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Abstract The intermediate filament protein desmin is an
essential component of the extra-sarcomeric cytoskeleton in
muscle cells. This three-dimensional filamentous frame-
work exerts central roles in the structural and functional
alignment and anchorage of myofibrils, the positioning of
cell organelles and signaling events. Mutations of the
human desmin gene on chromosome 2q35 cause autosomal
dominant, autosomal recessive, and sporadic myopathies
and/or cardiomyopathies with marked phenotypic vari-
ability. The disease onset ranges from childhood to late
adulthood. The clinical course is progressive and no spe-
cific treatment is currently available for this severely
disabling disease. The muscle pathology is characterized
by desmin-positive protein aggregates and degenerative
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changes of the myofibrillar apparatus. The molecular
pathophysiology of desminopathies is a complex, multi-
level issue. In addition to direct effects on the formation and
maintenance of the extra-sarcomeric intermediate filament
network, mutant desmin affects essential protein interac-
tions, cell signaling cascades, mitochondrial functions, and
protein quality control mechanisms. This review summa-
rizes the currently available data on the epidemiology,
clinical phenotypes, myopathology, and genetics of des-
minopathies. In addition, this work provides an overview on
the expression, filament formation processes, biomechani-
cal properties, post-translational modifications, interaction
partners, subcellular localization, and functions of wild-
type and mutant desmin as well as desmin-related cell and
animal models.
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Abbreviations
APEGI Aortic preferentially expressed protein 1
(synonym: SPEG)

BAG-3 BAG family molecular chaperone regulator 3

BLOC-1 Biogenesis of lysosome-related organelles
complex 1

CCD Cardiac conduction defects

CHPF Chondroitin sulfate synthase 2

CK Kreatine kinase

COX Cytochome ¢ oxidase

DES Desmin gene

DNAIJB6 Dnal homolog subfamily B member 6
(synonym: heat shock protein J2)

ECG Electrocardiogram
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EMG Electromyography

FHL1 Four and a half LIM domains protein 1

GFAP Glial fibrillary acidic protein

GT Gomori trichrome

H&E Hematoxylin and eosin

Hsp Heat shock protein

IF Intermediate filament

LCR 5" locus control region

MEF Mouse embryonic fibroblast

MFM Myofibrillar myopathy

mrf4 Muscle-specific regulatory factor 4
(synonym: myf-6)

MRI Magnetic resonance imaging

myf-6 Myogenic factor 6 (synonym: mrf4)

myoD Myoblast determination protein 1

NADH-TR  Reduced nicotinamide adenine dinucleotide
tetrazolium reductase

PA28 Proteasome activator 28 (synonym PSME)

PAS Periodic acid Schiff

PSME Proteasome activator complex subunit
(synonym: PA2S)

SDH Succinic dehydrogenase

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel
electrophoresis

SHC Sequence homology class

SPEG Striated muscle preferentially expressed
protein kinase

ULF Unit length filament

VCP Valosin containing protein

XLCNM X-linked centronuclear myopathy

ZASP Z-band alternatively spliced PDZ-motif

protein (synonyms: cypher, LIM domain-
binding protein 3)

General introduction

Desminopathies (synonyms: desmin-related myopathy,
desmin myopathy, desmin storage myopathy, and others
[166]) belong to the clinically and genetically heteroge-
neous group of myofibrillar myopathies (MFM), which are
morphologically characterized by the presence of desmin-
positive protein aggregates and degenerative changes of the
myofibrillar apparatus [160, 164]. Since the first descrip-
tion of desmin and aB-crystallin mutations causing MFM
in 1998 [58, 187], an increasing number of MFM disease
genes coding for sarcomeric and extra-sarcomeric proteins,
i.e., BAG-3, FHLI, filamin-C, myotilin, plectin, titin, and
ZASP, have been identified [126, 138, 160, 164]. In addi-
tion, protein aggregate myopathies due to mutations in the
DNAJB6 and VCP genes share part of their morphological
features with MFM [84, 151]. The precise molecular
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pathways leading from an individual MFM gene defect to a
shared myopathological disease manifestation are still
unclear.

Desmin is a member of the intermediate filament (IF)
protein gene family, which comprises 70 members [78]. Up
to now, the IF gene family represents one of the most
highly mutated groups of related genes in the human
genome, accounting for at least 94 different disease entities
[132, 176]. IF proteins are expressed in a tissue- and
development-specific manner, e.g., keratins in epithelial
tissues, GFAP in astrocytes, and neurofilament proteins in
neurons. As a particular unique property, the IF gene
family harbors three genes that code for proteins localizing
to the nuclear envelope within the cell nucleus, i.e., lamin
A and its smaller splice form lamin C, lamin B1, and lamin
B2. According to the degree of sequence identity, IF pro-
teins have been grouped into six sequence homology
classes (SHC): acidic keratins (SHC I); basic keratins (SHC
II); desmin, vimentin and other mesenchymal IF proteins
such as GFAP (SHC III); neurofilament proteins (SHC IV);
lamins (SHC V); and an orphan group harboring the lens-
specific IF proteins phakinin and filensin [72]. Human IF-
related diseases range from skin blistering (keratins),
Alexander’s disease (GFAP), Charcot-Marie-Tooth disease
(neurofilament proteins), and Hutchinson-Gilbert progeria
(lamin A/C) to cataracts (phakinin). Notably, and subject of
this review, mutations of desmin, the major class III IF
protein in striated and smooth muscle cells, causes pro-
gressive myopathy, cardiomyopathy, cardiac conduction
defects, and arrhythmias [160, 183]. Information on the
expression, localization, interaction, and function of IFs in
general and desmin in particular is a prerequisite for the
understanding of human desminopathies. In the present
article we will summarize the essential data on desmin and
desminopathies derived from numerous clinical and
molecular studies.

