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Simple Summary: Average daily gain (ADG) is influenced by both an individual’s direct genetic
effect (DGE) and by a social genetic effect (SGE) derived from pen mates. Therefore, identifying
the DGE and SGE on ADG is essential for a better understanding of pig breeding systems. We
conducted this study to elucidate the genetic characteristics and relationships of DGE and SGE on
ADG using purebred and crossbred pigs. We found that the DGE and SGE both contributed to ADG
in both populations. In addition, the SGE of purebred pigs was highly correlated with the DGE of
crossbred pigs. Furthermore, we identified several genomic regions that may be associated with the
DGE and SGE on ADG. Our findings will contribute to future genomic evaluation studies of socially
affected traits.

Abstract: Average daily gain (ADG) is an important growth trait in the pig industry. The direct
genetic effect (DGE) has been studied mainly to assess the association between genetic information
and economic traits. The social genetic effect (SGE) has been shown to affect ADG simultaneously
with the DGE because of group housing systems. We conducted this study to elucidate the genetic
characteristics and relationships of the DGE and SGE of purebred Korean Duroc and crossbred pigs
by single-step genomic best linear unbiased prediction and a genome-wide association study. We
used the genotype, phenotype, and pedigree data of 1779, 6022, and 7904 animals, respectively. Total
heritabilities on ADG were 0.19 ± 0.04 and 0.39 ± 0.08 for purebred and crossbred pigs, respectively.
The genetic correlation was the greatest (0.77 ± 0.12) between the SGE of purebred and DGE of
crossbred pigs. We found candidate genes located in the quantitative trait loci (QTLs) for the SGE
that were associated with behavior and neurodegenerative diseases, and candidate genes in the QTLs
for DGE that were related to body mass, size of muscle fiber, and muscle hypertrophy. These results
suggest that the genomic selection of purebred animals could be applied for crossbred performance.

Keywords: social genetic effect; average daily gain; purebred; crossbred

1. Introduction

In the swine production industry, many pigs can be managed in a house grouping
system. The development of piglets is known to be substantially affected by group mates
in such a system [1]. Socially and physically enriched pens have been shown to have
beneficial effects on productive traits, such as increased feed intake and weight, compared
with pens that are not enriched [2]. However, group mates can have disadvantageous
effects on production, and the introduction of new pigs into previously existing groups
usually results in physically damaging events [3]. Therefore, social interaction within
groups is considered as one of the factors that can affect productive traits. The concept
of the indirect genetic effect was first introduced by Griffing [4] to describe the effect of
an individual’s genotype on the traits of others in the same group; this is also called the
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social genetic effect (SGE) [5]. Another genetic effect is direct genetic effect (DGE), which
describes the effect of an individual’s genotype on its phenotype [3].

Average daily gain (ADG) is an important indicator of growth performance in pigs, and
many genome-wide association studies (GWAS) have been conducted to better understand
the relationship between genetic information and ADG [6–8]. The association of the SGE
with ADG has been widely studied using diverse analysis approaches [5,9–11]. One
of the most popular methods for genomic prediction is single-step best linear unbiased
prediction (ssGBLUP), which enables the use of phenotype information of both individuals
with and without genotypes for genomic prediction. ssGBLUP uses a hybrid matrix
(H) that is generated by combining a relationship matrix based on pedigree (A) with the
genomic relationship (G) [12,13]. Subsequently, a weighted ssGBLUP method, based on the
application of different single-nucleotide polymorphism (SNP) weights, was proposed [14].

In the livestock industry, genomic selection for productive traits is used to rapidly
improve livestock. Genomic prediction studies for the ADG trait have been extensively
conducted in different pig populations [11,15–18]. Genomic selection events in purebred
pigs have been suggested to increase the selection response for performance in crossbred
pigs [19], and Ask et al. [11] have recently shown that selection for the SGE on ADG in
purebred pigs can improve ADG in two-way crossbred pigs. However, there is still a lack of
studies that elucidate the genetic relationship of the DGE and SGE between purebred and
crossbred pigs. In this study, we used purebred Korean Duroc and crossbred pigs that are
crossed using Korean Duroc and Korean native pigs to take advantage of both populations
regarding their growth rate and meat quality. The purposes of this study are to (1) estimate
the variance components for the DGE and SGE in purebred and crossbred populations;
(2) estimate the genetic correlation between the SGE or DGE on ADG in purebred and
crossbred pigs; and (3) perform GWAS to identify candidate genes associated with the DGE
and SGE on ADG in pigs.

