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Abstract: Cattle are an established reservoir of the foodborne bacterial pathogen Campylobacter jejuni.
Our six-month study aimed to evaluate sources and pathways governing long-term presence of
C. jejuni in a pasture-based dairy herd. C. jejuni was detected in all sample types (soil, pasture,
stock drinking water, bird, rodents and cow faeces). It was persistently detected from cow (54%;
49/90 samples) and bird (36%; 77/211) faeces. Genetic comparison of 252 C. jejuni isolates identified
30 Multi-Locus Sequence Types (ST). ST-61 and ST-42 were persistent in the herd and accounted
for 43% of the cow isolates. They were also detected on pasture collected from fields both recently
and not recently grazed, indicating that grazed pasture is an important pathway and reservoir for
horizontal transmission among cows. ST-61 accounted for 9% of the bird isolates and was detected
at four of the six sampling events, suggesting that bird populations might contribute to the cycling
of ruminant-adapted genotypes on-farm. Overall, the results indicated that management of grazed
pasture and supplementary feed contaminated by bird droppings could be targeted to effectively
reduce transmission of C. jejuni to dairy herds, the farm environment and ultimately to humans.
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1. Introduction

Campylobacter jejuni (C. jejuni) is an important bacterial pathogen responsible for acute
gastroenteritis worldwide [1]. The burden of Campylobacter infections is substantial; campylobacteriosis
accounts for about 1.5 million cases of infectious illness in the United States annually [2] and since 2005
has been the most reported gastrointestinal bacterial pathogen in the European Union [3]. In Africa,
Asia, and the Middle East, Campylobacter infections appear to be endemic, particularly in young
children [4]. Post-infection neuropathies can be severe and include Guillan-Barré and Miller Fisher
syndromes [4].

C. jejuni is widely distributed in most warm-blooded animals, with chickens and cattle identified
as the predominant sources from which transmission to humans can occur [5,6]. The transmission
pathway to humans is foodborne, via consumption of undercooked poultry, raw milk or vegetables
contaminated with animal faeces or effluents [7–9]. Direct contact with dairy animals [10] or contact with
contaminated recreational waters [11] have also been identified as risk factors for campylobacteriosis.
The role of cattle in human infection is further supported by an increased risk of campylobacteriosis
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in rural areas [12], during flooding of vegetable fields [13] and with periods of high surface-water
overland flow combined with cattle grazing [14].

One of the strategies to prevent the disease caused by C. jejuni is incorporation of control measures
at the primary source (i.e., the animal reservoir) [15]. In New Zealand and Iceland, good hygiene
and biosecurity measures have proven to be effective in closed housing production systems used for
poultry [16]. However, if open pasture is used for grazing cattle, environmental control measures are
more challenging. Previous studies have established the prevalence and genotypes of enteric bacteria,
such as C. jejuni, in dairy cows and their environment, including livestock drinking water [17–19],
wild birds and mammals living in close proximity to the livestock [20,21]. There is however limited
longitudinal data on contamination of multiple farm environments and reservoirs with cattle shedding
these pathogens in their faeces, which is required for herd-level epidemiology.

The objective of the present study was to identify the sources and pathways governing the
persistence of C. jejuni in a dairy herd by establishing (i) the temporal variation in the occurrence
of C. jejuni isolated from farm animals, wildlife and environment, and (ii) the genetic relatedness of
C. jejuni isolates.

2. Materials and Methods

2.1. Study Site

The study was performed on a commercial dairy farm in a temperate region (Waikato district)
of New Zealand. A herd of 454 cows was farmed on 83 ha of farmland. The cows were grazed on
pasture throughout the study and received supplementary feed (including palm kernel, maize silage,
and soya meal). Feed was kept in open barns or bunkers and was partially covered. When not on
pasture, the cows were kept on two 620 m2 wall-free shelters comprising a clear roof, slatted concrete
floors and an under-floor manure bunker. These facilities were used for 2–10 h per day by the cows.
Stock drinking water was sourced from a bore.