Clinical phenotypes
Epidemiology

Since detailed epidemiological studies on MFM are not
available, the incidence and prevalence of desmin myop-
athy and/or cardiomyopathy are currently unclear.
Interpretation of the thus far published data allows the
assumption that desminopathies fulfill the definition of a
rare disease with no more than 5 affected individuals in
10,000. In a study on the prevalence of desmin mutations in
a cohort of 116 families and 309 additional patients with
pure dilatative cardiomyopathy, desmin mutations
accounted for up to 2 % of disease manifestation [178].
Desmin mutations also seem to be one of the more
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frequently encountered gene defects in the MFM group. In
a cohort of 53 patients from 35 Spanish MFM families,
myotilin mutations were the predominant cause affecting
18 families followed by desmin mutations in 11 families
[130]. In earlier studies reporting on the Mayo MFM cohort
of 63 patients, 6 carried myotilin and 4 carried desmin
mutations [165, 166]. Desminopathies have been reported
in diverse ethnic groups and affect both female and male
patients. Gender effects have been reported in two studies,
in which male heterozygous mutation carriers were more
prone to cardiac disease manifestations [5, 183]. The dis-
ease manifestation is highly variable with an age of onset
ranging from the 1st to the 8th decade of life. In rare
recessive forms the disease manifests in the 1st decade of
life [31, 58, 121, 140]. In the more frequently encountered
familial and sporadic cases due to heterozygous desmin
mutations, a disease onset ranging from the 2nd to the 4th
decade of life has been reported in the majority of patients
[160, 183].

Skeletal muscle disease

Initially, desminopathies have been associated with a pro-
gressive distal myopathy phenotype starting in the lower
legs. However, subsequent studies reported the association
between desmin mutations and limb girdle, scapulopero-
neal, and generalized myopathy phenotypes [9, 35, 191]. A
meta-analysis based on the interpretation of published data
from 159 patients carrying 40 different heterozygous des-
min mutations provided highly valuable insights into this
complex issue [183]. Signs of combined distal and proxi-
mal muscular weakness were found in two thirds (67 %;
71/106) of mutation carriers, whereas true distal and
proximal myopathy phenotypes were only present in 27 %
(29/106) and 6 % (6/106), respectively. In this study, 74 %
(110/148) of carriers had signs of skeletal muscle disease.
Isolated skeletal muscle disease was reported in 22 % (31/
141) of carriers. A combination of signs of skeletal muscle
and cardiac pathology was found in 49 % (67/137).
Creatine kinase (CK) levels in desmin mutation carriers
are of limited diagnostic value; 57 % (62/109) of mutation
carriers had elevated CK levels (91 % displayed a <4-fold
increase). Remarkably, 30 % (25/83) of patients with
manifest skeletal muscle disease were reported to have
normal CK levels [183]. Needle electromyography (EMG)
typically reveals a myopathic pattern with short duration,
polyphasic, and low amplitude motor unit potentials. In
addition, positive sharp waves, fibrillation potentials, and
pseudomyotonic/myotonic discharges have frequently been
documented in desminopathy patients [160]. Sensory and
motor nerve conduction studies usually give normal results
[59]. Muscle MRI studies pointed out that signal alterations
in the gluteus maximus, semitendinosus, sartorius, gracilis,

and peroneal muscles are early and predominant signs of
desminopathies [48, 156].

Cardiac disease

Cardiac disease manifestations in desminopathies, which
may precede, coincide with, or succeed skeletal muscle
weakness, comprise true cardiomyopathy as well as various
forms of cardiac conduction defects (CCD) and arrhyth-
mias [92, 173, 178, 183, 185]. The above-cited meta-
analysis revealed the presence of cardiological signs in
74 % (105/141) of desmin mutation carriers [183]. Isolated
cardiological signs were reported in 22 % (34/152) of
carriers. Out of 67 patients with verified cardiomyopathy
(49 %; 67/138), 23 were classified as dilatative, 18 as
unspecified, 16 as restrictive, 8 as hypertrophic, and 2 as
arrhythmogenic right ventricular cardiomyopathy. Desmin
mutations frequently lead to clinically symptomatic and
asymptomatic ECG abnormalities (62 %; 83/133). In this
group, CCD seems far more frequent (39 %; 52/133) than
isolated arrhythmias (5 %; 6/133). A combination of both
was found in 19 % (25/133) of carriers. A more detailed
characterization of 77 patients with CCD revealed that
atrioventricular block (47) and right bundle branch block
(14) were the most prevalent manifestations. In 31 patients
with arrhythmias, atrial fibrillation (9), ventricular pre-
mature beats (8), and ventricular tachycardia (7) were the
most frequently detected ECG abnormalities. Thus, a basic
electrophysiological workup should include a 12-lead sur-
face ECG and a 24-h Holter ECG. The cardiac function is
routinely assessed by transthoracic echocardiography.
However, cardiac MRI has been proposed as a more sen-
sitive diagnostic tool to detect focal cardiac pathology in
early and clinically asymptomatic stages of desminopathy
[173].