2. Materials and Methods
2.1. Animals, Pedigree and Phenotype Data

The pedigree data of 7904 animals, including 5408 purebred Korean Duroc (DUC) [20],
21 Korean native pigs (KNP), and 2475 crossbred pigs, were collected from 2001 to 2020.
The crossbred pigs (F1 × F2) were generated by the breeding scheme described previ-
ously [20,21]; using DUC and KNP as the parental breeds, and F1 (DUC × KNP) and F2
(F1 × DUC). The theoretical genetic composition of the crossbred animals is 62.5% and
37.5% from DUC and KNP, respectively [21]. The phenotype data were obtained from
6022 animals, including 3858 DUC and 2164 crossbred pigs.

ADG (g/day) was measured from 30 kg (start weight) to 100 kg (end weight) as follows.

2.2. Genotype Data

Genomic DNA was extracted from blood or hair root samples and genotyped using an
Illumina porcineSNP60K BeadChip v2 (Illumina, Inc., San Diego, CA, USA), which includes
61,565 SNPs for 1779 animals (864 DUC and 915 crossbreds). The quality control process
was conducted for SNP markers and animals as the following criteria: (1) SNPs unmapped
in Sus scrofa 11.1 or sex chromosomes; (2) SNPs with a call rate < 90%; (3) SNPs with
minor allele frequency < 0.05; (4) monomorphic SNPs; (5) animals with a call rate < 90%;
(6) animals with Mendelian conflicts. This quality control process removed 18,871 SNPs
and 12 animals, leaving a total of 42,694 SNPs for 1767 animals for further analyses.

2.3. Genetic Parameters and Variance Components

Variance and covariance components for the ADG trait for the DUC and cross-
bred pigs were estimated using the multi-trait model based on the Bayesian approach
in GIBBS2F90 [22]. The Gibbs sampler was run a total of 120,000 rounds with single
chains, and the first 20,000 rounds were excluded as burn-in rounds, thinning every 10 sam-
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ples. Consequently, we used 10,000 samples for the subsequent post-Gibbs analysis in
POSTGIBBSF90 [22].

Sex (male or female), birth year–2 months (54 levels), and group size (6 levels) were
used as the fixed effects, and start weight (g) and age at target weight (100 kg) were fitted as
covariates. Group (2246 levels), birth litter (1478 levels), and animal (7904 levels) were used
as random effects. Genetic analysis was performed using the animal model as follows:

y = Xb + ZDaD + ZSaS + Td + Ul + e

where y is the vector of ADG, b is the vector of fixed effects, aD and aS are the vectors
of the random additive DGE and SGE, respectively, d is the vector of the random group
with d ∼ N

(
0, Iσ2

d
)
, l is the vector of random birth litter, e is the vector for the residuals,

e ∼ N
(
0, Iσ2

e
)
, and X, ZD, ZS, T, and U are the corresponding incidence matrixes. Because the

pen sizes were different, we added a dilution factor (average group size− 1)/(group size− 1)
to the SGE. The genetic correlations for pairwise genetic effects (DGE and SGE) on ADG in
both DUC and crossbred were also estimated.

For the ADG trait affected by both heritable DGE and SGE, the variances in total
breeding value (TBV) were estimated as follows [23]:

σ2
TBV = σ2

aD
+ 2(n− 1)σaDaS + (n− 1)2σ2

aS

In addition, the TBV for the i-th individual was calculated as described by Bijma [23],
using the following equation:

TBVi = aD,i + (n− 1)aS,i

where n is the average pen size, aD,i and aS,i are the sum of DGE and SGE, respectively.
The phenotypic variance for the multi-trait model was obtained as follows:

σ2
p = σ2

aD
+ (n− 1)σ2

aS
+ σ2

d + σ2
l + σ2

e

Total heritability (T2) was estimated as follows:

T2 =
σ2

TBV
σ2

p

2.4. Single-Step Genome-Wide Association Study

We performed a GWAS on random additive DGE and SGE [5] using the ssGBLUP
approach [12,24], which considered all the phenotype, genotype, and pedigree data in a
single step. The ssGBLUP uses a realized relationship matrix (H matrix) that combines
genomic and pedigree information. The relationship among the matrices is as follows:

