines connecting circles numbered from 1 to 25 as 
quickly as possible. The score was the number of seconds 
required to complete the task. A shorter time indicates better 
performance. 

The Trail Making Test B (TMT-B) is widely used as a measure 
of set-shifting and inhibition (Arbuthnott and Frank, 2000; 
MacPherson et al., 2017). The participants were asked to 
switch alternately between 13 numbers (1–13) and 12 letters 
(A-L) displayed in circles and connect them in an ascending 
order (1-A-2-B…12-L-13) as quickly as possible. The score 
was the number of seconds required to complete the task. 
A shorter time indicates better performance. All of these 
tests are widely used in neuropsychological assessments 
as indicators of cognitive processing speed and executive 
functioning (Asken et al., 2018).

CT, CSA, and CV Assessments
All of the image data were inspected for artifacts that might 
have affected the automated segmentation performed using 
FreeSurfer (Fischl and Dale, 2000). Then, FreeSurfer version 
6.0 (https://surfer.nmr.mgh.harvard.edu/fswiki) was used to 
extract CT, CSA, and CV from the high-resolution T1-weighted 
images (Fischl and Dale, 2000). Fully-segmented images were 
acquired using the recon-all pipeline, and the accuracy of the 
generated pial and white matter surface images was visually 
examined by CXH and JL after the segmentation. Any errors 
in tissue classification that occurred during the automated 
processing were manually edited and rerun through the 
FreeSurfer processing pipeline (Fischl et al., 1999). The CT, CSA, 
and CV of each subject were calculated independently for the 
left and right hemispheres. Finally, the CT, CSA, and CV were 
smoothed using the -qcache command for statistical analysis.  

Statistical analysis
Age, education level, and sex were compared between the 
patients and control subjects using an independent two-
sample t-test, a Mann-Whitney U test, and a chi-square test, 
respectively. The FreeSurfer tool Query-Design-Estimate-
Contrast was used to analyze the entire cortical surface for 
clusters with CT, CSA, and CV differences between the mTBI 
and healthy control groups: CT, CSA, and CV were convolved 
with a 15-mm Gaussian smoothing kernel and analyzed 
using a different offset same slope model. The effects of 
age, gender, and education were regressed out of the group 
analyses. The Monte Carlo Null-Z Simulation method (Hagler 
et al., 2006) was used to correct for multiple comparisons 
with a two-tailed option and a supra-threshold of P < 0.005. 
Then, the Desikan-Killiany atlas was used to parcellate and 
label the hemisphere into 66 brain areas (33 areas for each 
hemisphere) and the average CT, CSA, and CV values were 
extracted from these 66 regions in both the mTBI patients and 
healthy controls. Two-sample t-tests and the Mann-Whitney U 
test were then used to explore differences in CT, CSA, and CV 
between the mTBI patients and healthy controls in these 66 
areas. The results were Bonferroni-corrected to a α < 0.05 / N, 
with N being the number of parcellated and labeled regions 
showing significant differences. The volume differences of 
the subcortical nuclei were also compared between the 
mTBI patients and healthy controls in the same way. Clusters 
showing significant differences were displayed in standardized 
space named “fsaverage”. 

The normality distributions of continuous variables in the 
mTBI group and healthy controls were tested using the 
Shapiro-Wilk W test, after which independent two-sample 

t-tests were applied to compare group differences in the 
normally distributed data, and the Mann-Whitney U test was 
used to compare group differences in the data showing a non-
normal distribution. Chi-square analyses were used to assess 
differences in categorical variables. P < 0.05 was considered to 
indicate a significant difference. 

The clusters displaying significant differences in CT, CSA, 
and CV between the mTBI group and healthy controls were 
selected as regions of interest (ROIs). The CT, CSA, and CV 
of corresponding ROIs in each subject were calculated from 
standard space images using the mri_segstats algorithm and 
were imported into SPSS 24.0 (IBM Inc., Armonk, NY, USA). 
The values of CT, CSA, and CV in the significant difference ROI 
were checked for confirmation to a normal distribution by 
Spearman or Pearson correlation analyses. 