2.2. Sampling Collection

Samples were collected from the farm once a month for six months (May to October, covering
winter and spring seasons). At each visit, cow fecal samples (50–200 g) were collected from faeces
freshly voided on a field that was grazed for up to 12 h before sampling. Cross-contamination during
sampling was avoided using single-use plastic spoons. Environmental samples were collected from the
field the cows were currently in and from the field to be grazed next (no grazing or irrigation with farm
dairy effluents for 21 days). For each field, a composite pasture sample (about 300 g) was collected by
bulking herbage from 15 sites at evenly spaced intervals along one diagonal transect line, avoiding dung
and urine patches. Herbage was clipped at approx. 5 cm above ground level using sterile scissors and
placed in a clean plastic bag. A composite soil sample (approx. 150 g) was collected by bulking a total
of 15 soil cores (diameter 2 cm and soil depth 0–5 cm) manually excavated at the pasture collection
sites by using a stainless-steel soil corer. For each field, a one-litre water sample was collected by
immersing a sample bottle in the top layer of the water column of the livestock drinking water. At each
visit, a one-litre livestock drinking water sample was also collected from the animal shelters using the
same procedure. At each visit, up to 45 individual moist bird droppings were collected from the fences,
rails and edges of the concrete feed bunkers and cow shelters. Single droppings were transferred to
a screw lid vial using sterile tweezers. When found in the area of supplementary feed and animal
shelter, rat faeces were collected using sterile tweezers and placed as single pellets into screw-lid vials.
All samples were placed in an insulated box, transported to the laboratory and analysed within 6 h
of collection.
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2.3. Cultivation and Identification of C. jejuni

The presence of C. jejuni was determined from a representative subsample of each solid sample
using selective enrichment in Campylobacter modified Exeter broth (mExBr) followed by a secondary
selection on mCCDA agar as described in the NZ Reference method [22]. Ratios in mExBr were
1:30 (w/v) for cow faeces, 1:10 (w/v) for soil samples, 1:5 (w/v) for pasture. Five hundred millilitres of
each trough water sample was filtered through 0.45 µm filters, which were then placed in 75 mL mExBr.
More than one filter was required if samples were turbid. Each individual bird dropping or rat faeces
was added directly to 10 mL of mExBr. After 48 h incubation at 42 ◦C, a 20 µL volume of the enriched
mExBr was transferred to a mCCDA plate and grown in a microaerophilic atmosphere at 42 ◦C for
24 h. The presence of C. jejuni on mCCDA was confirmed by PCR with a primer pair specific for
C. jejuni [23]. Bacterial cells were stored in charcoal Amies transport medium (Fort Richard Laboratory
Ltd., Auckland, New Zealand) at −80 ◦C until purification of single-colony isolates for genotyping.

2.4. Genotyping of C. jejuni Single-Colony Isolates by Enterobacterial Repetitive Intergenic Consensus
(ERIC)-PCR and Multi Locus Sequence Typing (MLST)

Up to two single colonies were genotyped for each C. jejuni-positive sample. Resuscitation of
the cells stored in charcoal Amies transport medium and isolation of single colonies were performed
using the conditions described above. DNA purification and ERIC-PCR analyses were performed
as previously described [24]. The ERIC profiles were compared in two stages. For each of the six
sampling visits, the DNA of single-colony isolates from each individual sample was first compared
to each other to determine the occurrence of ERIC types at a sampling time. DNA of representative
single-colony isolates from each sampling was then successively compared with those of the other
sampling visits. Profiles were assigned a numerical sequence applied randomly (i.e., ERIC-type 1
to ERIC-type 30). C. jejuni isolates (n = 37) representative of the ERIC types obtained during the
study were further characterized by MLST for their association with human infections and with
other animal reservoirs. MLST analyses were conducted by mEpiLab (Hopkirk Research Institute,
Massey University, Palmerston North, New Zealand). Sequence data were collated, and alleles
assigned as sequence type (ST) and clonal complex (CC) using the Campylobacter PubMLST database
(http://pubmlst.org/campylobacter/).

