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Microorganisms in the human body play a vital role in metabolism, immune defense, nutrient absorption, cancer control, and
prevention of pathogen colonization. More and more biological and clinical studies have shown that the imbalance of
microbial communities is closely related to the occurrence and development of various complex human diseases. Finding
potential microbial-disease associations is critical for understanding the pathology of a few diseases and thus further
improving disease diagnosis and prognosis. In this study, we proposed a novel computational model to predict disease-
associated microbes. Specifically, we first constructed a heterogeneous interconnection network based on known microbe-
disease associations deposited in a few databases, the similarity between diseases, and the similarity between
microorganisms. We then predicted novel microbe-disease associations by a new method called the double-ended restart
random walk model (DRWHMDA) implemented on the interconnection network. In addition, we performed case studies
of colon cancer and asthma for further evaluation. The results indicate that 10 and 9 of the top 10 microorganisms
predicted to be associated with colorectal cancer and asthma were validated by relevant literatures, respectively. Our
method is expected to be effective in identifying disease-related microorganisms and will help to reveal the relationship
between microorganisms and complex human diseases.

1. Introduction

Microorganisms include bacteria, archaea, protozoa, fungi,
and viruses. There are different types of microorganisms
on the human body and in the cavity connected to the
outside world, such as the oral cavity, respiratory tract,
intestinal tract, and urogenital tract [1, 2]. Microbes play
important roles in human health, metabolism, immune
defense, nutrient absorption, cancer control, and preven-
tion of colonization of pathogens [3]. Microorganisms of
the human body are mainly distributed on the body sur-
face, intestine, and oral cavity, and the types and numbers
of microorganisms are different. Among them, the number
of microorganisms in the intestine is about ten times that
of the body’s own cells. In nature, the density of microor-
ganisms isolated from the colon is the highest, and 60% of
the dry weight of human feces is bacteria [4].

Numerous studies have shown that many diseases are
related to changes in microorganisms. For example, patients
with type 2 diabetes have been found to have moderate intes-
tinal microecological disorders and lack of butyric acid-
producing bacteria [5]. Intestinal microbial diseases lead to
intestinal immune system dysfunction. For patients with irri-
table bowel syndrome (IBS), the number of chronic inflam-
matory cells in the colonic mucosa of increases, a large
number of T cells are activated, and the expression of inflam-
matory reactions is accelerated [6]. In addition, epidemiolog-
ical studies have shown that commonmental illnesses such as
autism and schizophrenia are associated with perinatal path-
ogen infections [7–11].

As mentioned above, discovering the potential links
betweenmicrobes and diseases allows us to better understand
the mechanisms by which disease is formed and developed.
By regulating the microbial environment, medical solutions
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for disease prevention, diagnosis, treatment, and prognosis
can be provided to some extent. In previous biological or
clinical experimental research methods, it took a lot of time
and cost to obtain a new connection between microorganisms
and disease. In recent years, many computational biology
methods have provided new and effective tools for identifying
the key links between microorganisms and disease. Ma et al.
constructed a microbe-disease association data pants called
HMDAD, which can help study the relationship between
microbes and diseases [12], and provide data support for var-
ious calculation methods to predict new associations