Results
Demographic and clinical characteristics of the mTBI 
patients and healthy controls
Thirty-four mTBI patients were recruited to this study, but 
four were excluded because of low MR image quality. Finally, 
30 mTBI patients (15 males and 15 females) and 27 healthy 
controls (12 males and 15 females) were included in the 
analysis in this study. No significant between-group differences 
were observed in mean age, education, and gender (P > 0.05). 
The average age of the mTBI patients was 33.7 years (range 
from 12 to 56 years), and the average age of the healthy 
controls was 37.7 years (range from 23 to 51 years; P = 0.192). 
The average duration of education was 12.1 years (range from 
5 to 16 years) for the mTBI patients and 13.1 years (range 
from 6 to 17 years; P = 0.203) for the healthy controls. The 
demographic data and clinical characteristics are shown in 
Table 1.

Table 1 ｜ Demographic and clinical assessments in mTBI patients and 
healthy controls

Demographic 
characteristics

mTBI patients 
(n = 30)

Healthy controls 
(n = 27) P-value

Age (yr)* 33.7±2.43 37.7±1.64 0.192 
Education level (yr)* 12.1±3.08 13.1±3.65 0.203 
Female# 15(50) 15(54) 0.675 
Mechanism of injury#

Motor vehicle accident 14(47) –
Assault 4(13) –
Fall 7(23) –
Other 5(17) –

Cognitive assessment*

DSST (n) 43.7±14.2 55.5±15.8 0.007 
TMT-A (s) 59.2±40.7 46.8±21.1 0.417 
TMT-B (s) 147.4±60.0 86.7±28.5 0.000 

Data are expressed as mean ± SD (*) or number (percentage) (#). Age and 
DSST were analyzed by independent two-sample t-test. Education level, 
TMT-A, and TMT-B were analyzed by Mann-Whitney U test. Patient sex was 
analyzed by Chi-square test. DSST: Digital Symbol Substitution Test; mTBI: mild 
traumatic brain injury; TMT-A: Trail Making Test A; TMT-B: Trail Making Test B.

All participants were instructed to perform the DSST, TMT-A, 
and TMT-B tests. However, because of severe symptoms and/
or education level, six patients failed to complete the DSST 
and another six patients failed the TMT-A test, while ten 
patients and six healthy controls failed to complete the TMT-B 
test. Hence, the DSST and TMT-A scores of 24 patients and 
27 healthy controls, and the TMT-B scores of 20 patients and 
21 healthy controls, were analyzed. Finally, we found that the 
healthy controls showed better performance in the cognitive 
assessments, with the mTBI patients taking more time to 
finish the TMT-A and TMT-B tests. The average TMT-A score 
was 59.2 seconds (range from 24.5 seconds to 172.7 seconds) 
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for the mTBI patients and 46.8 seconds (range from 21.1 
seconds to 96.6 seconds; P = 0.417) for the healthy controls, 
with there being no significant difference between the groups. 
The average TMT-B score was 147.4 seconds (range from 62.6 
seconds to 252.8 seconds) for the mTBI patients and 86.7 
seconds (range from 50.5 seconds to 187.4 seconds; P < 0.001) 
for the healthy controls, with the between-group difference 
being significant. The average DSST score was 43.7 (range 
from 15 to 61) in the mTBI patients and 55.5 (range from 23 to 
78; P = 0.007) in the healthy controls. A significant difference 
in the DSST score was observed between mTBI patients and 
healthy controls. Considered together, the TMT-B test and DSST 
indicated cognitive impairment in the acute mTBI patients. 
The statistical analyses are summarized in Table 1.

Comparison of CT, CSA, and CV between the mTBI patients 
and healthy controls
There were no significant differences in CT between the mTBI 
patients and healthy controls. The CSA analysis found one 
cluster in the right lateral occipital gyrus that showed higher 
CSA in the acute mTBI group (Figure 2A). One cluster in the 
right lateral occipital gyrus showed greater CV in the acute 
mTBI group compared with the healthy controls (Figure 2B). 
There were no regions showing significant between-group 
differences in CT, CSA, or CV among the 66 native-surface 
structures after Bonferroni-correction. There was also no 
significant difference in subcortical nuclei volume between the 
mTBI patients and healthy controls. The average volumes of the 
subcortical nuclei in mTBI patients and healthy controls and the 
statistical results of group comparisons are shown in Table 2.

