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Introduction

We propose permutation tests based on the matrix of pairwise

distances between microarrays to compare location, variability, or

equivalence of gene expression between two populations. These

tests can be applied to the entire genome or any subset of genes of

interest. Thus they can be used as global tests of difference in gene

expression or as a testing method applicable to gene set analysis.

These tests have several advantages over permutation tests

based directly on the gene expression data. First, they are not

computationally intensive because they reduce the high dimen-

sional expression data to the low dimensional distance matrix and

this only has to be done once. Second, this same reduction in

dimensionality results in a reduction in the dimensionality of the

potential nuisance parameters. Thus, the assumption of exchange-

ability between groups, which ensures the validity of the

permutation test, only has to apply to the pairwise distances not

to the entire microarray.

Many gene expression studies are designed to detect differential

gene expression in two clinical or biological populations. Interest

may focus on individual genes, specified groups of genes, or all

genes sampled by a particular microarray. Early efforts were

devoted to individual gene analysis [1]. A variety of test statistics

were proposed and an eventual consensus emerged on the use of

false discovery rate estimation to correctly account for multiple

testing [2].

In order to incorporate existing biological information into the

analysis of differential gene expression more recent work has been

devoted to methods that treat sets of related genes as the unit of

analysis [3]. Many methods and tools have been developed to

analyze sets of genes [4,1,5]. These include methods which base

inference on lists of genes which individually exceed a specified cut

off threshold for significance and those which base inference on

scores which combine information over the entire gene set [5].

Further, gene set methods can be divided into competitive and

self-contained tests [3]. Competitive tests compare the specified

gene set to the remaining genes outside the set while self-contained

tests depend only on the specified genes. Competitive tests have

been shown to be conceptually flawed [3] and will not be

considered further.

A number of self-contained, multivariate, tests have been

proposed [6,7,8]. Any multivariate test requires a test statistic

which aggregates information over all genes in the gene set and a

method of inference to determine if the observed magnitude of the

test statistic is extreme under the null hypothesis of no between

group difference in gene expression. The primary challenge in

developing these multivariate tests is posed by having relatively few

samples and many genes. In particular, asymptotic methods may

not be applicable and the sample gene covariance matrix may not

be full rank and is therefore not invertible.

Kong et al. [7] discuss several modifications to Hotelling’s T2 [9]

and suggest reducing the gene set to the lower dimensional

subspace of principal components in which the sample gene

covariance matrix becomes invertible. A permutation test is used

for inference.

Goeman et al. [6] circumvent the problem of inverting the

sample gene covariance matrix by developing a test statistic

derived from a score test for a logistic regression model. In this

model the gene expression values are considered to be fixed

constants and the group indicator variable is considered to be

stochastic. Their statistic is proportional to Hotelling’s T2 under

the assumption of equal variance and zero covariance across all

genes. They present the statistic’s asymptotic distribution but

suggest a permutation test for inference in small samples.
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Hummel et al. [8] propose a test statistic which combines

residual sums of squares from gene-wise linear regression models,

which may include additional covariates of interest, fit with and

without the group effect. They present the asymptotic distribution

of the test statistic under the assumption that the genes follow a

multivariate normal distribution and use a shrinkage estimator to

regularize the sample gene covariance matrix. They also propose a

permutation test based on the residual gene expression derived by

regressing out an intercept and the additional covariates gene by

gene. In the absence of additional covariates, the resulting statistic

can be shown to be permutationally equivalent to Hotelling’s T2

under the assumption of equal variance and zero covariance across

all genes. Note that two statistics are permutationally equivalent

[10] if they have the same (or reverse) ordering over all

permutations and therefore always give the same permutation p-

value.

In this paper we propose methods to test for a significant

difference in gene expression between two study groups based on

the matrix of pairwise distances between microarrays. In the

following sections we present the test statistics given the

assumption of Euclidean distance, additive errors, and a

completely randomized design. We also present an application

to respiratory recovery in trauma patients and extensions to paired

and blocked designs as well as the use of a distance measure based

on correlation.

Methods

Introduction
Consider an experiment comparing gene expression in two

populations. The gene expression values, or some function of the

gene expression values which measures the biological signal for

each gene, can be represented by two groups of column vectors.