2.5. Statistical Analysis

A generalized linear model with a logit link function was used to investigate the relationship
between the proportion of C. jejuni positive samples and the explanatory variables sampling month
and sample type. Both explanatory variables were included in the model as factors. Rarefaction curves
were created using the Vegan R package [25,26] to assess C. jejuni population diversity in the cows and
the birds. The R software program was used for data manipulation and statistical analysis.

3. Results

3.1. Prevalence of C. jejuni in the Cows and the Farm Environment

The overall prevalence of C. jejuni in the samples collected over a 6-month period at the study farm
was 42% (154/369 samples) (Table 1). C. jejuni prevalence varied among sample types as well as between
sampling months (p < 0.001). C. jejuni was detected in both cow faeces and bird droppings at each
sampling occasion, at prevalences of 54% (49/90 samples) in cows and 36% (77/211) in birds. The highest
rates of prevalence were in Spring, in both August and September for cows and in September for
birds. C. jejuni was also found in rat faeces (6/7 samples), which were found only at the August and
September samplings. In fields recently (<24 h) grazed by the cows, C. jejuni was repeatedly detected
in pasture (69%, 9/13 samples), soil (38%, 5/13) and livestock drinking water (21%, 4/19). In the fields
not recently (>21 days) grazed or effluent-irrigated, it was found in the pasture samples at four of the
six samplings occasions but was not detected in the soil (0/6) or livestock drinking water (0/5) samples.

http://pubmlst.org/campylobacter/
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Table 1. Occurrence of C. jejuni in cows, wildlife and farm environment during the study period.

Sample Type
Number C. jejuni-Positive Sample/Total Samples (%)

May June July Aug Sept Oct Total

Cows faeces 4/15 (27) 8/15 (53) 8/15 (53) 12/15 (80) 10/15 (67) 7/15 (47) 49/90 (54)
Pasture 1/2 (50) 1/3 (33) 2/3 (67) 3/4 (75) 4/4 (100) 2/3 (67) 13/19 (68)

Soil 0/2 (0) 1/3 (33) 1/3 (33) 2/4 (50) 1/4 (25) 0/3 (0) 5/19 (26)
Water 0/3 (0) 0/3 (0) 1/4 (25) 0/5 (0) 1/5 (20) 2/3 (67) 4/23 (17)

Bird droppings 2/12 (17) 13/35 (37) 12/41 (29) 15/45 (33) 25/42 (60) 10/36 (28) 77/211 (36)
Rat faeces 0/0 (0) 0/0 (0) 0/0 (0) 0/1 (0) 6/6 (100) 0/0 (0) 6/7 (86)

Total 154/369 (42)

3.2. Characterization of C. jejuni Isolates

A total of 252 C. jejuni isolates were obtained from the animal and environmental samples. All the
isolates were characterised by ERIC-PCR into 30 distinct ERIC types at a similarity cut-off value of
90%. The most prevalent ERIC types were types 1 (n = 40, 16%), 2 (n = 34, 13%) and 6 (n = 35, 14%),
followed by types 17 (n = 22, 9%), 12 (n = 19, 7%) and 13 (n = 16, 6%). The remaining 24 ERIC-types
collectively represented 35% of the entire data set. MLST analysis identified 12 C. jejuni sequence types
(STs) grouped into 10 clonal complexes (CCs). One MLST sequence type from bird isolates has not been
previously assigned (ERIC type 17). Four representative ERIC types (23, 8, 2 and 18) were unidentified
by MLST.

3.2.1. Ruminant Isolates

A total of 14 ERIC-types representative of seven sequence types were identified from the cow
isolates dataset (n = 87) (Table 2). Two ERIC-types (1 and 6) were the most common in the cows,
accounting for 43% of the total cow isolates and detected on five of the six sampling occasions (Table 3).
These two types belonged to MLST ST-61 and ST-42, respectively. ERIC types (2 and 17), which were
assigned to new STs, were also common in the cows (15 and 10% of cow isolates; detected on 2 and
5 occasions). ERIC type 13, assigned to ST-38, represented 10% of the cow isolates. The remaining
9 ERIC types, representing six sequences types, occurred only once in the cow dataset.