H−1 = A−1 +

[
0 0
0 G−1 − A−1

22

]
where A−1 is the inverse of the numerator relationship matrix, G−1 is the inverse of the
genomic relationship matrix, and A−1

22 is the inverse of the pedigree relationship matrix.
We obtained the G weight matrix generated by reciprocals of expected variance of markers
as proposed by VanRaden [25] as follows:

G = ZDZ′q (1)

where Z is the incidence matrix of genetic content that is altered for allele frequencies, D is
the diagonal weight matrix of SNPs, and q is a normalizing factor. The effects and weights
of the SNPs were obtained as follows:
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1. D = I in the first step;
2. Calculation of breeding values;
3. Calculation of SNP effects, û = DZ′[ZDZ′]−1 âg, where âg is the breeding value for

genotyped individuals;
4. Calculation of SNP weight for each SNP, di = û22pi(1− pi), where i is the i-th SNP;
5. Normalization of SNP weight for retaining constant total genetic variance;
6. Then loop to step 2.

This process was run for three iterations and SNP effects, breeding values, and the D
matrix were recalculated as described by Wang et al. [14]. In this study, we grouped SNPs
located within 0.4 Mb as a single window, and the percentage of genetic variance explained
by each window was calculated using the postGSF90 module for association analysis as
follows [26]:

Var(ai)

σ2
a
× 100 =

Var
(

∑x
j=1 Zjûj

)
σ2

a
× 100 (2)

where ai was the genetic value of the i-th region consisting of x = 0.4 Mb.

2.5. Candidate Genes and Gene Ontology (GO)

To identify the candidate genes associated with DGE and SGE in the crossbred and
purebred pig populations, we first determined the threshold for significant SNPs that
explained >0.4% of the additive genetic variance. Then, 1-Mb regions that had significant
SNPs in their centers were defined as quantitative trait loci (QTLs). We annotated genes
within the QTLs based on the Sus scrofa genome assembly 11.1 (https://ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_
Sscrofa11.1_genomic.gff.gz, accessed on 16 March 2022). We also mapped the QTLs dis-
covered in this study to previously reported pig QTLs to identify the overlapping regions
using the Pig QTL Database (https://www.animalgenome.org/cgi-bin/QTLdb/SS/index,
accessed on 2 June 2022). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed using ClueGO v2.5.9 and CluePe-
dia v1.5.9 plug-ins in Cytoscape (v3.9.1) [27,28]. GO terms, with a Bonferroni step-down
adjusted p-value ≤ 0.05, were considered to be significantly enriched and were used to
annotate the candidate genes. The GeneCards database (https://www.genecards.org/,
accessed on 9 June 2022) was used to retrieve phenotype information of the annotated genes.

3. Results and Discussion
3.1. ADG Performance, Genetic Parameters and Variance Components

The average ADG (g) was higher in the DUC (986.04 ± 125.25) than it was in the
crossbred (849.43 ± 110.87) pigs (Table S1). Duroc pigs are known to have undergone
intensive artificial selection over 100 years, and have superior carcass, growth, and feed
conversion efficiency traits compared with those of other breeds [29]. KNPs, one of the
parental breeds of the crossbred pigs, have undergone severe inbreeding events because
of their low population size [21], and their growth performance is also lower than that
of commercial breeds. Therefore, the average ADG in the crossbred pigs was lower than
it was in the DUC pigs. To better understand the genetic information of the ADG in the
purebred and crossbred pigs, we estimated the direct and social genetic variance (σ2

aD and
σ2

aS), phenotypic variance (σ2
p), total heritable variance (σ2

TBV), direct heritability (h2), total
heritability (T2), and genetic correlation between the DGE and SGE (rD−S). The variance
components of these genetic parameters in DUC and crossbred pigs are given in Table 1.

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_Sscrofa11.1_genomic.gff.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_Sscrofa11.1_genomic.gff.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/GCF_000003025.6_Sscrofa11.1_genomic.gff.gz
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://www.genecards.org/
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Table 1. Estimates of variance components (posterior standard deviations, PSD) in purebred Korean
Duroc (DUC) and crossbred pigs.