In recent years, machine learning algorithms have
achieved good performance in various fields [13]. At present,
various machine learning algorithms have been used in the
prediction of the association between microorganisms and
diseases and have achieved good performance. As such, Chen
et al. established a microorganism-human disease association
network and further developed a new KATZ metric calcula-
tion model for the prediction of human microorganism-
disease association (KATZHMDA) under the premise that
similar-function microorganisms tend to the following
assumptions [14]. Huang et al. [15] proposed a path-based
human microorganism-disease association prediction
(PBHMDA) method that integrates the identified nuclear-
similarities of disease-microbe relationships and Gaussian
interaction spectra into a heterogeneous network of diseases
and microorganisms. The model traverses all possible path-
ways between microbes and diseases. A novel depth-first
search algorithm is used to predict the microorganisms most
likely to be associated with the disease. In addition, Wang
et al. [16] proposed a new computational model of Laplace
regularized least squares to reveal potential disease-related
microorganisms. LRLSHMDA applies a semisupervised
learning framework. In this model, a microbial similarity net-
work and a disease similarity network are constructed based
on the Gaussian interaction spectrum kernel similarity calcu-
lated from known disease-disease associations, and the cost
function in the microbial space and disease space is then con-
structed and optimized integrating the optimal classifier
function to calculate the correlation probability of microbial
disease pairs. Although the reliable prediction performance
of LRLSHMDA has been verified, the model still has some
shortcomings and needs further improvement. For example,
the number of proven microbial associations is too small, and
a sparse network of known associations may affect the
predictive performance of the model. Shen et al. [17] com-
bined the known similarity of microbe-disease association
with the nuclear similarity of the Gaussian interaction
spectrum; a collaborative matrix decomposition calculation
model was established for the microbial-disease association
prediction (CMFHMDA) of humans and diseases. A spe-
cial matrix decomposition algorithm is proposed to update
the correlation matrix between microorganisms and dis-
eases and infers the microorganisms most likely to be
related to diseases. However, the performance of this
model needs improvement.

In summary, though the tremendous progress made in
computing predictions of microbial-disease associations,
there are still some limitations. In order to better reveal the

association between microbial diseases, based on the known
heterogeneous network consisting of microbial-disease
association and Gaussian interaction contour kernel simi-
larity, we propose a computational model based on a
double-ended restart random walk to predict disease-
related microorganisms. To prove the superiority of the
DRWHMDA algorithm, we applied the 5-fold CV and
global LOOCV to evaluate the prediction performance of
DRWHMDA. In addition, we used DRWHMDA for case
studies of two diseases.

2. Materials and Methods

2.1. Materials. The general workflow of DRWHMDA is
shown in Figure 1. First, we need to preprocess the data.
The original data comes from a microbe-disease association
dataset named HMDAD constructed by Ma et al. [13].
HMDAD contains 483 artificially planned microbiological
associations involving 39 diseases and 292 microorganisms.
Because there are multiple evidences for some associations,
we extracted 450 different disease-microbial associations.
Secondly, based on these known microbial-disease associa-
tions, we constructed disease networks, microbial networks,
and microbial-disease related networks, respectively. Here,
Nd = 39 indicates the number of diseases, and Nm = 292
indicates the number of microorganisms. Finally, a two-
terminal random walk is performed through a heteroge-
neous network. Combine different prediction scores into
the final associated prediction probability according to
the linear combination.

2.2. Symptom-Based Disease Similarity (SDM). In the field of
information retrieval, text documents or concepts are usually
represented by feature vectors. Here, we describe the vector
dj of each disease j through symptoms.

dj = w1,j,w2,j,⋯,wn,j
� �

, ð1Þ

where wi,j quantifies the strength of the association between
symptom i and disease j. The prevalence of different symp-
toms and diseases is very different. In order to solve this het-
erogeneity, we do not use absolute co-occurrence wi,j to
measure the strength of the association between symptom i
and disease j, but the term frequency and the reciprocal of
the document frequency wi,j.

wi,j =wi,j log
N
ni
, ð2Þ

where N represents the number of all diseases in the data set
and ni represents the number of diseases with symptom i.

Therefore, the similarity between the vectors dx and dy of
the two diseases x and y is calculated as follows:

cos dx, dy
� �

=
∑idx,i, dy,iffiffiffiffiffiffiffiffiffiffiffiffiffi

∑idx,i
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑idy,i

2
q : ð3Þ
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The cosine similarity ranges from 0 (no shared symp-
toms) to 1 (identical symptoms).

