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Screening for atrial fibrillation (AF) with a handheld device for recording the ECG is

becoming increasingly popular. The poorer signal quality of such ECGs may lead to

false detection of AF, often caused by transient noise. Consequently, the need for expert

review in AF screening can become extensive. A convolutional neural network (CNN) is

proposed for transient noise identification in AF detection. The network is trained using

the events produced by a QRS detector, classified into either true beat detections or

false detections. The CNN and a low-complexity AF detector are trained and tested

using the StrokeStop I database, containing 30-s ECGs from mass screening for AF in

the elderly population. Performance evaluation of the CNN-based quality control using a

subset of the database resulted in sensitivity, specificity, and accuracy of 96.4, 96.9,

and 96.9%, respectively. By inserting the CNN before the AF detector, the false AF

detections were reduced by 22.5% without any loss in sensitivity. The results show that

the number of recordings calling for expert review can be significantly reduced thanks to

the identification of transient noise. The reduction of false AF detections is directly linked

to the time and cost spent on expert review.

Keywords: short-term ECG signals, transient noise, signal quality, handheld devices, mass screening,

convolutional neural network

1. INTRODUCTION

Mass screening using intermittent single-lead ECGs for early detection of atrial fibrillation (AF)
can help identify patients with untreated AF and thereby reduce the risk of ischemic stroke by
oral anticoagulation treatment (Svennberg et al., 2015; Freedman et al., 2017; Platonov and Corino,
2018). The prevalence of AF increases with age, from 1–2% in the general population to as high as
10% in the elderly (age≥ 75) (Freedman et al., 2017). Hence, screening is primarily focused on the
elderly population.

Thanks to recent advances in low-cost technology for recording the ECG with a handheld
device (Lau et al., 2013; Tieleman et al., 2014; Vaes et al., 2014), mass screening in the home
environment has become feasible (Engdahl et al., 2013; Lau et al., 2013; Kearley et al., 2014;
Svennberg et al., 2015; Kaasenbrood et al., 2016; Zink et al., 2021). Screening with handheld devices
may go on for weeks, resulting inmultiple intermittent ECGs, eachwith a duration typically ranging
from 30 to 60 s. However, signals recorded with a handheld device have poorer quality than clinical
signals recorded at rest, mainly due to the presence of motion artifacts and poor electrode contact.
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Transient noise, exemplified in Figure 1, constitutes the main
source of falsely detected QRS complexes, transforming a regular
rhythm into an irregular one falsely detected as AF. Since
screening databases may contain up to hundreds of thousands of
recordings, false AF detections cause an extensive expert review
load which is time-consuming, and, therefore, very costly to deal
with (Freedman et al., 2017; Svennberg et al., 2017).

The review load can be reduced by identifying and excluding
noisy signals segments before further processing is performed.
The identification problem has been addressed from a general
ECG analysis perspective in many studies (Ghaffari et al., 2010;
Clifford et al., 2012; Hayn et al., 2012; Behar et al., 2013;
Orphanidou et al., 2015; Daluwatte et al., 2016; Abdelazez et al.,
2017; Orphanidou and Drobnjak, 2017; Yaghmaie et al., 2018;
Moeyersons et al., 2019; Huerta-Herraiz et al., 2020; Smital et al.,
2020), however, only a few studies have done so in relation to
AF detection (Oster and Clifford, 2015; Taji et al., 2018; Bashar
et al., 2019). Then, the methods for identifying poor-quality
segments have been based on comparing the output of two
different QRS detectors (one being more sensitive to noise than
the other) (Oster and Clifford, 2015), deep belief networks (Taji
et al., 2018), and time–frequency analysis combined with sub-
band decomposition of the ECG signal (Bashar et al., 2019);
the latter two studies did not rely on QRS detection. In these
three studies, the ability to identify poor-quality segments was
evaluated on long-term recordings, using either the Physionet
Long-Term AF Database (Oster and Clifford, 2015), a subset of
the MIT–BIH AF Database (Taji et al., 2018), or a subset of the
MIMIC III database (Bashar et al., 2019). By adding noise to the
ECG recordings, AF detection performance could be presented
as a function of the signal-to-noise ratio in Oster and Clifford

FIGURE 1 | Examples of transient noise observed in ECG screening with a

handheld device.