Population
Variance Components 1 (PSD)

σ2
aD σ2

aS σ2
p σ2

TBV h2 T2 rD−S

DUC 1377 (352) 75 (28) 8792 (251) 1709 (378) 0.16 (0.04) 0.19 (0.04) 0.03 (0.20)
Crossbred 3410 (621) 72 (40) 9376 (433) 3625 (988) 0.36 (0.05) 0.39 (0.08) −0.15 (0.27)

1 σ2
aD , direct genetic variance; σ2

aS, social genetic variance; σ2
p , phenotypic variance; σ2

TBV , total heritable variance;
h2, direct heritability; T2, total heritability; rD−S, correlation between DGE and SGE.

The h2 values for ADG were 0.16 ± 0.04 and 0.36 ± 0.05 for DUC and crossbred
pigs, respectively, and the T2 values, which include both DGE and SGE, were slightly
higher in both populations, with 0.19 ± 0.04 and 0.39 ± 0.08 for DUC and crossbred,
respectively (Table 1). However, the crossbred pigs showed little difference in heritability
values (h2 and T2) due to the negative correlation (−0.15 ± 0.27) between the direct and
social genetic effects.

This finding confirmed the contribution of SGE to total heritable variance. We found
that the DUC had lower heritability for ADG than the crossbred pigs, and they also had
lower heritability for ADG than other Duroc populations reported previously [30–33].
These results suggest that intensive selection events for growth traits have occurred in
DUC populations. Indeed, DUC pigs have been intensively selected for growth traits
after they were introduced into South Korea. A recent study reported substantial genetic
improvement of ADG in DUC pigs, as the estimated breeding value for ADG has increased
from −5.23 g to 45.16 g since 2000 [30]. Therefore, there may now be less chance for genetic
improvement for ADG in the DUC population. The genetic correlation between SGE and
DGE was neutral for DUC (0.03 ± 0.20) and weak for crossbred (−0.15 ± 0.27) (Table 1).
This result is consistent with the work of Bergsma et al. [34], who found that the absence
of conflict between an individual’s growth and a mate’s growth may be a consequence of
neutral or weak social interactions.

3.2. Genetic Correlations between Purebred and Crossbred Pigs

To observe the relationship between genetic effects, we estimated the genetic corre-
lations between the DGE and SGE for DUC and crossbred pigs (Table 2). The genetic
correlation between DGE of DUC and that of crossbred pigs was favorable (0.48 ± 0.19)
and statistically significant (Table 2).

Table 2. Genetic correlations 1 (posterior standard deviations) between DUC and crossbred pigs.

Breed Genetic Effect
DUC

DGE 2 SGE 3

Crossbred
DGE 0.48 (0.19) 0.77 (0.12)
SGE −0.53 (0.23) −0.27 (0.25)

1 Genetic correlation with posterior standard deviations (in brackets) between DGE and SGE for DUC and
crossbred. 2 DGE, direct genetic effect. 3 SGE, social genetic effect.

This result is similar to that of a previous report of statistically significant and moderate
genetic correlations between the DGE on ADG of a crossbred dam (F1, landrace× Yorkshire)
and that of landrace (0.46 ± 0.18) or Yorkshire (0.41 ± 0.17) [11]. The genetic correlation
between the SGE of DUC and that of crossbred pigs was negative (−0.27 ± 0.25) and not
statistically significant. The genetic correlation between the DGE for DUC and SGE for
crossbreds was negative (−0.53 ± 0.23) and statistically significant. The estimated genetic
correlation between SGE for DUC and DGE for crossbreds was the highest among the
pairwise correlations (0.77 ± 0.12) and statistically significant, indicating that the SGE
for DUC was highly associated with crossbred performance. Previous studies have also
indicated that genomic selection of purebred animals can increase the selection response
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for crossbred performance [19,35]. Ask et al. [11] reported a positive effect of SGE that was
assessed using purebred data on the ADG traits in F1 crossbred pigs. As we found moderate
(between DGE of DUC and DGE of crossbred) to high genetic correlations (between SGE
of DUC and DGE of crossbred) between the DUC and crossbred pigs, we suggest that
genomic selection of the purebred population, especially for social behavior, may have
affected the selection response for ADG in the crossbred population.