Pulmonary and miscellaneous disease manifestations

Patients with desmin mutations are at risk to develop
respiratory problems. In the desminopathy meta-analysis
26 % (29/110) of carriers were reported to suffer from
respiratory insufficiency [183]. Thus, blood gas analysis
and spirometry are mandatory in patients with desminop-
athies. Cataracts, swallowing difficulties, intestinal pseudo-
obstruction, and repetitive episodes of diarrhea and
constipation have been reported as miscellaneous or puta-
tive disease-related symptoms [6, 58, 129, 183].

Disease progression and mortality

Desmin myopathies and cardiomyopathies are character-
ized by a progressive course and may change their initial
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clinical presentation. In a case report, the transformation of
an initially hypertrophic cardiomyopathy into a restrictive
and finally dilated cardiomyopathy has been documented
[65]. A further study reported on a 10-year follow-up of 28
patients from 19 families with desmin mutations [190]. In
11 patients, primary skeletal muscle involvement was fol-
lowed by cardiac disease after 6.3 & 3.5 years, whereas in
16 patients with a primary cardiac disease manifestation
skeletal muscle problems occurred after 6.8 £ 4.1 years.
Out of the latter group, six patients presented with major
cardiac complications. A progression from mild conduction
defects to high degree conduction blocks requiring per-
manent pacing was observed in 8 out of 19 patients. In this
cohort of 28 patients, 5 died at a mean age of
58.0 £ 6.5 years, accounting for a mortality rate of 17.8 %
[190]. In the desminopathy meta-analysis, however, a
mortality rate of 26 % (27/104) of desmin mutation carriers
with a mean age 49 &£ 9.3 years was reported [183].
Documented causes of death in both studies were sudden
cardiac death, heart failure, respiratory insufficiency, chest
infection, and iatrogenic complications of cardiac treat-
ment. Both studies conclusively underline that the cardiac
disease manifestation is the major cause of premature death
in desminopathies.

Muscle biopsy findings
Light microscopy

Diagnostic skeletal muscle biopsies from patients with
desminopathies usually show mild to severe signs of a
degenerative myopathy with rounding of muscle fibers,
fiber splitting, internalization of myonuclei, and increased
connective and fat tissue. Pathological protein aggregates,
the hallmark of MFM, generally emerge as subsarco-
lemmal and/or sarcoplasmic inclusions. In addition,
sarcoplasmic bodies as well as rimmed and non-rimmed
vacuoles may be present. The typical pathology of MFM
is best visualized in H&E and modified Gomori trichrome
(GT) stains (Fig. la, b). Enzymatic stains (NADH-TR,
SDH, and COX) may show further characteristic oxidative
enzyme and mitochondrial abnormalities comprising
rubbed-out fibers and core-like lesions (Fig. 1c). The stage
of disease progression in individual muscles often mirrors
the severity of the observed myopathological changes.
However, one should keep in mind that the myopatho-
logical picture of desminopathies is highly variable. The
myopathological findings in genetically proven desmin-
opathies range from no overt pathology over subtle
myopathic changes with or without pathological protein
aggregates to the picture of a vacuolar myopathy [35, 160,
161].
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Fig. 1 Protein aggregation pathology and mitochondrial abnormali-
ties in desminopathies. Arrows and double arrows in a and b denote
pathological protein aggregates in the sarcoplasm and in the
subsarcolemmal region, respectively. Arrowhead and double arrow-
head in ¢ highlight a rubbed-out lesion and a core-like lesion,
respectively

Immunodetection

Desmin immunostaining is mandatory to depict desmin-
positive pathological protein aggregates in the subsarco-
lemmal and/or sarcoplasmic region. In addition to the
characteristic immunoreactivity to desmin (Fig. 2a), the
pathological protein aggregates are positively stained by a
wide variety of antibodies directed against cytoskeletal
proteins (e.g., dystrophin, F-actin, filamin C, myotilin,
plectin, synemin), heat shock proteins (e.g., aB-crystallin,
Hsp27), ubiquitin, Alzheimer-related proteins (e.g., f-APP),
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aB-¢pystallin

Fig. 2 Indirect immunofluorescence labeling of desmin and oB-
crystallin in a desminopathy. Note the presence of sarcoplasmic and
subsarcolemmal pathological protein aggregates

and cyclin-dependent kinases (e.g., CDK2, p21). Out of
this long list, stains for aB-crystallin (Fig. 2b), filamin-C,
and myotilin are sensitive diagnostic tools to depict path-
ological protein aggregation in desminopathies and other
forms of MFM [161, 166].

Electron microscopy

Granulofilamentous material in the subsarcolemmal region
and/or between neighboring myofibrils is the classical
ultrastructural hallmark of desminopathies (Fig. 3).
However, granulofilamentous material is not specific for
this disease entity as it has been described in other forms
of MFM, in particular in oB crystallinopathies. Other
features of pathological protein aggregation are cyto-
plasmic bodies and autophagic vacuoles. These changes
are found in conjunction with signs of myofibrillar
degeneration comprising Z-disc alterations (streaming,
irregularities, loss, and rods), myofibrillar remnants, and
core and core-like lesions. Typical signs of concomitant
mitochondrial pathology are areas with accumulation or
depletion of mitochondria with normal or abnormal
morphology.