(2015) and Taji et al. (2018). Noise typical of signals obtained
from screening in the home environment was not considered in
any of these three studies.

The present study proposes and evaluates a novel method
for deep learning-based quality control in AF detection, with
the ultimate goal to reduce the number of recordings requiring
expert review. The quality control, inserted between the QRS
detector and the AF detector, is accomplished by a convolutional
neural network (CNN), trained using good- and poor-quality
recordings. Transient noise is identified by the CNN on an
event-to-event basis, meaning that the events produced by the
QRS detector are classified as either true beat detections, i.e.,
heartbeats, or false detections, i.e., noise. The proposed method
is developed and tested using different subsets of the StrokeStop I
database (Svennberg et al., 2015). To the best of our knowledge,
this study is the first to establish the degree of improvement in AF
detection performance when using CNN-based quality control1.

The remainder of this paper is organized as follows: section 2
describes the database and types of annotation. Section 3
describes the proposed method for quality control and the AF
detector. The results are presented in section 4, then subjected to
discussion in section 5.

2. DATABASE AND ANNOTATIONS

The StrokeStop I database is divided into two parts (denoted SSI-
A and SSI-B) depending on whether or not expert annotation
is provided:

• SSI-A contains 81,063 lead-I ECG recordings from 3,209 75-
or 76-year old subjects. Expert annotation is provided using
the two categories AF and non-AF, assigned to 259 and 80,804
recordings, respectively.

• SSI-B contains the remaining part of the StrokeStop I database
with 114,138 recordings from 3,964 75- or 76-year old subjects.
Since no expert annotation is provided, this part was machine
annotated, see below.

The ECGs were recorded using Zenicor handheld ECG devices
(Zenicor Medical System AB, Sweden) and transmitted to a
center for offline analysis. The recording duration is 30 s. For
each subject, an average of 26 ECGs were recorded over a period
of 2 weeks. Recordings with at least 10 s of AF were, as a whole,
annotated as AF (Svennberg et al., 2015).

The database was approved by the Ethical Review Board of
Karolinska Institute (211/1363-31/3) after informed consent to
all subjects.

Since no expert annotation was provided for SSI-B,
a commercial CE-approved software for ECG analysis
(Cardiolund AB, Lund, Sweden) was used to machine annotate
SSI-B. The machine annotation resulted in the following four
categories: normal rhythm, irregular rhythm, other rhythm (i.e.,
bigeminy, trigeminy, multiple ventricular/supraventricular
ectopic beats, fast/slow sequence, pause/AV blocks), and noise,
having the composition presented in Table 1.

1An early version of the present method and preliminary results obtained on
another database were presented in Halvaei et al. (2020).
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Since the aim of the present study is to reduce the number of
false AF detections, the performance of the proposed approach
is evaluated on recordings which are likely to cause false AF
detections and therefore requiring expert review. Typically, such
recordings are machine annotated by the category irregular
rhythm containing the following entities: AF, irregular rhythms
not part of the category other rhythm, and false irregular rhythms
caused by transient noise. Since SSI-A was expert annotated,
therefore lacking the category irregular rhythm, SSI-A was also
machine annotated to facilitate the creation of the dataset
used for evaluating AF detection performance (see section 3.3).
Note that the above notion “irregular rhythm not part of the
category other rhythm” refers to recordings mainly containing
irregular rhythms, such as short episodes of supraventricular
tachyarrhythmias and runs of ectopic beats.

TABLE 1 | SSI-A and SSI-B composition after machine annotation.

SSI-A (%) SSI-B (%)

Normal rhythm 86.9 84.2

Irregular rhythm 6.9 7.7

Other rhythm 4.0 4.4

Noise 2.2 3.7

3. METHODS

The proposed approach to quality control involves the following
steps: (1) Creation of training, validation, and test datasets
for CNN-based quality control, (2) Training of the CNN,
(3) Creation of training and test datasets for AF detection,
and (4) Optimization of the AF detector parameters. A block
diagram, showing creation of the datasets used for training and
performance evaluation of the CNN and AF detector is presented
in Figure 2.

3.1. CNN Training, Validation, and Test
Datasets
The task of the CNN is to perform quality control on an event-
to-event basis. Using SSI-B, a large number of true beat detections
and false detections were compiled, from good-quality and poor-
quality ECGs, respectively (see Figure 3). Each event is defined
by a 400-ms segment (sampling rate of 1,000 Hz), 150 ms before
and 250 ms after the occurrence time produced by the built-in
QRS detector of the commercial software. The events were scaled
to the range in [0, 1] using min-max normalization.