3.3. QTLs for DGE and SGE

As shown in Figure 1a and Table S2, the GWAS identified 52 significant SNPs (ex-
plained genetic variance > 0.4%) associated with DGE in DUC pigs.
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Figure 1. Results of single-step GWAS for DGE and SGE on average daily gain (ADG) in DUC
and crossbred pigs. SNPvar (%) is the variance explained by SNPs within 0.4 Mb-sized windows:
single-step GWAS plot for DGE on ADG in (a) DUC and (b) crossbred pigs; single-step GWAS plot
for SGE on ADG in (c) DUC and (d) crossbred pigs. The horizontal line (red) represents the threshold
of explained variance (0.4%).

These SNPs explained 24.9% of the total genetic variance and were located on SSC1,
SSC4, SSC8, SSC10, and SSC13. The gene annotations for the 1-Mb QTLs that centered those
SNPs identified 97 genes associated with these QTLs (Table S2). Because a large number
of QTLs were detected in this study, we focused on the QTLs that explained the greatest
genetic variance for the DGE and SGE in DUC and crossbred pigs and compared them
with previously reported pig QTLs. A QTL in SSC10 (31.4–32.4 Mb) that explained the
most genetic variance (0.7%) overlapped with the production QTLs that were previously
reported to be associated with ADG [36,37], as well as with the QTLs associated with feed
conversion ratio [38] and meat-related traits [39–41]. In the crossbred pigs, 43 significant
SNPs (explained 20.5% of genetic variance) associated with DGE were located on SSC1,
SSC2, SSC13, SSC15, and SSC18 (Figure 1b), and 83 genes were annotated within the
corresponding QTLs (Table S2). We also found that the QTL (65.3–66.3 Mb) in SSC13 that
explained the most genetic variance (0.8%) overlapped with the production-related QTLs
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that are associated with ADG [37], as well as meat-related QTLs that are associated with
backfat weight, the percentage of loin fat, and loin muscle area [42].

For SGE in DUC, 70 significant SNPs located on SSC1, SSC2, SSC6, SSC8, SSC12, SSC13,
SSC15, and SSC18 explained 33.6% of the total genetic variance (Figure 1c, Table S2). A
QTL located on SSC13 (16.4–17.4 Mb) that explained the highest genetic variance (0.7%)
overlapped with a QTL associated with the time spent socializing [43], as well as with
production-related QTLs that are associated with ADG and chest width [36,37]. We also
detected QTLs associated with meat-related traits, such as loin muscle area, average backfat
thickness, and backfat at tenth rib [36,44]. For SGE in crossbred pigs, 76 significant SNPs
located on SSC1, SSC6, SSC8, SSC10, SSC12, and SSC13 explained 42.8% of the total genetic
variance (Figure 1d; Table S2). The top QTLs (SSC8, 136.3–137.3 Mb), which explained
0.9% of the genetic variance, overlapped with QTLs related to coping behavior [45] and
exploration during stress [46], as well as with QTLs associated with the percentage of lean
meat, rump width, and length of humerus [47,48].

3.4. GO and KEGG Analyses for SGE

SGE is an established concept in behavioral ecology [49]. SGE is not associated with
one specific social interaction, but instead captures the overall effect of several social
interactions between individuals on a specific trait of the recipient individual [50]. Hong
et al. [5] identified positional candidate genes for SGE on ADG that have biological roles
that are strongly associated with neuropsychiatric processes. We also identified candidate
genes that may be related to the neurological disorders and behavioral changes.

We identified genes that were annotated with 17 GO terms that might be associated
with the SGE in DUC (Table 3), including DBX1, PAX7, and SHH, which were annotated
with the neuron fate commitment term (GO: 0048663). DBX1 is expressed in hypothalamic
progenitors and restriction of DBX1 was found to be critical in establishing the neuronal
fate of V0 and V1, which are derived from adjacent progenitor domains [51]. The previous
study revealed that DBX1 is associated with diminished responses to feeding stressors
and abnormal GABAergic neuron morphology [51,52]. Proskorovski-Ohayon et al. [53]
suggested that homozygous mutation in PAX7 likely causes a neuromuscular syndrome in
humans. Dysregulation of the SHH pathway in the brain was reported to be associated
with neurodegenerative diseases, such as amyotrophic lateral sclerosis and Parkinson’s
disease [54].