Correlations between cognitive test scores and CT, CSA, and 
CV  
The CT, CSA, CV and cognitive test data were not normally 
distributed according to the Shapiro-Wilk W-test. Therefore, 
Spearman correlation analyses were performed between the 
CSA and CV of the right lateral occipital gyrus regions showing 
significant between-group differences and the DSST, TMT-A, 
and TMT-B scores. There were significant negative correlations 
between TMT-A score and CSA (r = −0.469, P = 0.021) and 
CV (r = −0.450, P = 0.028) in the mTBI patients (Figure 3). No 
significant correlation was found between CSA (r = 0.196, 
P = 0.358), CV (r = 0.185, P = 0.386) and DSST in the mTBI 
patients. No significant correlation was found between CSA 
(r = −0.340, P = 0.143), CV (r = −0.227, P = 0.336) and TMT-B 
score in the mTBI patients.

Research Article

Table 2 ｜ Volumes (mm3) of subcortical nuclei in mTBI patients and 
healthy controls

Subcortical nuclei
mTBI patients 
(n = 30)

Healthy controls 
(n = 27) P-value

Thalamus
Left 7325.5±927.6 7645.5±935.8 0.201
Right 6980.8±811.2 7091.4±739.2 0.592

Caudate
Left 3435.5±519.6 3485.5±440.0 0.695
Right 3512.9±530.2 3586.2±476.0 0.587

Putamen
Left 5169.3±785.3 5050.5±765.7 0.566
Right 5234.5±748.5 5216.2±686.2 0.924

Pallidum
Left 2052.8±283.9 2095.1±207.0 0.52
Right 1996.2±247.5 2073.9±190.1 0.193

Accumbens
Left 508.8±107.2 503.6±102.2 0.852
Right 568.1±88.0 560.7±108.9 0.778

Amygdala
Left 1669.0±183.7 1750.5±227.6 0.141
Right 1789.1±215.4 1853.3±270.5 0.323

Hippocampus
Left 4025.3±305.4 4174.2±414.7 0.126
Right 4325.7±413.5 4430.3±466.7 0.374

Data are expressed as mean ± SD, and were analyzed by independent two-
sample t-test. mTBI: Mild traumatic brain injury.

Figure 1 ｜ Flow chat of the study procedure.
High-resolution T1 images and cognitive tests were performed in mTBI 
patients within 7 days of injury and in healthy controls. The CT, CSA, and CV 
measurements and cognitive tests were compared between mTBI patients and 
healthy controls, including (1) the CT, CSA, and CV of 33 regions parcellated 
according to the Desikan-Killiany atlas, (2) the CT, CSA, and CV of the whole 
brain, (3) CV analysis of the subcortical nuclei; (4) comparisons of cognitive 
tests, and (5) correlations between the cognitive test results and alterations in 
CT, CSA, and CV. CT: Cortical thickness; CSA: cortical surface area; CV: cortical 
volume; mTBI: mild traumatic brain injury.

A B

Figure 2 ｜ The Increased CSA and CV clusters in the mTBI patients 
compared with healthy controls.
(A) Regions of significant increased CSA (yellow area, arrow) in the right 
lateral occipital gyrus of the mTBI patients. (B) Regions of significant increased 
CV (yellow area, arrow) in the right lateral occipital gyrus of the mTBI patients. 
The values in the bottom scale ranging from –5 to 5 are –log(P). CSA: Cortical 
surface area; CV: cortical volume; mTBI: mild traumatic brain injury.

Figure 3 ｜ CSA and CV in the right lateral occipital gyrus and TMT-A scores 
of the mTBI patients.
(A) The CSA in the right lateral occipital gyrus and TMT-A scores for the mTBI 
patients (r = −0.469, P = 0.021). (B) The CV in the right lateral occipital gyrus 
and TMT-A scores for the mTBI patient (r = −0.450, P = 0.028). CSA: Cortical 
surface area; CV: cortical volume; mTBI: mild traumatic brain injury; TMT-A: 
Trail Making Test A.

Discussion
This study investigated changes in CT, CSA, and CV in patients 
in the acute stage of mTBI. The findings revealed that the 
acute mTBI patients showed cognitive impairment, which 
was accompanied with higher CSA and CV in the right lateral 
occipital gyrus in comparison with healthy controls, although 
changes in CT were not found. Furthermore, the increased 
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right lateral occipital gyrus CSA and CV were negatively 
correlated with the score in the TMT-A test in the mTBI 
patients. Our findings show that the cortical alterations in CSA 
and CV and the cognitive deficit existed in the acute stage 
of mTBI, and they provide clues to the pathophysiological 
process in the sub-acute and chronic stages of mTBI. Whether 
the alterations in CSA and CV in our study persist in the 
chronic stage of mTBI needs to be confirmed in further 
longitudinal analysis. 