We will represent these column vectors by X1,1, . . . ,X1,N1
and

X2,1, . . . ,X2,N2
, for groups 1 and 2 respectively where N1 and N2

are the number of arrays in groups 1 and 2 respectively. For

simplicity we will refer to these vectors as microarrays. Let

D½Xi,j ,Xk,l � be the dissimilarity or distance between two micro-

arrays.

Inference concerning the location and variability of groups 1

and 2 can be based on the three means:

�DD11~
2

N1(N1{1)

X
ivjƒN1

D X1,i,X1,j

� �
ð1Þ

�DD22~
2

N2(N2{1)

X
ivjƒN2

D X2,i,X2,j

� �
ð2Þ

�DD12~
1

N1N2

X
iƒN1,jƒN2

D X1,i,X2,j

� �
ð3Þ

Where

1. �DD11 is the mean distance between microarrays within group 1.

2. �DD22 is the mean distance between microarrays within group 2.

3. �DD12 is the mean distance between microarrays between groups

1 and 2.

Additive Errors and Euclidean Distance
In this section we derive the expected value of �DD11, �DD22, and

�DD12 assuming a completely randomized design, an additive error

model, and squared Euclidean distance. Under these assumptions

we have:

X1,i~m1ze1,i ð4Þ

X2,i~m2ze2,i ð5Þ

where m1 and m2 are the respective mean vectors of the

microarrays in groups 1 and 2 and e1,i and e2,i are random error

vectors with expected value 0 and variance covariance matrices S1

and S2 respectively. The errors are assumed to be independent

across microarrays.

The squared Euclidean distance between any two microarrays,

Xi,j and Xk,l is

Xi,j{Xk,l

�� ��2~ Xi,j{Xk,l

� �T
Xi,j{Xk,l

� �
ð6Þ

and a simple calculation yields

E �DD11½ �~2Tr S1½ � ð7Þ

E �DD22½ �~2Tr S2½ � ð8Þ

E �DD12½ �~ m1{m2j j2zTr S1½ �zTr S2½ � ð9Þ

where Tr½� is the trace operator which gives the sum of the

diagonal elements of a matrix.

We can now define a test statistic to compare the location or

variability of groups 1 and 2.

To compare location let:

Dl~�DD12{
�DD11z�DD22

2
ð10Þ

To compare variability let:

Dv~�DD11{�DD22 ð11Þ

These test statistics have expected values:

E½Dl �~ m1{m2j j2 ð12Þ

and:

E Dv½ �~2 Tr S1½ �{Tr S2½ �ð Þ ð13Þ

Inference concerning the magnitude of Dv and Dl can be made

using a permutation test. Each permutation consists of assigning

N1 microarrays to group 1 and the remaining N2 to group 2. Note
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that for each permutation the pairwise distances are simply re-

indexed, they do not have to be recalculated. Only the values of
�DD11, �DD22, and �DD12 and Dv and Dl have to be recalculated based on

the re-indexing.

Let Dobs
v and Dobs

l be the observed values of Dv and Dl and let D�v
and D�l be the values from a permutation. If there are a total of B

permutations, and assuming Dobs
v w0, then

pv~
Number D�v§Dobs

v

� �
B

ð14Þ

is a one-sided p-value [11] for rejecting the null hypothesis that

Tr½S1�~Tr½S2�. If Dobs
v v0 then the inequality in Equation 14 is

simply reversed. Similarly

pl~
Number D�l §Dobs

l

� �
B

ð15Þ

is a one-sided p-value for rejecting the null hypothesis that m1~m2.

Sometimes investigators design an experiment to compare a

new technical method, such as sample preparation or target

hybridization, to a proven ‘‘gold standard’’. In such an experiment

interest centers on showing that the new method is equivalent to

the gold standard. To be equivalent it should not differ in mean

and not exhibit greater variability. Assuming that the microarrays

in group 1 were prepared using the gold standard, a summary

statistic which can be used to reject the null hypothesis of

equivalence is given by:

De~�DD12{�DD11 ð16Þ

If this statistic is large, then group 2 either has a different mean or

more variability than group 1. This can easily be seen from its

expected value under mean squared Euclidean distance:

E De½ �~ m1{m2j j2z Tr S2½ �{Tr S1½ �ð Þ ð17Þ

Inference concerning the magnitude of De can also be made using

a permutation test. It should be noted that the statistics Dv, Dl, and

De are all special cases of Mantel’s U statistic [12], for which he

derives the permutation variance, and Dl is similar to a special case

of the MRPP statistic [13].