Table 3. Results of GO and KEGG pathway analyses associated with social genetic effect (SGE) in
DUC pigs.

Term Adjusted p-Value 1 Candidate Gene

Inner ear morphogenesis (GO:0042472) <0.05 INSIG1, SLC9A3R1, SOX9, USH1G
Regulation of protein acetylation (GO:1901983) <0.05 CAMK1, PAXIP1, SETD5
Regulation of systemic arterial blood pressure (GO:0003073) <0.05 NAV2, OXTR, SOD2
Response to gamma radiation (GO:0010332) <0.05 FANCD2, GTF2H5, SOD2
Cytoplasmic microtubule organization (GO:0031122) <0.05 CAV3, EZR, KIF19
Cell differentiation in spinal cord (GO:0021515) <0.05 DBX1, PAX7, SHH
Neuron fate commitment (GO:0048663) <0.05 DBX1, PAX7, SHH
Regulation of mesenchymal cell
proliferation (GO:0010464) <0.05 SHH, SOX9, TGFBR2

Regulation of morphogenesis of a branching
structure (GO:0060688) <0.05 CAV3, SHH, SOX9

Positive regulation of mesenchymal cell
proliferation (GO:0002053) <0.01 SHH, SOX9, TGFBR2

Pancreas development (GO:0031016) <0.05 SHH, SOX9, VHL
Positive regulation of muscle cell
differentiation (GO:0051149) <0.05 CAMK1, CAV3, SHH
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Table 3. Cont.

Term Adjusted p-Value 1 Candidate Gene

Trachea development (GO:0060438) <0.01 SHH, SOX9, TGFBR2
Gland morphogenesis (GO:0022612) <0.01 CAV3, SHH, SLC9A3R1, SOX9, TGFBR2
Lung morphogenesis (GO:0060425) <0.05 SHH, SOX9, TGFBR2
Vasculogenesis (GO:0001570) <0.05 PAXIP1, SHH, TGFBR2
Neural crest cell development (GO:0014032) <0.05 ERBB4, SHH, SOX9

1 Corrected p-value using Bonferroni step-down method. The most significant term per subgroup is shown
in bold.

We also identified three genes (CCL19, CCL21, and SOX9) that might be associated
with SGE in crossbreds. These genes were annotated with the response to interleukin-1 term
(GO: 0070555). Interleukin-1 (IL-1) is a master regulator of inflammation by controlling
innate immune processes [55]. The IL-1 superfamily includes seven pro-inflammatory
proteins (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ). Modulation of forebrain
serotonin activity by IL-1β signaling in the dorsal raphe nucleus (DRN) was reported to
control aggressive behavior, and non-aggressive mice were found to have higher levels of
IL-1β in DRN than aggressive mice [56]. Therefore, we suggest that aggression behavior in
pigs may be associated with SGE.

We also identified four genes (CCL19, CYLD, MAS1, and NOD2) that were annotated
with GO terms associated with the regulation of NIK/NF-kappaB signaling (GO:0038061,
GO:1901222, and GO:1901224) (Table 4). Diverse external stimuli, such as the release
of cytokines (TNF-alpha and IL-1), viral infections, and neurotrophic factors, lead to the
activation of NF-kappaB, and genes that are regulated by NF-kappaB have key roles in stress
and immune responses [57]. Activation of NF-kappaB has been reported to be associated
with human nervous system diseases, such as Huntington’s disease, Alzheimer’s disease,
and Parkinson’s disease [58–60]. A prominent behavioral symptom of these neurological
disorders is apathy, which is defined as the deficit of goal-directed behavior or motivational
impairment [61,62]. Therefore, we suggest that these genes might be also related to SGE
in pigs.

Table 4. Results of GO and KEGG pathway analyses associated with SGE in crossbred pigs.