A total of 34,657 true beat detections were selected from
879 recordings in the machine-annotated categories normal
rhythm, irregular rhythm, and other rhythm. The recordings

FIGURE 2 | Creation of datasets for CNN-based quality control and AF detection training and performance evaluation. The machine annotated categories normal

rhythm, irregular rhythm, other rhythm, and noise are abbreviated to NR, IR, OR, and N, respectively. The number of recordings are indicated by an appended “r” and

the number of events are indicated by an appended “e”.
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FIGURE 3 | Compiling the events, i.e., true beat detections and false detections, for CNN training, validation, and testing.

were manually reviewed to ensure that no false detections
were included.

A total of 10,683 false detections were selected from 262
recordings in the machine annotated category noise. Again, the
selected recordings were manually reviewed but now to ensure
that no true beat detections were included.

Together, the recordings of these two groups make up for 1%
of the total number of recordings in SSI-B.

The training, validation, and test sets were created by 60,
20, and 20%, respectively, of the true beat detections and false
detections. It should be noted that no patient appeared in more
than one of the training, validation, and test sets.

3.2. CNN Training and Architecture
Several CNN architectures were tested and different experiments
were carried out to determine a satisfactory combination of

the number of convolutional layers, fully connected layers, and
pooling layers. In addition, different kernel size, stride size,
dropout rate, batch size, and learning rate were examined. The
search space for determining the best CNN architecture and
fine-tuning is given in Table 2.

The structure of the selected network and the number
of parameters are given in Table 3. Three consecutive 1-D
convolutional layers with the number of filters of 16, 32, and 64,
respectively, where the last two followed by an average pooling
layer, are used to extract and summarize the most pertinent

TABLE 2 | CNN architecture and fine-tuning search space.

Number of convolutional layers [1 2 3 4]

Number of fully-connected layers [1 2 3 4]

Number of kernels [8 16 32 64]

Kernel size [5 10 15]

Stride size [1 2 3]

Number of neurons [10 15 20 25 30 35 40 45 50]

Dropout rate [0.2 0.25 0.3 0.35 0.4 0.45 0.5]

Learning rate [0.01 0.03 0.001 0.003]

Batch size [128 256 512 1,024]

feature maps of the 400-ms signal segment. The kernel size in
convolutional and average pooling layers is set to 10 and 5,
respectively, and the stride size in both is 2. The convolutional
and pooling layers are followed by three fully-connected layers
with the number of neurons set to 40, 40, and 1, respectively.

The number of epochs was set to 200 and the CNNwas trained
with a batch size of 256, using the Adam optimizer with a learning
rate of 0.001.

To account for data imbalance, the weighted binary cross
entropy is used as loss function, defined by:

L = −
1

M

M
∑

i=1

[w1yilog(ŷi)+ w0(1− yi)log(1− ŷi)], (1)
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TABLE 3 | Definition of layers and parameters of the proposed CNN.

Layer Type of layer Number of parameters Number of filters/Neurons Kernel size/Stride Output shape

0 Input layer – – – 400 × 1

1 1D-Conv 176 16 10 / 2 196 × 16

2 1D-Conv 5,152 32 10 / 2 94 × 32

3 Average pooling – – 5 / 2 45 × 32

4 1D-Conv 20,544 64 10 / 2 18 × 64

5 Average pooling – – 5 / 2 7 × 64

6 Fully connected 17,960 40 – 1 × 40

7 Dropout (0.5) – – – 1 × 40

8 Fully connected 1640 10 – 1 × 40

9 Dropout (0.25) – – – 1 × 40

10 Fully connected 41 1 – 1 × 1

TABLE 4 | Composition of the category irregular rhythm in SSI-A resulting from

expert annotation.

AF Non-AF

# of subjects 77 1,471

# of recordings 237 5,349

whereM is the total number of training data, yi is the label of the
i-th training sample, and ŷi is its prediction. The weights w0 and
w1 are associated with the numbers of true beat detections M0

and false detectionsM1, respectively, defined by

wj =
1

Mj

M

2
, j = 0, 1. (2)

In order to avoid overfitting, two dropout layers with the rate
of 0.5 and 0.25 are inserted between the first two convolutional
layers. L2 regularization with penalty weight of 0.01 is applied to
the first convolutional layer. In addition, at the end of each epoch,
L is computed on the CNN validation set to stop training in case
that loss increases.