Paired Design
In this section we consider modifications to the test statistics and

permutation test to account for pairing in the experimental design.

We still assume an additive error model and squared Euclidean

distance.

Suppose the experimental design is paired so that each

microarray in group 1 is paired with a microarray in group 2.

In this case N1~N2~N and we assume that

X1,i~m1zBize1,i ð18Þ

X2,i~m2zBize2,i ð19Þ

where Bi is a random vector, independent of all other quantities,

with expected value 0 and variance covariance matrix SB. The

quantities m1, m2, e1,i, and e2,i are again defined as in Section.

To account for the pairing we drop the within pair distance in

our test statistics since it will be systematically less than the

between pair distances. Thus we re-define �DD12 as:

�DD12~
1

N2

X
i=j

D X1,i,X2,j

� �
ð20Þ

then:

E½�DD11�~2Tr½S1�z2Tr½SB� ð21Þ

E½�DD22�~2Tr½S2�z2Tr½SB� ð22Þ

E½�DD12�~ m1{m2j j2zTr½S1�zTr½S2�z2Tr½SB� ð23Þ

so that Dv and Dl still have the same expected values given in

Equations 13 and 12.

For this paired design, only paired microarrays are exchange-

able and the permutation test must respect this structure. Thus, a

permutation consists of exchanging microarrays across groups 1

and 2 within each pair of an arbitrary subset of paired

microarrays.

Blocked Design
In this section we consider modifications to the test statistics and

permutation test to account for blocking in the experimental

design. We still assume an additive error model and squared

Euclidean distance.

Suppose the experiment consists of K blocks of related

microarrays. In this case N1,k and N2,k are the number of

microarrays in block k in group 1 and 2 respectively. We also

assume that for blocks k~1, . . . ,K

X1,i,k~m1zBkze1,i ð24Þ

X2,i,k~m2zBkze2,i ð25Þ

where Bk is a random vector , independent of all other quantities,

with expected value 0 and variance covariance matrix SB. The

quantities m1, m1, e1,i, and e2,i are again defined as in Section.

For this blocked design we need to modify the mean distances
�DD11, �DD22, and �DD12 so that they depend only on within block

distances. That is:

�DD11~
1

N11

XK

k~1

X
ivjƒN1,k

D X1,i,k,X1,j,k

� �
ð26Þ

�DD22~
1

N22

XK

k~1

X
ivjƒN2,k

D X2,i,k,X2,j,k

� �
ð27Þ

�DD12~
1

N12

XK

k~1

X
iƒN1,k ,jƒN2,k

D X1,i,k,X2,j,k

� �
ð28Þ
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where:

N11~
1

2

XK

k~1

N1,k N1,k{1ð Þ ð29Þ

N22~
1

2

XK

k~1

N2,k N2,k{1ð Þ ð30Þ

N12~
XK

k~1

N1,kN2,k ð31Þ

The permutation test for this design must respect the blocked

structure. Microarrays are exchanged across groups only within

each block.

Negative Log Correlation Distance
There are various possible measures of distance between

microarrays besides squared Euclidean distance. In this section

we consider a measure based on the Pearson product moment

correlation [14] which we will denote by cor½:�. Assuming an

additive error model and a completely randomized design, the

correlation between two microarrays, Z1~m1ze1 and

Z2~m2ze2, is

cor½Z1,Z2�~
cov½m1,m2�zcov½m1,e2�zcov½m2,e1�zcov½e1,e2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

m1
z2cov½m1,e1�zŝs2

e1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

m2
z2cov½m2,e2�zŝs2

e2

q ð32Þ

where cov½:� is the sample covariance, s2 is the variance, and ŝs2

is the sample variance. By dividing the numerator and

denominator in Equation 32 by sm1
sm2

and rearranging some

terms we get:

cor Z1,Z2½ �~ cor m1,m2½ �zdð Þ
ffiffiffiffiffiffi
R̂R1

q ffiffiffiffiffiffi
R̂R2

q
ð33Þ

where R̂Ri is the sample estimate of the reliability [15]

Ri~
s2

mi

s2
mi
zs2

ei

ð34Þ

and

d~
cov½m1,e2�zcov½m2,e1�zcov½e1,e2�

sm1
sm2

ð35Þ

with E[d] = 0.