Term Adjusted p-Value 1 Candidate Gene

Regulation of protein acetylation (GO:1901983) <0.05 BRD7, CAMK1, SETD5
Response to gamma radiation (GO:0010332) <0.05 FANCD2, GTF2H5, SOD2
Response to interleukin-1 (GO:0070555) <0.01 CCL19, CCL21, SOX9
Granulocyte migration (GO:0097530) <0.05 CCL19, CCL21, IL17RC, JAGN1
Cellular response to interleukin-1 (GO:0071347) <0.05 CCL19, CCL21, SOX9
Production of molecular mediator involved in inflammatory
response (GO:0002532) <0.05 ADCY7, IL17RC, NOD2

Cytokine production involved in inflammatory
response (GO:0002534) <0.01 ADCY7, IL17RC, NOD2

Regulation of cytokine production involved in inflammatory
response (GO:1900015) <0.01 ADCY7, IL17RC, NOD2

NIK/NF-kappaB signaling (GO:0038061) <0.05 CCL19, CYLD, MAS1, NOD2
Regulation of NIK/NF-kappaB signaling (GO:1901222) <0.05 CCL19, CYLD, MAS1, NOD2
Positive regulation of NIK/NF-kappaB signaling (GO:1901224) <0.05 CCL19, MAS1, NOD2

1 Corrected p-value using Bonferroni step-down method. The most significant term per subgroup is shown
in bold.

Three genes (ADCY7, IL17RC, and NOD2) were annotated with terms related to
inflammatory response (GO:0002532, GO:0002534, and GO:1900015) (Table 4). A previous
study showed that ADCY7 was associated with depression, using both genetically modified
mice and an association study of a human population [63]. IL17RC is essential for IL17A
signaling [64], and IL17A is generally considered to cause neurodegenerative diseases by
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activating glial cells [65]. NOD2 is a positive regulator of IL-1β secretion and NF-kappaB
activation [66]. As noted above, previous studies have reported associations between
IL-1β and aggression, and between activation of NF-kappaB and nervous system diseases;
therefore, we suggest that these three genes may be related to SGE.

3.5. GO and KEGG Analyses for DGE

We identified the genes that were annotated with 14 and 13 significant GO terms that
might be associated with the DGE in DUC and crossbred pigs, respectively (Tables 5 and 6).

Table 5. Results of GO and KEGG pathway analyses associated with direct genetic effect (DGE) in
DUC pigs.

Term Adjusted p-Value 1 Candidate Gene

Response to gamma radiation (GO:0010332) <0.01 FANCD2, GTF2H5, SOD2
Positive regulation of muscle cell differentiation (GO:0051149) <0.05 CAMK1, CAV3, FOXP1
Negative regulation of stress-activated protein kinase signaling
cascade (GO:0070303) <0.01 AIDA, DUSP10, EZR

p38MAPK cascade (GO:0038066) <0.01 CAV3, DUSP10, EZR
Negative regulation of stress-activated MAPK cascade
(GO:0032873) <0.01 AIDA, DUSP10, EZR

Negative regulation of MAP kinase activity (GO:0043407) <0.05 AIDA, CAV3, DUSP10
Regulation of p38MAPK cascade (GO:1900744) <0.01 CAV3, DUSP10, EZR
Lymphocyte migration (GO:0072676) <0.01 CCL19, CCL21, MIA3
Response to interleukin-1 (GO:0070555) <0.05 CCL19, CCL21, IRAK2
Granulocyte migration (GO:0097530) <0.01 CCL19, CCL21, IL17RC, JAGN1
Cellular response to interleukin-1 (GO:0071347) <0.01 CCL19, CCL21, IRAK2
Regulation of leukocyte apoptotic process (GO:2000106) <0.05 CCL19, CCL21, TCP1, VHL
Negative regulation of leukocyte apoptotic process (GO:2000107) <0.01 CCL19, CCL21, VHL

1 Corrected p-value using Bonferroni step-down method. The most significant term per subgroup is shown
in bold.

Table 6. Results of GO and KEGG pathway analyses associated with DGE in crossbred pigs.

Term Adjusted p-Value 1 Candidate Gene

Vasculogenesis (GO:0001570) <0.01 PAXIP1, SHH, TGFBR2
Cranial skeletal system development (GO:1904888) <0.01 FGF4, INSIG1, TGFBR2
Response to gamma radiation (GO:0010332) <0.01 FANCD2, GTF2H5, SOD2
Positive regulation of muscle cell differentiation (GO:0051149) <0.01 CAMK1, CAV3, SHH
Mammary gland epithelium development (GO:0061180) <0.01 CAV3, CCND1, ERBB4
Regulation of protein acetylation (GO:1901983) <0.01 CAMK1, PAXIP1, SETD5
Neural crest cell development (GO:0014032) <0.01 ERBB4, FGF19, SHH
Neural crest cell migration (GO:0001755) <0.01 ERBB4, FGF19, SHH
Melanoma (KEGG:05218) <0.01 CCND1, FGF19, FGF3, FGF4