The Relu activation function is used for the convolutional and
fully-connected layers, except for the final fully-connected layer
which uses a sigmoid activation function. The output sigmoid
layer provides a probability, meaning that an event is identified
as a false detection when its probability is higher than a certain
threshold. This threshold is set to the value which maximizes the
F1-score (defined in section 3.5) on the CNN validation set.

3.3. AF Detection Training and Test
Datasets
Recordings in SSI-A, machine annotated as irregular rhythm,
were used to train and test the AF detector. The category irregular
rhythm of SSI-A contains 5,586 recordings from 1,548 subjects, of
which 237 recordings from 77 subjects were expert annotated as
AF (see Table 4).

The category irregular rhythm was divided into training and
test sets, where recordings from 50% of the subjects were assigned

to the training set and the remaining to the test set. Given that
the number of AF patients is much smaller than the number of
non-AF subjects, the AF patients were divided equally between
the training and the test sets. To reduce the performance bias
resulting from a single data split, the evaluation was repeated 10
times using random splits.

3.4. AF Detection Optimization
In the present study, a variation on the low-complexity AF
detector described in Petrėnas et al. (2015) is used. The detector
explores the fact that AF episodes are associated with irregular
RR intervals. quantified by

3i =
1

(N − 1)(N − 2)

N−2
∑

j=0

N−1
∑

k=j+1

H(γi − |ri(j)− ri(k)|), (3)

where ri(n), n = 0, 1, . . . ,N−1, denotes the RR intervals within a
sliding window whose onset is positioned at the i-th RR interval,
H(·) is the Heaviside step function, and N is the length of the
sliding window. The threshold γi is defined by

γi = α ·median[ri(0), ri(1), . . . , ri(N − 1)], (4)

where α is a constant. Whenever 3i exceeds the threshold η, the
RR intervals in the sliding window are considered irregular:

Oi =

{

1 3i ≥ η,

0 3i ≤ η.
(5)

Finally, AF is detected whenever

1

I

I
∑

i=1

Oi ≥ ηd, (6)

where I is the number of sliding windows accommodated in a 30-
s recording. The threshold ηd is set to 1/3 as recordings with AF
episodes as short as 10 s are annotated as AF.

The parameters N, η, and α are optimized with and without
quality control. The parameter search space is defined by 4 ≤
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N ≤ 8, 0.03 ≤ α ≤ 0.12, and 0.05 ≤ η ≤ 0.95. Subject to the
constraint that sensitivity ≥99%, the parameter values yielding
the lowest false positive rate are determined; these two metrics
are defined in section 3.5.

The above description builds on the assumption that the entire
series of RR intervals is used for AF detection. However, with
quality control, the false detections identified by the CNN need
to be handled before AF detection. This is done by omitting all
sliding windows containing false detections, except when a false
detection occurs between normally spaced true beat detections,
deviating <15% from the median RR interval; then, the false
detection is omitted. It should be noted that with quality control
I is given by the number of windows qualifying for detection.

3.5. Performance Evaluation
Performance is evaluated for the following three situations:
CNN-based quality control, AF detection on a recording basis,
and AF detection on a patient basis.

The metrics sensitivity (Se), specificity (Sp), accuracy (Acc),
false positive rate (FPR), and positive predictive value (PPV) are
used, defined by

Se =
NTP

NTP + NFN
, (7)

Sp =
NTN

NTN + NFP
, (8)

Acc =
NTP + NTN

NTP + NFP + NTN + NFN
, (9)

FPR = 1− Sp =
NFP

NTN + NFP
, (10)

PPV =
NTP

NTP + NFP
, (11)

F1 =
2× Se× PPV

Se+ PPV
, (12)

respectively. The interpretation of NTP, NFP, NTN , and NFN

depends on the situation in which performance is evaluated,
see below.