If the correlation is positive and under the assumption that

E[d2] is negligibly small then, if we define the distance between Z1

and Z2 by

D½Z1,Z2�~{logcor½Z1,Z2� ð36Þ

then, the expected value of D[Z1, Z2] is approximated by

{logcor½m1,m2�{
E½logR̂R1�zE½logR̂R2�

2
ð37Þ

Defining Dv and Dl as above in Equations 11 and 10, these test

statistics have expected values

E Dv½ �~E log
R̂R2

R̂R1

" #
ð38Þ

and

E½Dl �~{logcor½m1,m2� ð39Þ

so that Dv estimates the log of the between group reliability ratio

and Dl estimates the negative log of the correlation between the

group means.

Using the negative log correlation distance the three designs

considered above need no modification except in the interpreta-

tion of the statistics Dv and Dl as presented in Equations 38 and 39.

In the paired design it is convenient to think of the random pair

effect, Bi , as being absorbed in the error term. In the blocked

design it is convenient to think of the random block effect, Bk , as

being absorbed in the mean.

Note that the reliability given by Equation 34, which can be

interpreted as a signal to noise ratio, is a reasonable measure of the

within group distance or variability, but it depends on both the

mean, m, and the error, e. Thus a significant difference in the

within group distance as measured by Dv can be due to a difference

in either the mean or the error.

A commonly used distance measure is one minus the correlation

between microarrays. This distance measure is nearly equivalent

to the negative log correlation distance for values of the correlation

near one. However, by using this distance, the corrected distance

between groups, Dl, does not have the correct expected value and

does not estimate the error free distance between the groups.

Permutation Test Assumptions
Permutation tests may place weaker distributional assumptions

on the data than do parametric tests but they are not totally free of

assumptions. In general they only test the global null hypothesis,

H0 : F1~F2 where F1 is the data generating distribution for group

1 and F2 is the data generating distribution for group 2. In

particular they cannot test that a specific parameter of the data

generating distribution differs between two groups without highly

restrictive assumptions about the remaining (nuisance) parameters.

They do have the desirable property of being exact tests

provided that, under the null hypothesis, the observations are

exchangeable so that the joint distribution of the combined data

set is invariant under permutations of the observation labels. The

permutation tests we propose first reduce the extremely high

dimensionality of the data (and attendant high dimensionality of

the nuisance parameters) to the low dimensional matrix of pairwise

distances. Since inference is based solely on the distribution of

these distances the global null hypothesis becomes the much less

restrictive assumption that the pairwise distances are identically

distributed. Thus, only pairwise distances need be exchangeable

by permutation of observation labels.

In particular, under Euclidean distance and the additive error

model proposed above, the location permutation test, which tests

the null hypothesis, H0 : m1~m2, is exact under the relatively weak

Significance in Microarray
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Figure 1. Heat Map
doi:10.1371/journal.pone.0005838.g001
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assumption that the inner product of any two distinct error terms is

exchangeable. That is, the test is exact if terms of the form

(ei,j)
T (ek,l), with fi,jg=fk,lg, are exchangeable across observa-

tions. These scalar terms are easily shown to be simply random

errors in the sense that they each have expected value zero and are

uncorrelated with all other terms.

Results

As an application of our proposed method we analyzed time to

respiratory recovery in ventilated trauma patients in a data set

previously described by Rajicic [16]. Patients were followed for 28

days post trauma and Affymetrix U133+2 microarrays were

prepared from whole white blood cells sampled at days 0, 1, 4, 7,

14, 21, 28. We considered a subset of 48 ventilated patients who

had a day one sample and divided them into two subgroups: those

who recovered from ventilation prior to day seven (early recovery,

N = 22) and those who did not (late recovery, N = 26). Of clinical

interest is the potential association of inflammation on day one and

subsequent respiratory recovery. To address this issue, a set of 445

probesets whose GO annotation included the term ‘‘inflammato-

ry’’ was retrieved for analysis by a keyword search of the

Affymetrix web site (http://www.affymetrix.com/index.affx).

Figure 1 shows a heat map of day one gene expression for the 48

patients (columns) over the 445 probesets (rows). In the figure,

columns labeled with a ‘‘1’’ comprise the early recovery group,

those labeled with a ‘‘2’’ comprise the late recovery group.