!
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Fig. 3 Electron microscopy findings in desminopathies. Asterisks
denote the presence of granulofilamentous material in the subsarco-
lemmal region. White arrows depict electron-dense granular deposits;
black arrows highlight filamentous material. ECM extracellular
matrix, M mitochondrion

Cardiac pathology

Desmin-positive protein aggregates as well as granulofila-
mentous and electron-dense amorphous materials are also
the morphological hallmarks of desmin cardiomyopathies.
Pathological aggregates have been demonstrated in sub-
sarcolemmal, intermyofibrillar, and perinuclear regions.
Further reported pathological findings were myocyte
hypertrophy, disarray of the myocytes, mis-shaped
myonuclei, cytoplasmic vacuolar degeneration, focally
lysed myofibrils, various degrees of diffuse interstitial
fibrosis, and mitochondrial abnormalities [3, 4, 20]. With
respect to CDC and arrhythmias, pathological changes
were noted in the cardiac conduction system of two
autopsy cases. In one, calcifications at the bundle of His
and calcium deposits at the left and right bundle branches
were noted [199], whereas in the other extensive fibrosis in
the terminal portion of the branching bundle and the initial
segments of the left and right bundles were described [20].
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The shape of intercalated discs has been reported to be
abnormal with convoluted, elongated, and zigzag patterns
[185]. Furthermore, decreased immunoreactivities of the
desmosomal proteins desmoplakin and plakophilin-2 and
the ventricular gap junctional protein connexin-43 have
been described [133]. Remarkably, smooth muscle cells of
cardiac blood vessels seem not to contain desmin-positive
aggregates [4]. As in skeletal muscle biopsy, the extent of
typical pathology is highly variable in cardiac specimens
from desminopathies.

Differential diagnosis

The differential diagnosis of desminopathies is complex
and depends on the initial clinical disease presentation.
Patients with a highly indicative phenotype of desminop-
athy (combined skeletal muscle and cardiac symptoms, no
extra-muscular signs, autosomal dominant inheritance,
disease onset between the 2nd and 4th decade of life)
represent only a minority. In cases with isolated cardiac
problems, a broad spectrum of acquired and hereditary
conditions has to be taken into consideration. In cases of
progressive skeletal muscle weakness without cardiac
involvement, the differential diagnosis ranges from pri-
mary distal myopathies, limb girdle muscular dystrophies,
and scapuloperoneal syndromes to generalized myopathies.
A diagnostic muscle biopsy in these cases often provides
the first clue to the diagnosis of MFM. Careful interpreta-
tion of the clinical data, including sex, age of onset, mode
of inheritance, and presence or absence of extramuscular
signs such as cataracts (aB-crystallinopathy), early respi-
ratory failure (titinopathy), blistering skin (plectinopathy),
and rigid spine and scoliosis (FHL1opathy, BAG-3opathy)
is essential to differentiate specific MFM subtypes. In
MEFM patients with a disease onset beyond the 4th decade
of life, mutations in genes coding for myotilin, ZASP, and
filamin-C should initially be considered [160, 164].

Genetics of desminopathies
Human desmin gene

The human desmin gene (DES) on chromosome 2q35 is a
single copy gene that spans over a length of approximately
8.3 kb and comprises nine exons coding for a 470-amino
acid protein with a molecular weight of 53.5 kDa [106].
DES belongs to a gene cluster further comprising APEG]
(synonym SPEG or striated muscle preferentially expressed
protein kinase) and CHPF. This gene cluster is most likely
regulated by the DES 5’ locus control region (LCR), which
has been identified 9—-18 kb upstream of DES [177]. The
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currently available information on the epigenetic regula-
tion of DES is still limited. The DES promoter contains a
CpG-island also covering the DES transcription start site
and exon 1. It has been described that the DES promoter
is non-methylated regardless of its expression status. The
expression of desmin in muscle cells seems to be acti-
vated by acetylation of histones H3 and H4 as well as
methylation of histone H3 at lysine residue 4 (H3K4me?2
and me3) around the transcription start site of DES. In
non-muscle cells, the DES promoter is silenced by
methylation of histone H3 lysine residue 27 (H3K27me3)
[108].

Desmin mutation spectrum

Disease-causing mutations spread over the entire DES
gene. They significantly cluster in exon 6, which encodes
the C-terminal half of the coil 2 domain (Fig. 4). Mutations
in this domain have primarily been associated with a
skeletal muscle phenotype, whereas mutations residing in
the head and tail domains of the desmin protein seem more
frequently associated with a cardiac phenotype [183]. As of
June 2012, 67 disease-causing mutations of the DES gene
have been published. These mutations may lead to the
expression of 61 different mutant forms of desmin
(Table 1).

Autosomal dominant inheritance

The vast majority of familial desminopathies follow an
autosomal dominant mode of inheritance. The most fre-
quent DES mutations are missense mutations leading to
single amino acid substitutions. Splice site mutations
causing the loss of exon 3 (p.Asp214_Glu245del), small
in-frame deletions of one, three or seven codons, and frame
shift mutations, which may lead to the expression of
truncated desmin protein species, have been reported only
in a small number of patients (Table 1). For the
p-Arg350Pro mutation, the most frequently encountered
pathogenic desmin missense mutation in Germany, a
founder allele has been established [191].