Table 2. Relative distribution of C. jejuni ERIC genotypes within cows, birds, and environmental
datasets. The rodent dataset (9 isolates) was not included in the table.

ERIC
Genotype

Total
Number

of Isolates

% Isolates within Datasets MLST

Cow
(n = 87)

Birds
(n = 116)

Environment
(Pasture, Soil, Water)

(n = 40)
Sequence Type Clonal

Complex

1 40 23 5 35 ST-61 CC-61
5 3 2 1 0 ST-61

6 35 20 9 20 ST-42 CC-42
7 4 4 0 0 ST-42
29 3 3 0 0 ST-42
4 1 0 1 0 ST-42

12 17 2 13 0 ST-45 CC-45
30 4 2 2 0 ST-45
10 6 0 5 0 ST-45
27 7 0 6 0 ST-45
25 3 0 3 0 ST-45
11 1 1 0 0 ST-45
20 1 0 0 3 ST-45
24 1 0 1 0 ST-583

13 16 10 4 5 ST-38 CC-38
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Table 2. Cont.

ERIC
Genotype

Total
Number

of Isolates

% Isolates within Datasets MLST

Cow
(n = 87)

Birds
(n = 116)

Environment
(Pasture, Soil, Water)

(n = 40)
Sequence Type Clonal

Complex

21 5 0 1 10 ST-50 CC-21
3 5 2 2 3 ST-50
14 5 1 3 0 ST-4337

22 7 0 3 10 ST-2345 CC-206
19 2 2 0 0 ST-2345

9 4 0 3 0 ST-2026 CC-403

16 3 0 3 0 ST-2343 CC-48

26 2 0 2 0 ST-508 CC-508
28 2 0 2 0 ST-508

15 1 0 1 0 ST-682 CC-682

17 22 15 8 0 ST-10821
23 6 0 5 0 Not identified
8 1 0 1 0 Not identified
2 34 10 17 13 Not identified
18 2 0 1 3 Not identified

Table 3. Monthly detection of C. jejuni ERIC genotypes in cows, wildlife and the farm environment
during the study period. Each genotype was assigned a numerical sequence (i.e., ERIC-type 1 to
ERIC-type 30).

Sample Type
C. jejuni ERIC Genotypes

May June July Aug Sept Oct

Cows faeces 1, 6, 12, 17 1, 6, 13, 17 7, 11, 13, 17,
29 1, 2, 3, 5, 6 1, 2, 6, 13,

17, 30
1, 6, 14, 17,

19
Pasture 1, 13 22 2, 6, 20 2, 3, 6, 1, 2, 13 1

Soil 22 6 1, 6
Water 1 18 21

Birds droppings 10 4, 6, 8, 9, 12, 18,
22, 25, 26, 27

1, 2, 5, 6, 12,
14, 17, 23

2, 3, 6, 12, 14,
17, 24, 27

1, 2, 6, 13,
27, 30

9, 10, 12, 15,
16, 21, 27, 28

Rat faeces 12, 30

3.2.2. Wildlife Isolates

From the bird dataset (n = 116 isolates), a total of 25 ERIC-types, representative of 13 sequence
types, were identified. Comparison of C. jejuni genetic diversity by sample type-based rarefaction
curves revealed a greater ERIC-type diversity in bird isolates compared to bovine isolates (Figure 1).
ERIC-types 2 and 12 (ST-45) were the most commonly detected in the birds. They were represented by
17% and 13% of the bird dataset, and were found at three and four sampling occasions, respectively.
The ERIC-types 6 (ST-42), 17 (ST-10821) and 27 (ST-45) were represented by 10, 9 and 7 isolates,
respectively (9 to 6% of the bird dataset). Both ERIC-types 6 and 27 were stable in the bird population,
each detected on four of the six sampling times. The remaining 20 ERIC-types were represented by
six isolates or less (<5% of the bird dataset). They were often detected once in the birds during the
study. The exceptions were ERIC-type 10 (ST-45), which was detected at three sampling occasions,
and ERIC-types 1 (ST-61), 9 (ST-2026) and 13 (ST-38), which were detected on two sampling occasions.
Of the 20 ERIC-types detected from time to time in the bird dataset, six were shared with the cow
dataset. Of the seven ERIC types that were assigned to sequence type ST-45, five were detected in
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the bird dataset, in which they accounted for a total of 29% of the bird dataset. From the rat faeces
(n = 9 isolates), two ERIC-types (12 and 30) were identified, both assigned to ST-45.Microorganisms 2020, 8, x FOR PEER REVIEW 6 of 11 
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Figure 1. Rarefaction curves of C. jejuni population in cow faeces (blue) and wild bird droppings (red)
during the study period.