2.3. Effect of Gaussian Interaction Spectroscopy Nuclear
Similarity on Disease. Based on the assumption that diseases
with similar phenotypes always share similar associations
and nonassociative patterns with functionally similar micro-
organisms, the Gaussian interaction distribution kernel sim-
ilarity between disease and disease can be further calculated.
We define the binary vector VPðdiÞ to represent the interac-
tion curve of disease di, which can be obtained by observing
whether di is known to be associated with each microorgan-
ism (i.e., the ith row of the adjacency matrix). Then, after cal-
culating the similarity value between disease pairs, the
Gaussian interaction distribution kernel similarity matrix
(KD) can be constructed.

KD di, dj

� �
= exp −γd VP dið Þ − VP dj

� ��� ���� ��2� �
ð4Þ

γd = γ′d/
1
nd

〠
nd

i=1
VP dið Þj jj j2

 !
ð5Þ

The parameter value γd controls the bandwidth of
the Gaussian kernel. As shown in (5), γ′d can be fur-
ther calculated by dividing the new bandwidth parame-
ter γ′d . The average of each disease is associated with
microorganisms. Here, we γ′d = 1 according to previous
research [18].

From the above, we can see that the similarity of the
Gaussian interaction spectrum kernel is only based on adja-

cency matrix A. If we want to effectively and scientifically
predict potential disease-related microorganisms, it is nec-
essary to incorporate other data sets similar to the Gauss-
ian interaction spectrum kernel, recorded in PubMed
bibliography based on disease and corresponding symp-
toms. Zhou et al. (2014) calculated similarities between
diseases and established a symptom-based human disease
network (HSDN). Here, we synthesize the Gaussian inter-
action spectrum kernel similarity of disease KD and
symptom-based disease similarity SDM to obtain
symptom-based disease similarity SD, and SD is calcu-
lated as follows:

SD = KD + SDM
2 : ð6Þ

2.4. Gaussian Interaction Spectrum Nuclear Similarity for
Microbes. In the same way, the Gaussian interaction simi-
larity mi and mj between microorganisms can be obtained
as the Gaussian kernel similarity matrix (KM) between
microorganisms.

KM mi,mj

� �
= exp −γm VP mið Þ −VP mj

� ��� ���� ��2� �
:

γm = γm′
1/nm∑nm

i=1 VP mið Þk k2 :
ð7Þ

where γm′ is usually set to 1.

2.5. Building a Heterogeneous Network. A heterogeneous net-
work can be expressed as G = ðD, EÞ, where D represents 331

d1 d2 d3 d4 d5

m1 m2 m3 m4

Disease Microbe
d1 d2 d3

d4 d5

Gaussian interaction profile kernel similarity
for diseases

m1 m2

m3 m4

Gaussian interaction profile kernel similarity for
microbes

d1 d2 d3

d4 d5

m1

m2

m3

m4 Build a heterogeneous network
and start random walk with dual-
end restart

Pt+1 = (1 – r)A´Pt + rP0

The final prediction result is
obtained by linear combination

Score = 𝛽scorem + (1 – 𝛽)scored

Figure 1: The workflow of DRWHMDA for inferring potential microbe-disease associations.
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of all diseases and microorganisms and E represents the
interaction of microorganisms and microorganisms, diseases
and diseases, and diseases and microorganisms. The het-
erogeneous network is represented by n ∗ n adjacency
matrix A, where n represents the number of diseases and
microorganisms. By the similarity between the microor-
ganisms (KM) and the similarity between the diseases
(KD), the coefficients of similarity can construct a hetero-
geneity network. Then, for each adjacency matrix A, if
there is an interaction between Ai and Aj, the i-th row
and j-th column are set to 1, otherwise set to zero. Nor-
malize adjacency matrix A:

A i,j½ �′ =
A i,j½ �

∑n
k=1A k,j½ �

: ð8Þ

2.6. Restart Random Walk Algorithm in Both Directions.
Through heterogeneous networks, random walks are used
to find potential genetic association data between diseases
or microorganisms. By randomly walking to convergence,
you can get the probability of a disease or microbe at
every point in the heterogeneous network. The relation-
ship between microorganisms and diseases is indicated
by calculating the correlation between the probability dis-
tributions of disease and microorganisms.