3.5.1. CNN-Based Quality Control Performance
In this case, NTP is the number of false detections manually
annotated as false detections, NTN is the number of true beat
detections manually annotated as true beat detections, NFP is
the number of false detections manually annotated as true beat
detections, and NFN is the number of true beat detections
manually annotated as false detections. Sensitivity, specificity,
and accuracy and F1-score are computed in this case.

3.5.2. AF Detector Performance on a Recording Basis
In this case, NTP is the number of recordings detected as AF
and expert annotated as AF, NTN is the number of recordings
detected as non-AF and expert annotated as non-AF, NFP is the
number of recordings detected as AF and expert annotated as
non-AF, and NFN is the number of recordings detected as non-
AF and expert annotated as AF. Sensitivity, false positive rate, and
positive predictive value are computed.

TABLE 5 | CNN performance on the test set.

Sensitivity Specificity Accuracy F1-score

CNN test set 96.4% 96.9% 96.9% 92.5%

FIGURE 4 | Percentage of the total number of detections belonging to the

recordings in the category irregular rhythm identified as false detections.

3.5.3. AF Detector Performance on a Patient Basis
In this case, NTP is the number of detected AF patients expert
annotated as AF, and NFN is the number of patients detected
as non-AF expert annotated as AF. Sensitivity is only computed
in this case as the goal is to determine whether all AF patients
are detected.

4. RESULTS

4.1. CNN-Based Quality Control
Performance
The performance of the trained CNN is evaluated on the test set
described in section 3.1, containing true beat detections and false
detections. Using the threshold obtained by maximizing the F1-
score on the CNN validation set, i.e., 0.75, the following figures
resulted: Se = 96.4%, Sp = 96.9%, Acc = 96.9%, and F1-score =
92.5% (see Table 5).

The effect of applying quality control to the SSI-A recordings
machine annotated as irregular rhythm is shown in Figure 4,
presented as the percentage of the total number of events
identified as false detections. Out of the 5,586 recordings
annotated as irregular rhythm, 2,693 have at least 5% of all
detections identified as false, whereas 2,893 recordings have<5%.

The performance is illustrated by two examples in Figure 5,
where the many false detections are correctly excluded,
but none of the true beat detections. Thanks to quality
control, the AF detector correctly identifies a non-AF
rhythm instead of AF, which otherwise would have been
the case.
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FIGURE 5 | Without quality control, these two recordings are falsely detected

as AF due to the rhythm irregularity caused by transient noise. By identifying

and excluding transients (red crosses) before AF detection, the two recordings

are correctly detected as non-AF; true beat detections are indicated with blue

dots.

TABLE 6 | AF detection performance with and without quality control using

optimal parameter values.

Se FPR PPV

Without quality control

N = 8, α = 0.07, η = 0.55 99.0 ± 0.6% 87.5 ± 0.7% 4.6 ± 0.4%

With quality control

N = 4, α = 0.04, η = 0.65 99.0 ± 0.6% 65.0 ± 1.4% 6.2 ± 0.5%

4.2. AF Detector Performance on a
Recording Basis
Using the training sets described in section 3.3, the optimal values
of N, α, and η are found to be 8, 0.07 and 0.55, respectively,
without quality control. Not surprisingly, the optimal N is
lowered from 8 to 4 when quality control is introduced, whereas
α and η are found to be 0.04 and 0.65, respectively. Using
the optimal values, the performance is determined on the 10
randomly split test sets with and without quality control (see
Table 6). With quality control, a considerable improvement
in FPR results, decreasing from 87.5 ± 0.7 to 65.0 ± 1.3%,
without any loss in sensitivity; the PPV increases from 4.6 to
6.2%. Without quality control, this result implies that at least
22 recordings are needed for review to find one AF recording
(≈100/4.6). With quality control, the corresponding number
decreases to 16 (≈100/6.2).

The confusion matrix of a randomly sampled test set is
presented in Table 7. Without quality control, the sum of NTP =

106 and NFP = 2,405 means that 2,511 recordings require

TABLE 7 | Confusion matrix for AF detection with and without quality control.

AF detection outcome

Without quality control With quality control

AF Non-AF AF Non-AF

Expert annotation
AF 106 1 106 1

Non-AF 2,405 318 1,807 916

expert review. With quality control, this number drops to 1,913
recordings. Thus, 598 fewer recordings require expert review
when quality control is applied.