3.2.3. Farm Environment Isolates

The environmental isolates (n = 40) were obtained from fields recently grazed or effluent irrigated,
as well as from fields free from fresh faecal deposits from dairy cows. In total, nine ERIC-types
were identified, representative of 8 sequence types, of which one was new, and one was unassigned.
The most commonly encountered ERIC-type was ERIC-type 31 (17 isolates; 32% of the environmental
dataset), which was representative of ST-50. This type was detected at a single sampling visit (October);
it was not detected in the cows during the study. Two other types commonly detected in the farm
environment were ERIC-type 1 (14 isolates, 26% of the environmental dataset) and ERIC-type 6
(8 isolates, 15% of the environmental dataset). Four ERIC-types (1, 2, 3 and 6) were detected in fields
not recently grazed by the cows or irrigated with animal effluents; they were each detected at one or
two occasions in pasture.

4. Discussion

Establishing the occurrence and genetic diversity of zoonotic organisms in livestock farms can
provide information on transmission dynamics, persistence or emergence of zoonosis. The results
of our longitudinal dataset confirmed the temporal persistence and high prevalence of C. jejuni in
dairy farms, as previously reported [24]. Analysis of the genotypic composition of the isolated C. jejuni
population by comparative multilocus sequence typing (MLST) revealed that the most abundant
and stable genotypes in the studied herd were ST-61 and ST-42 complexes. The observed stability of
some genotypes in adult cattle herds over time is consistent with other longitudinal studies [20,27,28].
It has been attributed to a small number of C. jejuni sources, adaptation of particular MLST types and
transmission of the organism among animals that are held in close proximity [17,29,30]. Worldwide,
the ST-61 and ST-42 complexes have been identified as examples of specialist lineages associated with
cattle [31]. They also represent an important component of the genotypes known to be associated with
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ruminants in New Zealand [6,32], supporting the hypothesis that these ruminant-adapted genotypes are
readily transmitted in a dairy herd. Taken together, our findings suggest that cow to cow transmission
is important for persistence of ruminant-adapted C. jejuni.

Several routes have been proposed for dissemination of C. jejuni on dairy farms, including direct
animal contact and mutual grooming [33], and aerosolization or splatter of faeces onto surfaces such as
boots, tractors or even silage [20,34]. As expected, the C. jejuni genotypes detected in the environment,
principally in recently grazed fields, were similar to those detected in the cows, confirming that pasture,
soil and water contaminated with cow faeces may contribute to indirect horizontal transmission [17,35].
The chosen sampling protocol, which was designed to analyse a representative sample for each sample
type, revealed a high prevalence of C. jejuni on pasture, implying a high risk of exposure and ingestion
of C. jejuni. The composite sampling design may however have influenced our ability to detect C. jejuni
in the soil underneath sampled pasture and in drinking trough water. It is possible that contamination
of soil was heterogeneous at the scale of a field, as it has been seen with other zoonotic bacteria [36]
and that differences in prevalence among the different sample types could be due to the sample size or
physical properties affecting the success of the homogenization step. Pasture has not been previously
highlighted as an important vector for transmission of C. jejuni among ruminants, but it has been
reported that dairy cows would prefer to consume vegetation not contaminated with fresh faeces [37].
The analysis of a larger number of environmental samples from a field, as well as determination of
pasture consumption behaviours are recommended to identify environmental hot spots and to more
accurately quantify the role of pasture, soil, and water to maintain C. jejuni prevalence in dairy herds.