Gastric cancer (KEGG:05226) <0.01 CCND1, FGF19, FGF3, FGF4,
SHH, TGFBR2

Response to fibroblast growth factor (GO:0071774) <0.01 FGF19, FGF3, FGF4
Cellular response to fibroblast growth factor stimulus (GO:0044344) <0.01 FGF19, FGF3, FGF4
Fibroblast growth factor receptor signaling pathway (GO:0008543) <0.01 FGF19, FGF3, FGF4

1 Corrected p-value using Bonferroni step-down method. The most significant term per subgroup is shown
in bold.

Four of the genes (CAMK1, CAV3, FOXP1, and SHH) were involved in the biological
process of positive regulation of muscle cell differentiation (GO: 0051149) (Tables 5 and 6).
Growth and development of muscle are essential for the breeding of livestock species raised
for meat production. Muscle formation, also called myogenesis, is a complex biological
process that involves cell proliferation, differentiation, migration, myotube formation, and
maturation of myofibers [67,68]. During postnatal growth, the increase in skeletal muscle
mass is mainly due to an increase in muscle fiber size [69]. CAMK1 and FOXP1 were
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reported to be associated with increased lean body mass in mice [70]. CAV3 null mice
showed mild myopathic changes with the presence of necrotic fiber and variability in
muscle fiber size [71]. Copy number variations in SHH were shown to have significant
associations with body size traits in Chinese beef cattle breeds [72]. Because the growth
performance of pigs is closely related to the proliferation and differentiation of muscle cells,
we suggest that the positive regulation of muscle cell differentiation may be associated
with the DGE for ADG in DUC and crossbred pigs. The positive regulation of muscle cell
differentiation term was also identified for the SGE in DUC (Table 3). We suggest that this
common GO term might be caused due to high genetic correlation (0.77± 0.12) between the
SGE in DUC and DGE in crossbred pigs (Table 2) or the pleiotropy phenomenon, indicating
that a single gene affects two or more phenotypic traits [73].

We also identified three genes (FGF3, FGF4, and FGF19) that were annotated with
terms related to the response to the fibroblast growth factor (GO: 0071774 and GO: 0044344)
and receptor signaling pathway of the fibroblast growth factor (GO: 0008543) (Table 6). Fi-
broblast growth factors (FGF) belong to a large protein group that is related to proliferation,
migration, differentiation, and apoptosis [74]. In zebrafish, early specification of the skull
was found to be regulated by FGF3, together with SHH [75]. FGF4 has been reported to be
associated with axial elongation and development of mouse embryos [76] and with Wnt
signaling in mice [77]. Benoit et al. [78] reported several functions of FGF19, including the
regulation of skeletal muscle mass through the expansion of muscle fiber, and protection of
muscle from atrophy. In mice, treatment with FGF19 caused skeletal muscle hypertrophy,
and FGF19 increased the size of human myotubes in vitro [78].

4. Conclusions

In this study, we conducted the estimation of genetic parameters and GWAS for
the DGE and SGE on the ADG trait in DUC and crossbred pigs. Our results showed
that not only DGE, but also SGE contributed to the total heritable variance in ADG. The
genetic correlation between the DGE and SGE was neutral to weak in DUC and crossbred
pigs, respectively. We also identified genetic correlations among the DGE and SGE on
ADG for DUC and crossbred pigs, showing that the SGE of DUC was highly correlated
with the DGE of crossbred pigs. The QTLs for both the DGE and SGE overlapped with
previously reported QTLs associated with production- and meat-related traits. QTLs for the
SGE also overlapped with QTLs associated with coping behavior and exploration during
stress. Furthermore, the candidate genes (DBX1, PAX7, SHH, CCL19, CCL21, SOX9, CYLD,
MAS1, NOD2, ADCY7, and IL17RC) for the SGE on ADG are associated with aggression
and neurodegenerative diseases. These findings provide genomic information that will
contribute to a better understanding of the DGE and SGE on ADG in pigs.

Supplementary Materials: The following supporting information can be downloaded at: https:
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