4.3. AF Detector Performance on a Patient
Basis
Since multiple recordings are available for each subject, the 99.0
± 0.6% sensitivity obtained for both without and with quality
control (see Table 6), shows that no AF patient is missed. Thus,
100% sensitivity is achieved when evaluating performance on a
patient basis.

5. DISCUSSION

AF screening in the elderly population requires expert review
of a huge number of recordings (Svennberg et al., 2015). The
presence of transient noise in screening ECGs causes many false
detections which, in turn, result in false detections of irregular
rhythms. In the present study, the problem of identifying and
excluding transient noise before performing AF detection is
investigated. The results show that a considerable number of false
AF detections can be avoided using CNN-based quality control.

5.1. CNN Design and Training
CNNs have found their way into various ECG applications,
including arrhythmia detection (Rubin et al., 2018; Yıldırım
et al., 2018; Hannun et al., 2019; Niu et al., 2020), AF
detection (Andersen et al., 2019; Dang et al., 2019; Fujita
and Cimr, 2019), heartbeat classification (Kiranyaz et al.,
2016), QRS detection (Silva et al., 2020), and signal quality
assessment (Huerta-Herraiz et al., 2020). Concerning the
approach taken to signal quality assessment in Huerta-Herraiz
et al. (2020), consecutive 5-s ECG segments were inputted
to the CNN which assigned a label (high- or low-quality)
to each segment; similar segment-based approaches were also
investigated in Clifford et al. (2012) and Behar et al. (2013), but
then based on traditional machine learning. In the present study,
a CNN interleaved with an AF detector is proposed for quality
control, differing from Clifford et al. (2012), Behar et al. (2013),
and Huerta-Herraiz et al. (2020) insofar as the CNN operates on
an event-to-event basis.

One reason for pursuing an event-based approach is due
to the fact that atrial activity cannot be reliably analyzed
in lead I, commonly recorded with a handheld device, and,
therefore, rhythm-basedAF detection appears as a natural choice.
Another reason is that the performance of a rhythm-based
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AF detector depends heavily on the performance of the QRS
detector (Sörnmo et al., 2018; Butkuvienė et al., 2021). An event
is defined by a 400-ms window centered around the occurrence
time of a QRS complex. While QRS duration and morphology
can vary from subject to subject, a 400-ms window ensures that
the entire heartbeat is contained in the window. The effect of
inserting a CNN after QRS detection for suppression of false
detections was investigated in Silva et al. (2020), also operating
on an event-to-event basis but using an 800-ms window. In
that study, however, only recordings without arrhythmia were
analyzed, whereas, in the present study, the vast majority of
recordings contain arrhythmias, making an 800-ms window
unsuitable as it may contain multiple events.

The CNN was trained using true beat detections selected
from good-quality recordings and false detections from poor-
quality recordings. Given the huge size of SSI-B and the lack
of expert annotation, a manual search for noisy signals was
deemed unfeasible. Instead, machine annotation was employed
to identify false detections in poor-quality recordings well-suited
for CNN training. An alternative approach would have been to
insert false detections by simulating transient noise to create
a large, balanced dataset. However, the proposed approach for
collecting false detections resulted in more than 10,000 false
detections (and about 35,000 true beat detections) which was
deemed sufficient. This size of dataset is similar to the one
used for training, validation, and testing of a CNN for ECG-
based detection of myocardial infarction (Acharya et al., 2017).
In addition, a weighted loss function was used to account for
data imbalance.

5.2. AF Detection in Mass Screening
The low-complexity AF detector is well-suited for handling short
recordings obtained by a handheld device, particularly in those
cases when the 30-s duration decreases due to the exclusion of
false detections. The detector, offering good performance on the
MIT–BIH AF Database (Petrėnas et al., 2015; Sörnmo et al.,
2018), makes use of a short sliding window whose length is set
to either 4 or 8 RR intervals depending on whether or not quality
control is used. This length stands in contrast to the fact that most
well-performing AF detectors require a much longer window,
ranging from 32 to 128, with longer windows yielding better
performance (Dash et al., 2009; Huang et al., 2010; Lian et al.,
2011). The decisions made by the low-complexity detector can
easily be traced and interpreted, while the internal rules of the
CNN-based quality control distinguishing good-quality ECGs
from noise have yet to be established. However, knowledge on
what characterizes transient noise is of much less interest than
that which characterizes AF.