Autosomal recessive inheritance

Five families with an autosomal recessive mode of inher-
itance have been published thus far. In one family, the
homozygous Argl6Cys missense mutation was observed
[4]. In two families, a small in-frame deletion has been
identified leading to p.Argl73_Glul79del [121, 140]. In
another family, a 22 base pair deletion in exon 6 causing a
premature stop codon associated with a virtually complete
lack of desmin protein has been reported [31]. In the fifth
family, the disease manifestation has been attributed to a
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Fig. 4 Structural organization of the human desmin molecule and
molecular model of its dimeric rod domain. a The black boxes
represent o-helical segments designated “coil.” Segments of
unknown structure connecting coil 1A and coil 1B as well as coil
1B and coil 2 are termed linkers L1 and L12, respectively. Non-
structured amino- (“head”) and carboxy- (“tail”) terminal domains
are depicted as colored bars. Numbers indicate the amino acid
position of the domain borders. b The molecular model of the dimeric
desmin coiled coil domain is based on its high structural homology to

compound heterozygote DES mutation (p.Ala360Pro/
p-Asn393lle [58]) (Table 1).

Sporadic forms

In addition to these familial cases, an increasing number of
sporadic desminopathies have been published. These spo-
radic disease manifestations are due to missense, splice
site, or frame-shift mutations (Table 1).

Desmin protein
Protein structure and filament assembly

Human desmin is a 470-amino acid protein ([79, 153];
UniProtKB/Swiss-Prot database entry P17661) with a cal-
culated molecular weight of 53.5 kDa. Like all IF proteins,
it is fibrous in nature, exhibiting a tripartite structure with a
central, mostly o-helical domain of conserved size, i.e.,
~45 nm. This so-called “rod” is flanked by non-a-helical
amino-terminal (“head”) and carboxy-terminal (“tail”)
domains of highly varying amino acid number [73]
(Fig. 4a). The “rod” domain comprises two continuous
a-helical segments, coil 1 and coil 2, which are connected
by a “linker” (L12) of unknown structure. The current

the corresponding vimentin domain [33]. The three o-helical
segments (coil 1A, coil 1B and coil 2) are shown as black ribbons.
The linkers L1 and L12 are in grey. The first segment (coil 1A) has
only a weak tendency to form coiled coils [33]. Locations of
pathogenic mutations are mapped in orange (missense mutations),
purple (deletions), and cyan (truncations). For clarity, mutation sites
in only one chain of the dimer are marked. The mutations within the
unstructured head and tail domains are also listed; see also Table 1

structural model of desmin is derived from recent structural
analyses of the closely related class III IF protein vimentin
[33] (Fig. 4b). Coil 1 consists of two o-helical subdomains,
i.e., coil 1A and coil 1B. They are separated by linker L1,
which could also accommodate a-helical conformation.
While coil 1B forms a stable dimeric coiled coil, the coil
1A segment has only a weak coiled-coil forming capacity.
In addition, the current model omits the previously used
separation into coil 2A and 2B domains, but demonstrates
it to be a continuous o-helix [123].

Desmin is a highly insoluble protein and hence it can be
kept in solution as a monomer and purified only under
highly denaturing conditions as provided by buffers con-
taining 8 M urea. For assembly, it is usually first re-natured
by dialysis into buffers of low salt such as 2 mM sodium
phosphate (pH 7.5). The assembly process starts actually
during the course of re-naturation, and two molecules
dimerize by coiled-coil formation of the central o-helical
rod domains of two desmin monomers in parallel orienta-
tion [77]. A so-called heptad repeat pattern, which is
characteristic for a coiled-coil structure [26], drives the
supercoiling of the two helices, yielding the dimeric,
elongated structure. Two of these coiled-coil dimers further
associate in a half-staggered, anti-parallel fashion to a
tetramer of ~60 nm length [77, 107] (Fig. 5a). These
tetramers are able to spontaneously assemble into highly
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ordered long filaments upon increase of the ionic strength
to physiological values. The assembly process can be
described to occur in three phases: (1) The lateral par-
allel assembly of tetramers yielding full-width, 60-nm-
long filaments that have been termed unit-length fila-
ments or ULFs [71, 77] (Fig. 5b). (2) The formation of
extended intermediate filaments by serial longitudinal
annealing of ULFs and further longitudinal annealing of
short filaments [71] (Fig. 5cl,c2,c3,d). (3) After a few
minutes of assembly, filaments undergo a final matura-
tion step characterized by a radial compaction process
[76, 79].

Protein expression

Desmin is the most abundant IF protein in striated and
smooth muscle cells. Immunoblotting after one-dimen-
sional SDS-PAGE with desmin-specific antibodies shows a
single band corresponding to an apparent molecular weight

Fig. 5 Schematic model of a
cytoplasmic IF assembly. a Two
dimers associate in an anti-
parallel, half-staggered fashion
by overlap of the two coiled
coils via their coill, i.e., coil 1A
and coil 1B (brown segments).
b Upon initiation of assembly
conditions the tetramers
associate laterally into a unit-
length filament (ULF). In
vimentin, a ULF counts eight
tetramers on the average [76].
¢ Individual ULFs may
longitudinally anneal with
another ULF (cl) or with a
filament consisting of two
annealed ULFs (c2); eventually,
two short filaments may
longitudinally anneal to a longer
filament (c3). d Upon extended
incubation, long filaments will
spontaneously reduce their
diameter by radial compaction
to form a mature IF [76]. The
figure is redrawn and modified
after [79]

8 tetramers

c1
e

ULF

c2
- .