It has been proposed that a change of fields can shift a zoonotic population over time in ruminant
herds due to the introduction of new genotypes [38]. In our study where different fields were analysed,
the ruminant-associated genotypes ST-61 and ST-42 were occasionally isolated from pastures that
had not been recently grazed or irrigated with animal effluents. The presence of ST-61 and ST-42
in these fields is in contradiction with a study in a 100-km2 farmland in England, which reported
that ruminant genotypes were the least likely to be found in the environment [27]. Different farming
systems, paddock rotation practices or seasonal prevalence might explain the discrepancies between
the two studies, but our data suggests that the number of ruminant-associated C. jejuni cells that were
initially shed on pasture is important for environmental persistence and re-infection of the dairy herd
during the next grazing period. This hypothesis is supported by the common presence of ST-61 and
ST-42 in cow faeces where C. jejuni concentration was greater than 3 log10 per g (fresh weight) [24].
Faecal loadings and environmental concentration of specific genotypes are warranted in further
epidemiological studies.

Frequent contact opportunities between wildlife and farmed animals can facilitate pathogen spill
over from wildlife to livestock and vice versa [39], and many epidemiology studies have discussed
C. jejuni transmission between wild birds and livestock [20,34,40]. While the available literature has
focused on bird species in a large range of habitat settings such as urban areas [41], feedlots [42],
and large geographical areas [43], our longitudinal monitoring provided insight into the dynamics of
C. jejuni populations between ruminant and birds on a farm. The bird community was C. jejuni-positive
for the entire duration of the study, with an overall prevalence similar to that previously reported [20,44].
The bird population also carried a wide range of C. jejuni strains, as observed in other farm studies [44,45].
The prevalence and diversity of C. jejuni in the wild bird population has been associated with the bird
taxa and feeding habits [46]. In our study, large flocks of house sparrows (Passer domesticus), silvereyes
(Zosterops lateralis), Indian mynas (Acridotheres tristis) and starlings (Sturnus vulgaris) were observed
foraging in the supplementary feed and water troughs, as well as around stores of supplementary
feed that were left uncovered. A rapid turnover and re-colonization of starlings with different C. jejuni
genotypes has been reported [45], however the persistent presence of ST-42 and ST-61 (ERIC types
1 and 6) in bird droppings supports a possible role of a “cycling” of “ruminant-adapted” C. jejuni
between cows and birds for maintaining C. jejuni in the herd.
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The clonal complex ST-45, classified as a lineage with a generalist lifestyle, has been regularly
isolated from multiple species of hosts [31,47]. In the present study, ST-45 (ERIC type 12 and 27)
appeared to be abundant and stable in the studied bird population but was infrequently detected in
cows, suggesting the possibility of barriers to transmission and establishment of “generalist” C. jejuni
in this dairy herd. This hypothesis is supported by a similar finding observed for other generalist types
the cows were exposed to, for example clonal complexes ST-48, ST-206 and ST-21, and by a longitudinal
monitoring of dairy cows, in which ST-45 was detected for a long period of time in a small proportion of
“high-shedder” cows, but sporadically for the other studied cows [48]. ERIC genotyping revealed a high
genetic diversity within our ST-45 strains. Genomic differences between and within generalist lineages
have been associated with phenotypic differences and flexibility in terms of metabolic properties,
energy harvests, or cell invasiveness [49,50], and it is possible that only some sub-lineages of ST-45 are
able to exclude those genotypes that are particularly recognized to be adapted to the bovine intestine.

5. Conclusions

Our study has demonstrated transmission of C. jejuni between and within a range of animal species
associated with pasture-based dairy farms. It has highlighted the role of environmental pathways
for C. jejuni contamination of dairy cows. It is clear that grazed pasture can be an important pathway
and reservoir for horizontal transmission, and that wild birds foraging on supplementary feed can
increase the cycling of ruminant adapted C. jejuni genotypes. Through the bird population, cows can be
exposed to generalist C. jejuni, but there appear to be a complex ecology associated with transmission
and establishment of these types within the herd. Further work is needed to design management
strategies that might effectively reduce carriage and transmission of C. jejuni to dairy herds, the farm
environment and ultimately to humans.
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