Hierarchical clustering using Euclidean distance has been applied

to the patients but not the probesets.

As can be seen in the figure, it is not readily apparent that the

clustering separated the early and late recovery groups. However,

the highest split separated the patients into one group (right hand

side of figure) having 20/38 (53%) early recovery patients while

the remaining group (left hand side off figure) had only 2/10 (20%)

early recovery patients. This imbalance may be suggestive of a

difference in gene expression between the early and late recovery

groups.

To formally test for a group effect we applied our proposed

permutation test for a Euclidean distance location difference

between the early and late recovery groups and obtained a one

sided p-value of 0.0168, indicating a significant difference in gene

expression.

As a check on this result, in the spirit of Kong’s use of

Hotelling’s T-square in the principal component space [7], we

applied MANOVA to the first three principal components. We

obtained a two sided p-value of 0.0393 for the group effect, a result

similar to the permutation test result. The choice of three principal

components was arbitrary, however, and results vary with the

number chosen for analysis.

Figure 2 illustrates the location of the two recovery groups in the

subspace spanned by the first and third principal components.

Note that the same cluster of two early recovery patients (denoted

by ‘‘1’’) and eight late recovery patients (denoted by ‘‘2’’) can be

seen on the right hand side of the figure.

Similar results were obtained using the globaltest R-package of

Goeman et al. [6], with a p-value of 0.0167 as well as the

GlobalAncova R-package of Hummel et al. [8], with a p-value of

0.0210.

Finally it may be of interest to note that, for the remaining

54230 probesets not associated with inflammation, the group

difference was marginally significant with a p-value of 0.0462 by

our method and p-values of 0.0508 and 0.0480 by the methods of

Figure 2. Principal Components
doi:10.1371/journal.pone.0005838.g002

Significance in Microarray

PLoS ONE | www.plosone.org 6 June 2009 | Volume 4 | Issue 6 | e5838



Goeman and Hummel respectively. This suggests that factors

other than inflammation may also be associated with time to

ventilator recovery.

Discussion

Our proposed test statistics attempt to divide differences in gene

expression into differences in location and differences in variation.

The hope is to find tests for one parameter when the other

parameter differs. This is a common statistical problem that only

has a solution under limited circumstances. For instance, if data

are normally distributed it is possible to find an exact test for

variability differences when there are differences in location but

testing for differences in location when there are differences in

variability is the famous Behrens-Fisher problem which has no

optimal small sample solution [17]. We use permutation tests

because the distribution functions of gene expression are unknown.

The permutation tests we propose have the advantage that the

pairwise distances are calculated before the permutations are

applied so the tests are not computer intensive. The location test is

designed to have power for a location difference and correct Type

I error rate even given a variability difference, and the variability

test is designed to have the opposite characteristics. Simulations

(results not shown) show that, in the cases that we simulated, we

succeeded. However, there may be circumstances where variabil-

ity differences appear as location differences and vice-versa.

Since the distribution functions of gene expression are unknown

it is not possible to calculate the power of the location test under

specified alternative hypotheses. However, as pointed out in the

Introduction, for a two group comparison, both Goeman’s and

Hummel’s methods are permutationally equivalent to Hotelling’s

T2 under the assumption of equal variance and zero covariance

across all genes. This holds true for our location test as well, using

Euclidean distance in a balanced completely randomized design.

Since permutational equivalence holds regardless of the distribu-

tion of the data, in the case of balanced completely randomized

designs all three tests have equal power as permutation tests. In the

moderately unbalanced case, with similar within group variability,

simulations (not shown) show that our test is still nearly

permutationally equivalent to the other two tests so that the

power will be similar.

Our proposed location test is based on the matrix of pairwise

distances between microarrays and is therefore related in a natural

way to cluster analysis which applies an algorithm to the distance

matrix to find clusters in the data. In experimental designs

involving two predetermined groups of microarrays cluster

analysis can be used as a graphical technique to see if the

clustering algorithm ‘‘finds’’ the predetermined groups. Our

proposed method can be thought of as a formal significance test

of whether two predetermined groups form two distinct clusters.

Thus our test is consistent with an intuitive visual display of the

data. Of course applying our location test, or any significance test,

to two groups that were discovered using a clustering algorithm

would be circular and therefore invalid.
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