ULF

c3

2-ULF filament

of 58 kDa. In addition to muscle, desmin expression has
been described in a wide variety of normal and diseased
cells, for example, pericytes [24], hepatic stellate cells
[124], myoid stromal cells of placenta [170], Sertoli cells
[148], decidual cells [67], injured glomerular podocytes
[70], and mesotelioma cells [85].

Desmin is one of the earliest markers of muscle devel-
opment [27], and this is true for all vertebrates including
amphibian and fish, pointing to an important evolutionary
conservation [75, 153]. Its expression precedes all other
muscle-specific structural proteins and even—with the
exception of myf-5—the expression of the myogenic
transcription factors myoD, myogenin, and mrf4 (myf-6)
[99, 103, 112]. During early muscle development desmin
and vimentin are co-expressed. Vimentin is the most
abundant IF protein of immature myoblasts. Upon further
differentiation into mature muscle cells, desmin is strongly
upregulated, while the expression of vimentin is com-
pletely ceased [43, 152].

b

~60nm

ULF
(unit length filament)

= > =

ULF 2-ULF filament

= SR ge = = =

2-ULF filament 3-ULF filament

5-ULF filament

~17nm

extended filament
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Post-translational modifications

Post-translational modifications do play an important role
in regulating the functions of intermediate filaments.
In vitro translation of chicken skeletal and smooth muscle
desmin using a cell-free rabbit reticulocyte system resulted
in predominantly non-phosphorylated desmin, suggesting a
low amount of phosphorylated desmin under basal condi-
tions [125]. On the other hand, desmin has been described
as one of the major acceptors of *°P in differentiating
chicken myotubes. Two-dimensional tryptic analysis of
desmin revealed multiple sites of phosphorylation [52].
Another study showed that desmin is a substrate of the p21-
activated kinase (PAK) mainly leading to phosphorylation
of serine residues within the desmin “head” domain. PAK-
mediated phosphorylation of desmin strongly inhibited its
filament-forming ability [127]. Assembly is also inhibited
by ADP ribosylation of desmin via an arginine-specific
mono-ADP-ribosyltransferase of muscle, which primarily
targets arginine 48 and to a lesser extent arginine 68 within
the desmin “head” domain [201]. A subsequent study
provided evidence that ADP-ribosylated desmin neither
co-assembles with nor affects the filament formation of
non-modified desmin. In contrast, the ADP-ribosylation
of pre-formed desmin IFs resulted in their disassembly.
Furthermore, this process is dependent on the phosphory-
lation of additional amino acid residues [198].

Subcellular localization and functions

Desmin immunostaining of cross-sectioned striated muscle
revealed sarcoplasmic and subsarcolemmal localizations.
In longitudinal sections, desmin immunostains revealed a
cross-striated pattern [162]. In addition, desmin is enriched
at the level of myotendinous and neuromuscular junctions
of skeletal muscle as well as of intercalated discs in cardiac
muscle [30, 180]. Immunogold electron microscopy dem-
onstrated the presence of desmin at costameres,
filamentous structures spanning between myofibrils and the
overlaying sacolemma, filamentous inter-Z-disc structures
of neighboring myofibrils and mitochondria, and at the
desmosomal plaque of intercalated discs, where desmin IFs
bind to desmoplakin, a member of the plakin family of
crossbridging proteins [90, 111, 146, 162].

This three-dimensional filamentous extra-sarcomeric
desmin cytoskeleton interlinks neighboring myofibrils
(Fig. 6) and connects the myofibrillar apparatus with
myonuclei, other cell organelles, and the extracellular
matrix via the subsarcolemmal cytoskeleton [27, 160].
Beyond a sole mechanical integration, this complex inter-
action is thought to be the basis for a mechano-chemical
signaling between various compartments. IFs in general
and desmin in particular have also been hypothesized to

@ Springer

directly bind to genomic DNA and to exert a role in tran-
scription regulation and DNA organization [182]. Roles of
desmin in the morphology and homeostasis of myonuclei,
mitochondria, and lysosomes are discussed in the respec-
tive paragraphs on muscle pathology, desmin binding
partners, and desmin mouse models. Biomechanical
aspects of desmin at the level of single IFs, myoblasts,
myofibers, and whole muscle are summarized in the
respective paragraph on biomechanics.

Molecular interaction partners

Desmin exerts its multiple functions through direct and
indirect binding to various other cellular molecules. In the
past 4 decades of desmin research, a growing number of
desmin binding partners has been described (see also a
previous review on desmin interactions [38]). The follow-
ing description of desmin interactions is confined to
binding partners that are present in muscle cells, i.e., IF
proteins, IF-associated proteins, sarcomeric proteins,
membrane-associated proteins, small heat shock proteins,
apoptosis-related proteins, and nucleic acids.

Interactions with other IF proteins

During muscle development and maintenance, desmin has
been reported to interact with five IF proteins, i.e.,
vimentin, nestin, synemin (also known as desmuslin), and
syncoilin, which all are expressed in a spatiotemporal
pattern. In addition, the nuclear B-type lamins have been
claimed to be a direct binding partner of desmin [54, 111].
With the cytoplasmic IF-proteins the situation is much
clearer: Desmin and vimentin are closely related class III
IF proteins, whereas nestin, synemin, and syncoilin are
more distantly related class IV IF proteins. Desmin,
vimentin, and nestin are co-expressed and colocalized in
myoblasts. Vimentin and nestin have each been demon-
strated to assemble into “heteropolymeric” IFs with
desmin [74, 79, 172]. While vimentin expression is
downregulated, desmin and nestin are further expressed in
later stages of myogenesis [168]. In contrast to desmin,
nestin is primarily retained at myotendinous and neuro-
muscular junctions in mature skeletal muscle [28].
Moreover, synemin was found to co-purify and colocalize
with desmin and vimentin [63]. However, synemin seems
not to participate in the formation of mixed filaments, but
binds to pre-formed desmin or vimentin IFs [18, 81, 150].
In mature skeletal muscle, synemin is localized at the
periphery of Z-discs and at the sarcolemma ([119], and
own observations). Another IF protein that directly inter-
acts and colocalizes with desmin in mature skeletal muscle
is syncoilin, which is localized at neuromuscular junctions,
the sarcolemma, and Z-discs. Similar to synemin, syncoilin