Since the primary goal of mass screening is to detect all AF
patients, a sensitivity very close to 100% is essential. While the
achieved sensitivity on the 10 randomly split test sets was 99.0
± 0.6% (cf. Table 6), no AF patient was missed thanks to the
availability of multiple recordings.

The main result of the present study is that the FPR is reduced
by as much as 22.5%, i.e., from 87.5 to 65.0%. This reduction has
particular clinical significance as it is achieved on a dataset which
required expert review to confirm the presence of AF.

For comparison, AF detection performance was evaluated
on the PhysioNet/CinC Challenge AF database (Clifford et al.,
2017) using recordings machine annotated as irregular rhythm
(and thus requiring expert review); recordings with inverted
measurements were omitted as the CNN was not trained on such
recordings. Without quality control, the sensitivity was 98.7%
and the FPR 83.0%. With quality control, the sensitivity was
slightly reduced to 98.0% while the FPR dropped to 70.1%, i.e.,
a reduction of 12.9% to be compared with the 22.5% obtained on
our dataset.

The lower false alarm reduction obtained on the Challenge
database may be explained by the following two reasons: the
SSI database is a large mass-screening database with 195,000
recordings from more than 7,000 75- and 76-year old subjects,
while the Challenge database is compiled of recordings from an
unknown population and preselected for the challenge. Hence,
the Challenge database is not directly comparable regarding
the presence of transient noise. Another reason is that the SSI
database required at least 10 s of AF to be expert annotated as
AF. Since no such criterion has been declared for the Challenge
database, applying a detector trained on the SSI database is likely
not optimal.

5.3. Comparison to Studies on ECG Quality
Assessment
As mentioned in section 1 many methods assessing signal quality
have been proposed over the years. Performance has been
quantified by comparing how well the assessment agrees with
annotated poor-quality segments of one or several databases. In
one of those studies, the ECGs obtained from the intensive care
unit were analyzed and signal quality assessed in 10-s segments
to determine the extent with which poor-quality signals cause
arrhythmia alarms (Behar et al., 2013). The authors came to the
important conclusion that quality assessment should be rhythm-
specific. However, when evaluating performance, segments with
transient noise were omitted before computing the results due to
probable label disagreement between the annotators.

The earlier mentioned CNN-based approach for detecting
poor-quality segments (Huerta-Herraiz et al., 2020) analyzed
three different databases with ECGs from wearable devices. The
CNN was better in discriminating high-quality from low-quality
ECGs than the method in Clifford et al. (2012). The percentage
of segments labeled as AF when classified as high quality were
presented in Huerta-Herraiz et al. (2020), but no information on
AF detection performance.

The above-mentioned approaches to signal quality assessment
analyze and classify entire 5- or 10-segment, whereas the present
approach operates on an event-to-event basis. While quality
assessment on an event-to-event basis has been used before, e.g.,
to compute a set of heuristic, event-related parameters reflecting
signal quality (Hayn et al., 2012) or a dynamic signal quality
index (Yaghmaie et al., 2018), its significance in AF detection has
not been the subject of investigation.

Interestingly, few studies have been published investigating
the influence of poor signal quality on the subsequent rhythm
analysis. With the aim to reduce the number of false AF
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detections, a time–frequency technique was employed to detect
various types of artifacts (Bashar et al., 2019). The 94% reduction
in false AF detections, reported in that study, is impressive when
compared to the much more modest 22.5% reduction in the
present study. However, a comparison is not meaningful since
the present results are obtained on a subset of recordings which
required expert review, whereas no such criterion was applied
in Bashar et al. (2019) when creating the MIMIC III subset.

5.4. Limitations
A limitation is that the CNN is trained on detections from
lead I, and, therefore, needs to be re-trained if another lead is
to be processed. Another limitation is that the performance of
the proposed method for quality control is not compared to
that of any other method. This is due to the lack of studies
investigating the effect of transient noise identification on AF
detection performance.

6. CONCLUSIONS

This paper presents a CNN-based approach to identifying and
excluding transient noise, being a major cause of false alarms and
extensive expert review in mass screening. The reduction of false
AF detections by 22.5% in the elderly population was achieved
on a subset in which AF is difficult to distinguish from non-
AF, and, therefore, typically require expert review. The reduced
number of false AF detections translates to lower review burden
and, accordingly, lower cost.
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