For a disease, we list all relevant diseases and microor-
ganisms in our known data set, and then our related dis-
eases and microbial collections are the seeds of the
disease. Among them,

Pdis = ψdis¯1, ψdis¯2,⋯,ψdis¯n½ �T : ð9Þ

Among them, the disease-related diseases and micro-
bial aggregates ψdis¯i were set to 1, and the others were
set to zero. Normalize Pdis:

P′dis k½ � =
Pdis k½ �

∑n
k=1Pdis k½ �

: ð10Þ

Similarly, we list all relevant diseases and microorgan-
isms for a certain microbe, we know the data set, and then, we
related diseases and microbial collections as Pmic.

Begin random walks and randomly access adjacent
genes in each time scale (t⟶ t + 1). State probability
Pt+1 at time t + 1:

Pt+1 = 1 − rð ÞA′Pt + rP0, ð11Þ

where Pt is the probability of time t and r is the probabil-
ity of restart. According to previous studies, we set r to 0.7
[19]. If the difference between Pt and Pt+1 is less than 10−6
used in the previous study, the process will reach a steady
state [20, 21]. By using the mapped set Pdis as the seed of
the disease and the mapped set Pmic as the seed of the
microbe, we implemented a two-way random walk algo-
rithm to obtain the association probability scored with dis-
ease as the random seed and the association probability

scorem with microorganism as the random seed. The asso-
ciation probability score between the disease di and the
microorganism mi is finally obtained by linearly combin-
ing the two predicted probabilities.

Score = βscorem + 1 − βð Þscored , ð12Þ

where β represents the parameter of the linear combina-
tion; we set the default value to 0.7.

3. Results

3.1. Performance Evaluation. To verify the predictive perfor-
mance of DRWHMDA, we implemented 5-fold CV and
global LOOCV on the model based on the HMDAD data-
base. In each 5-fold CV, the known correlation matrix Y
is divided into 5-folds; then each fold is taken as a test
set, and the remaining 4 folds are treated as a training
set. On the other hand, in the global LOOCV, each known
microbial-disease association is sequentially excluded from
the test, and other microbial-disease associations are used
as training samples for model learning. Specifically, all
microbial-disease pairs without known evidence of correla-
tion will be considered candidate samples. Further obtain
the rank of each missing test sample relative to the candi-
date sample. Test samples with a prediction level above a
given threshold will be considered to have successfully
predicted. We evaluated the predictive performance of
the model based on the AUC value of the area under
the curve of the receiver. Specifically, only test samples
ranked above a certain threshold can be considered correct
predictions. We then set the true-positive rate (TPR, sensi-
tivity) and false-positive rate (FPR, 1 − specificity) as the
horizontal axis and the vertical axis, respectively. There-
fore, we can draw a receiver operating characteristic
(ROC) curve composed of points corresponding to differ-
ent thresholds and then obtain the area (AUC) under
the ROC curve. A model with an AUC value equal to
0.5 is equivalent to random prediction. When the AUC
takes a maximum of 1, the model has excellent prediction
performance. In other words, when the value of AUC is
greater than 0.5 and less than 1, the larger the value is,
the better the prediction performance of the model.

As shown in Figure 2, the 5-fold CV value of
DRWHMDA was 0.8676, which was significantly larger than
those of KATZHMDA (0.8382), LRLSHMDA (0.8493), and
ABHMDA (0.8571). What was more, the global LOOCV
value of our model reached 0.8897, which was also obviously
better than those of KATZHMDA (0.8644), LRLSHMDA
(0.8843), and ABHMDA (0.8861). These results confirmed
the superior prediction performance of DRWHMDA.