Acta Neuropathol (2013) 125:47-75

61

Fig. 6 Schematic of the desmin IF network in relation to the
myofibrillar apparatus. In desminopathies, mutant desmin leads to
structural and functional changes of the extrasarcomeric cytoskeleton,

binds to IFs but does not participate in the formation of
mixed filaments and therefore should be called an IF-
associated protein. Syncoilin has been postulated to play a
role in the cytoskeletal anchorage of the desmin IF [142].

Interactions with IF-associated proteins

Desmin directly interacts with multiple [F-associated pro-
teins. The proper structural and functional organization of
the desmin IF system highly depends on the interaction of
desmin with several plectin isoforms. In skeletal muscle,

I/

disc disorganization

oplasm

*_ protein aggregate

pathological protein aggregation, mitochondrial abnormalities, and
signs of myofibrillar degeneration

the two plectin isoforms 1d and 1f link desmin IFs to
Z-discs and costameres, respectively, whereas isoform 1b
links desmin to mitochondria [93]. Plectin has been
reported to directly bind to the coiled-coil rod domain of
desmin via its fifth plakin repeat domain and part of the
following linker domain [45]. During myodifferentiation
desmin has been shown to co-purify and colocalize with
paranemin—the chicken ortholog of mammalian nestin
[147]—at the level of Z-discs in myotubes. In contrast to
plectin but similar to nestin, paranemin is downregulated
upon differentiation and absent in mature muscle cells [25].

@ Springer
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Paranemin has been described to associate with desmin
IFs—but not to form heteropolymers—leading to the for-
mation of an extended desmin IF network [163]. A further
direct desmin binding protein is myospryn (or cardio-
myopathy-associated protein 5), a component of the
biogenesis of lysosome-related organelles complex 1
(BLOC-1). This interaction involves the desmin “head”
domain and a 24-amino acid motif at the end of the SPRY
domain of myospryn. Both proteins colocalize in close
relation to the nucleus and the endoplasmic reticulum in
neonatal cardiomyocytes as well as at intercalated discs,
costameres, and lysosomes in adult cardiac muscle. It has
been postulated that the desmin—-myospryn interaction
plays a role in lysosome biogenesis and positioning [96].
Moreover, desmin has been shown to interact with myo-
tubularin, a protein mutated in X-linked centronuclear
myopathy (XLCNM or myotubular myopathy). XLCNM-
causing mutations of myotubularin were found to interfere
with the desmin—myotubularin interaction resulting in an
abnormal desmin IF network in skeletal muscle. Further-
more, downregulation as well as expression of mutant
myotubularin both induced morphological and functional
defects of mitochondria [82]. In myometrial cells, desmin
has been found to directly interact with surfactant protein A
(SP-A), a member of the collectin family of proteins. This
interaction has been reported to inhibit the polymerization
of desmin IFs [51].

Interactions with sarcomeric and membrane-associated
proteins

Desmin has been reported to directly interact with com-
ponents of the myofibrillar apparatus. The M-line protein
myomesin-1 (synonym: skelemin) was first described as a
desmin binding partner in striated muscle [143]. In addi-
tion, the coiled-coil rod domain of desmin interacts with
the Z-disc section of nebulin [8]. Smooth muscle basic
calponin, a major actin-, tropomyosin-, and calmodulin-
binding protein, has been identified as a third sarcomeric
desmin binding partner, which also interacts with the
desmin rod domain [50].

The desmin IF network of muscle cells is anchored to
the subsarcolemmal cytoskeleton of costameres. In this
respect, desmin has been reported to bind to red blood
cell spectrin and it has been postulated that non-red blood
cell spectrins also may mediate the association of the
desmin IF network with the plasma membrane [101]. A
further link between the desmin IF network and the
subsarcolemmal cytoskeleton is provided by the direct
interaction of an N-terminal region of the desmin head
domain with ankyrin [54]. Moreover, desmin was found
to directly or indirectly interact with the nicotinic ace-
tylcholine receptor, where it has a postulated role in the
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submembranous organization of the motor end plate
[117].