Previous studies (Dickerson et al., 2009; Hayes et al., 2017) 
revealed that mTBI is associated with an increased risk of 
neurodegenerative diseases such as Alzheimer’s disease. It 
was  reported that bilateral cortical thinning was found in 
seven cortical areas in early Alzheimer’s disease, including 
inferior frontal cortex, lateral temporal cortex, entorhinal 
cortex, temporopolar cortex, inferior parietal cortex, inferior 
parietal sulcus, and posterior cingulate cortex (Sabuncu et 
al., 2011). Healthy subjects with higher polygenic risk scores 
also showed reduced CT in these seven regions (Sabuncu et 
al., 2012). A moderated mediation analysis found that mTBI 
combined with a high genetic risk of Alzheimer’s disease 
influenced memory performance through the reduction of 
CT in these Alzheimer’s disease-vulnerable regions (Hayes 
et al., 2017). These studies found that mTBI is associated 
with neurodegeneration and cognitive performance in 
neurodegenerative diseases, and that CT reduction in these 
vulnerable regions may partly result from mTBI and influence 
cognitive impairment in neurodegenerative diseases. Other 
studies have reported other regions associated with mild 
cognitive impairment, Alzheimer’s disease, and dementia, 
including the superior parietal cortex, lateral occipital gyrus, 
precuneus, inferior temporal cortex, parahippocampal cortex, 
rostral middle frontal gyrus, and medial orbitofrontal cortex 
(Dickerson et al., 2009; Bangen et al., 2014; Blanc et al., 
2015; Cheng et al., 2018). In our study, we found increased 
CSA and CV in the right lateral occipital cortex in acute mTBI 
patients, which is in line with previous findings. Furthermore, 
the increased CSA and CV in the right lateral occipital cortex 
correlated with cognitive performance. These findings imply 
injury to the right lateral occipital cortex after mTBI, and 
partly explain the cognitive impairment in the acute mTBI 
patients. Changes to CT, CSA, and CV in these vulnerable 
regions in the acute stage of mTBI may increase the risk of 
neurodegenerative diseases.

Previous studies have shown that changes in CT are more 
consistent in the chronic stage than in the acute or sub-
acute stages after mTBI (Ling et al., 2013; Govindarajan et 
al., 2016; Shao et al., 2018). A study (Wang et al., 2015) on 
motor vehicle-related injuries found increased CT in the left 
rostral middle frontal and right precuneus gyrus combined 
with reduction of CT in the left posterior middle temporal 
gyrus within 7 days of mTBI. After 3 months, the CT in the 
left rostral middle frontal gyrus had decreased in the mTBI 
group. Furthermore, the CT of the right precuneus region 
on the initial scans was positively correlated with acute 
traumatic stress symptoms (Wang et al., 2015). In our study, 
no significant difference was found in these areas in the mTBI 
patients. Another study reported significant reduction of CT 
in the left middle temporal and right supramarginal regions in 
acute-stage mTBI patients; however, after 3 months, significant 
reduction of CT was only observed in the left middle temporal 
region (Govindarajan et al., 2016). Another study found that 
mTBI patients in the acute phase showed significant cortical 
thinning in the left entorhinal region and increased CT in 
the right lateral occipital area and left precuneus cortex in 
comparison with healthy controls (Shao et al., 2018). In this 
study, the right lateral occipital regions showed increased 
CSA and CV in the mTBI patients. Some studies have found no 
group differences in CT in the acute period of mTBI (Ling et 
al., 2013; Toth et al., 2013), which is in line with our findings 

regarding CT changes in the mTBI patients. 