To investigate the selection of restart probability r for
the performance of DRWHMDA, we set various values
of r ranging from 0.1 to 0.9 and calculated AUC in the
framework of 5-fold CV. As shown in Table 1, as the
restart probability r gradually increases, the prediction per-
formance obtained through DRWHMDA increases first
and then decreases.
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3.2. Case Study. In the present study, double-ended random
walks were used to screen candidate microorganisms for all
the investigated diseases. To further evaluate the predictive
performance of DRWHMDA, we included 10,038 unknown
samples in HMDAD, involving 39 diseases and 292 microor-
ganisms. The corresponding unknown samples are classified
and ranked by the DRWHMDA algorithm, and it is verified
whether the relevant literature has verified the association
between the top ten microorganisms and the disease under
study. Among them, an independent case analysis was per-
formed on colon cancer and asthma.

3.3. Relationship between Colon Cancer and Microorganisms.
According to previous research, the intestinal microflora is
the most complex, and it is most closely related to various
behavioral diseases in humans. Imbalance of the human
intestinal microbial flora can lead to autoimmune diseases
[22], obesity [23, 24], inflammatory bowel disease (IBD)
[25], diabetes [26], and even cancer [27, 28]. According to
the world’s leading cancer statistics report, colon cancer has
been a high-risk area for men and women over the past few

decades [29]. Therefore, it is necessary to study the pathogen-
esis of colon cancer in order to explore new treatment
methods. More and more evidences show that the imbalance
of microbial community is closely related to the occurrence
and development of colon cancer. For example, in the
sequence analysis of 16S rRNA gene V3 region in patients
with sporadic colorectal cancer, the protein bacteria are
insufficient [30]; Staphylococcus produces tannase; its activ-
ity may be related to the development of colon cancer [31].
Compared with noncancerous tissues, Lactococcus and
Fusarium are more abundant in cancerous tissues, and Pseu-
domonas and Escherichia coli are less abundant [32]. We
applied DRWHMDA to the first case study of colon cancer.
Of the top 10 predicted microorganisms, 9 have been vali-
dated based on recent experimental literature (see Table 2).
Evidence suggests that Clostridium difficile- (first in the

Table 1: Prediction AUCs of DRWHMDA at different choices of
restart probability r:

DRWHMDA AUC DRWHMDA AUC

r = 0:1 0.8511 r = 0:6 0.8684

r = 0:2 0.8513 r = 0:7 0.8674

r = 0:3 0.8525 r = 0:8 0.8666

r = 0:4 0.8597 r = 0:9 0.8590

r = 0:5 0.8695

0 0.1 0.2 0.3

5–fold CV Global LOOCV

0.4 0.5 0.6 0.7 0.8 0.9 1
FPR
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Figure 2: The ROC curves for DRWHMDA and other approaches in microbe-disease association prediction for 5-fold cross-validation and
global LOOCV.

Table 2: The 10 microbes predicted to be most likely to be
associated with colon cancer.

Microbe Evidence

Clostridium difficile PMID:21152135

Helicobacter pylori PMID:22294430

Protein bacteria PMID:25699023

Prevotella PMID:25699024

Staphylococcus aureus Unconfirmed

Clostridium globosum PMID:18237311

Fermicket PMID:25699024

Bacteroides PMID:25699024

Actinomycetes PMID:26811603

Clostridium PMID:19807912
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prediction list) associated colitis is a known complication of
colon and rectal surgery and can increase morbidity and
mortality during surgery, thereby increasing hospital stay
time and costs [33].

3.4. The Relationship between Asthma and Microbes. Asthma
is a common chronic inflammatory disease of the lungs and
is generally thought to be caused by a combination of
genetic and environmental factors. According to the latest
statistics, the incidence of asthma has been rising in recent
decades, with the number of asthma patients increasing
from 183 million in 1990 to 242 million in 2013. Infection
by pathogenic microorganisms (especially viruses, chla-
mydia, mycoplasma, and mold) is one of the main causes
of severe asthma [34–37]. For example, studies have
shown that Proteus accounts for a higher proportion of
microorganisms in asthma patients and that Firmicutes
are reduced in asthma patients compared to normal peo-
ple. Moreover, there is evidence that when the hypophar-
yngeal area of a newborn is infected with Streptococcus
pneumoniae, the risk of developing asthma is increased
compared to uninfected [38, 39]. Therefore, research on
asthma-related microorganisms is crucial and will help us
to gain a deeper understanding of the pathogenesis and
treatment of asthma. Prioritizing candidate microorgan-
isms by implementing DRWHMDA, recent clinical evi-
dence successfully validated 9 of the top 10 predicted
microorganisms (see Table 3). As for the top five con-
firmed asthma-associated microorganisms, Clostridium
difficile and Staphylococcus aureus (No. 1 and No. 5 in
the prediction table) were found to be increased in num-
ber in airway concentrations in asthma patients, while Fir-
micutes and Actinomycetes were found to be reduced [40].
Importantly, the XIVa subclass of Clostridium globosum
(No. 3 in the prediction table) has been proven to be an
early indicator of future asthma, help prevent and diag-
nose asthma, and provide guidance for clinical treatment.