Previous studies focusing on alterations in CSA and CV in 
acute-stage mTBI patients are limited. A recently published 
study found that more complaints were associated with 
decreased CSA in the bilateral frontal cortex, postcentral 
cortex, and right inferior temporal region in the acute stage of 
mTBI (Dall’Acqua et al., 2017). Contrary to this, we observed 
increased CSA in the right lateral occipital gyrus in the acute 
phase of mTBI. However, CV is a composite of CT and CSA, 
and changes in CV could be due to changes in CT and/or CSA 
(Bajaj et al., 2018). Our findings are therefore consistent with 
previous studies. Greater CV was also found in the right lateral 
occipital area in the acute stage of mTBI, the same region that 
showed CSA change. A significant increase in CSA combined 
with a negative change in CT could be responsible for the 
increased CV in the same cortical regions. The mechanisms 
for the increase in CSA and CV in the acute stage of mTBI are 
unclear, and animal studies have led to several possibilities 
being proposed. On the one hand, edema in the injured 
cortical region has been found within days of cortical injury, 
resulting in the enlargement of the injured cortical region 
in combination with the acute neuroinflammatory process. 
The thickened cortical regions then thinned as the edema 
and acute cerebral inflammatory reactions recovered after 
injury (Lewén et al., 1999). On the other hand, larger CSA was 
reported to be associated with cognitive skills and complex 
brain interactions (Schnack et al., 2015), and an increase in 
CSA following an injury could be a compensatory mechanism 
associated with cognitive skills and complex brain interactions 
(Hermans et al., 2011; Bajaj et al., 2018). The negative 
correlation between the right lateral occipital gyrus CSA, CV, 
and TMT-A test scores is consistent with these earlier studies. 
These findings imply that the increase in CSA and CV in the 
right lateral occipital gyrus of the acute mTBI patients could 
be associated with protection of cognitive function.

The cortical regions affected by mTBI in the acute stage 
are various, and according to the above studies, CT, CSA, 
and CV can be either increased or reduced. One reason for 
the inconsistent results may be the heterogeneity of TBI; 
the causes of mTBI in these patients were various (motor 
vehicle collisions, blast exposure, sports, falls, assaults), 
and the mechanisms of mTBI would differ according to the 
different types of injury. There are also other factors that 
might affect cortical differences, including the position of 
injury, the time since injury, symptom severity, and localized 
micro-hemorrhages. As reported by previous studies, the 
morphological alterations resulting from mTBI are found more 
in the chronic stage of injury (Zhou et al., 2013; Tate et al., 
2014; Eierud et al., 2019). Significant increases in ventricular 
volume and decreases in CV were found in an mTBI group 
at 1 month after injury (Toth et al., 2013). However, despite 
the varied findings, these studies on the acute stage of mTBI 
demonstrate that differences in CT, CSA, and CV can be 
detected in the acute stage of injury and that these findings 
could be an indicator of injury to brain structures after the 
onset of mTBI. 

There are several limitations to our study: (1) Only the acute 
stage of mTBI was studied. Further longitudinal analysis needs 
to be performed to confirm the CSA and CV changes in the 
sub-acute and chronic stages of mTBI, and the increased CSA 
and CV in the right lateral occipital gyrus should be monitored 
over multiple time points. (2) The causes of mTBI in our study 
were heterogeneous, including motor vehicle collision, assault, 
and fall, and the locations of the injuries were various. A study 
examining more homogenous cases of mTBI, including injury 
to the same position or from the same cause, should help to 
minimize the confounding effects. (3) Only cortical structure 
changes were assessed. Multiple modalities should be used 
in future investigations, including diffusion tensor imaging 
or high angular resolution diffusion imaging for white matter 



592  ｜NEURAL REGENERATION RESEARCH｜Vol 17｜No. 3｜March 2022

injury, resting state functional connectivity for assessment 
of dynamic changes in functional networks, and arterial spin 
labeling for assessment of changes in cerebral blood flow. 
Graph theory analysis should also be used to analyze spatial 
relationships between brain regions at the global and nodal 
level. A combination of these modalities would be helpful in 
understanding the injury mechanism in mTBI. (4) Our study 
was performed in one hospital. Ideally, patients and data from 
multiple medical centers are required to provide potential 
predictive markers of positive or adverse prognoses after the 
onset of mTBI. (5) Serum cytokines and hormones were not 
analyzed. Changes in hormone and serum cytokines could be 
other potential biomarkers to predict the outcome of mTBI, 
and will be considered in future investigation. 

This study demonstrated that cognitive deficits and cortical 
alterations in CSA and CV could be detected in the acute stage 
of mTBI, and that increased CSA and CV in the right lateral 
occipital gyrus may be a compensatory mechanism associated 
with cognitive function in the acute stage of mTBI.  
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