For clarity, we illustrate in Figure 3 the association net-
work of the top 10 predicted microbial candidates for two
diseases. It is worth noting that some top candidates were
found to be related to several diseases. For example, both Fer-
micket and Clostridium have been documented to prove that

they are related to the occurrence of asthma and colon cancer
at the same time.

4. Discussion

Over the years, a lot of evidence has shown that microor-
ganisms living in the human body are closely related to
human life activities and human diseases. Abnormal levels
of specific microorganisms are closely related to the devel-
opment of various human diseases. Microbial disease-
related knowledge can provide valuable insights into under-
standing complex disease mechanisms and preventing,
diagnosing, and treating various diseases. However, little
work has been done to predict microbial candidates for
large-scale human complex diseases. Therefore, in this
paper, a computational model based on known microbial-
disease correlation is proposed. A microbial similarity net-
work and a disease similarity network are constructed using
Gaussian kernel similarity. Using the existing experimen-
tally validated associations, we connected the two networks.
The double-ended restart random walk method is used to
walk on the network, and the correlation probability order
representing the candidate microorganism-disease associa-
tion is obtained. The construction network with different
correlations is applied to the optimization of prediction
performance, and the optimal prediction parameters are
obtained. The results show that DRWHMDA achieved
average AUC reliability performance of 0.8676 and 0.8897
in the 5-fold cross-validation and LOOCV framework,
respectively. Given its good predictive performance, we
believe that the model can be used as one of the effective
tools to accelerate biomedical identification of underlying
disease-related microorganisms.

Although DRWHMDA has achieved satisfactory results,
this method still has some limitations. First, we only use
Gaussian kernel similarity to construct a similarity network
which is too simplistic. Improving the predictive perfor-
mance of DRWHMDA by integrating disease or microbe
similarity from multiple data sources (such as sequence sim-
ilarity) may help. Secondly, as more and more microbes and
disease associations are identified, collecting more validated
data will help us conduct further research. Finally, we exper-
imentally verify candidate microbes related to the disease,
and some have not been verified in the literature, because
the verification of these candidate microbes through biologi-
cal wet experiments will also be one of the important direc-
tions for our subsequent research.

5. Conclusion

The main goal of the current research is to predict the
microorganisms that may be related to the disease through
the calculation method, thereby reducing the verification
cost of the biological wet experiment, so that people can
more deeply explore the impact of microorganisms on
human complex diseases. Therefore, this paper proposes
a calculation model of microbial disease correlation based
on double-ended random walk. The results show that
DRWHMDA has achieved more reliable and stable

Table 3: The 10 microbes predicted to be most likely to be
associated with asthma.

Microbe Evidence

Clostridium difficile PMID:25974301

Fermicket PMID:23265859

Clostridium globosum PMID:21477358

Actinomycetes PMID:23265859

Staphylococcus aureus PMID:12743582

Lactobacillus PMID:20592920

Clostridium PMID:21477358

Burkholder PMID:24451910

Gracilariaceae PMID:17433177

Lachnospiraceae PMID: 27433177
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prediction performance than other algorithms. We believe
that the model can be used as one of the effective tools for
accelerating biomedical identification of potential disease-
related microorganisms.
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