Interactions with small heat shock proteins, apoptosis-
related proteins, and nucleic acids

The two small heat shock proteins HspB1 (synonyms:
Hsp25, Hsp27) and HspBS5 (synonym: oB-crystallin)
directly bind to desmin [19, 91]. The interaction of HspB1
with desmin depends of the phosphorylation of HspB1 at
serine residue 15 [91]. Furthermore, desmin has been
identified as a substrate of caspase-6 and calpains. During
the process of apoptosis, caspase-6 cleaves human desmin
at the conserved asparagine 264 (corresponds to mouse
desmin Asp263) located in the L12 linker (Fig. 4). The
N-terminal desmin cleavage product has been considered
to play a role in the execution of apoptosis via a dominant-
negative effect on the desmin IF network integrity [32].
Desmin also is a specific target of the proteolytic calpain
(Ca*T-activated cysteine proteinase) system [60]. The
limited proteolysis of desmin by calpains results in desmin
“head,” “rod,” and “tail” domain cleavage products,
which are no longer capable to participate in desmin IF
formation, but instead heavily interfere with the proper
assembly process [15, 17, 122]. The calpain system has
also been attributed to exert a role in the spatiotemporal
regulation of desmin protein levels during myotube for-
mation [44]. Like other IF proteins, the head domain of
desmin has been demonstrated to bind to single-stranded
RNA and DNA molecules in vitro [188, 192]. This prop-
erty reflects the high proportion of basic residues (12
arginines) and the absence of negatively charged residues
in the non-a-helical “head” domain. The in vitro interac-
tion of desmin and DNA is preferentially targeted to
exposed single-stranded sites of repetitive and mobile DNA
sequence motifs and seems to induce changes of the DNA
configuration [181].

Pathophysiology

Subcellular localization and expression of wild-type
and mutant desmin

Analysis of single skeletal muscle fibers from a patient
with the heterozygous p.Arg350Pro desmin mutation
showed the presence of pathological desmin-positive pro-
tein aggregates in conjunction with the normal cross-
striated desmin staining pattern [158, 159] (Fig. 7). This
finding raises the question whether mutant desmin forms
mixed desmin IFs or mixed aggregates with wild-type
desmin or if the mutant protein segregates from the wild-
type protein. This issue cannot be solved using
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syncoilin

Fig. 7 Indirect immunofluorescence labeling of desmin and syncoilin
in an isolated muscle fiber from a desminopathy. Note the presence of
multiple pathological protein aggregates in addition to the normal
cross-striated staining pattern of these two proteins

commercially available desmin antibodies as they do not
distinguish between the wild-type and the point-mutated
desmin protein species.

Studies on desmin protein expression in desminopathies
due to deletion or frame-shift mutations would allow at
least the determination of the expression level of the
mutant desmin species. However, only two studies reported
such data yet. In one study immunoblotting revealed two
desmin bands in cardiac and skeletal muscle with the lower
band corresponding to a truncated desmin protein species
showing an intensity of approximately 30 % of the upper

wild-type band. However, no desmin mutation analysis was
reported [3]. In another study on a desminopathy due to a
heterozygous ¢.735G>C mutation, desmin immunoblotting
revealed the presence of two bands at the positions
of 53 kDa and 50 kDa. However, RT-PCR analysis in
this particular family identified three distinct desmin
mRNA species coding for wild-type and p.Glu245Asp
desmin, which both are visible at 53 kDa, as well as
p-Asp214_Glu245del corresponding to the truncated
50-kDa protein. Here, the amount of the truncated desmin
protein varied between 5 and 43 % [35]. Two-dimensional
desmin gel electrophoresis in desminopathies revealed
non-uniform results. In a desminopathy due to the hetero-
zygous p.Lys240del mutation, an aberrant and more acidic
spectrum of desmin spots was visible [158, 159], whereas
the p.Asp214_Glu245del desmin mutant species presented
with a more alkaline pI [35].

Aberrant modifications of desmin

Desmin has been found to be oxidated and nitrated in
muscle fibers containing pathological protein aggregates.
These modifications may have a direct cytotoxic effect and
may impair the degradation via the ubiquitin-proteasom
system [87]. Beyond specific desmin modifications, skel-
etal muscle samples from desminopathies exhibited
increased levels of glycoxidated, lipoxidated, and nitrated
proteins [88].

Dysfunctions in protein quality control

A study demonstrated an increased immunoreactivity of
the 20S proteasome core as well as its 19S and 11S
(synonyms: PA28alpha/beta, PSME1/PSME2) regulators
co-localizing with pathological protein aggregates in
desminopathies. Further components of the immunopro-
teasome have also been reported to colocalize with the
protein aggregates [46]. Another study demonstrated an
enrichment and co-localization of the mutant ubiquitin
UBB+1 as well as the autophagy-related p62 with desmin-
positive protein aggregates in desminopathies [131]. Des-
min-positive protein aggregates in desminopathies also
show a positive immunoreactivity with antibodies directed
against HspB1 (synonyms: Hsp25, Hsp27) and HspB5
(synonym: oB-crystallin) [160]. With regard to HspBl,
two-dimensional gel electrophoresis demonstrated a shift
of the main HspB1 spot to a more alkaline pl [36]. Further
relationships between the expression of mutant desmin and
the ubiquitin—proteasome system, autophagy, and heat
shock proteins are provided in the respective paragraphs on
desmin mouse models.
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Mitochondrial pathology

SDH and COX stains of skeletal muscle biopsy specimens
from desminopathy patients often show areas with either
increased or decreased enzyme activities (Fig. 1c). With
regard to a putative mitochondrial pathology, an analysis of
the mitochondrial function in isolated saponin-permeab-
lized skeletal muscle fibres from a desminopathy patient
(heterozygous p.Lys240del desmin mutation) revealed an
in vivo inhibition of complex I activity [158, 159].

Cytoskeletal organization

Desmin transfection studies have been performed in a
variety of muscle and non-muscle cell types: BHK21
(ATCC CCL-10) hamster kidney fibroblasts express des-
min and vimentin intermediate filaments [80]. HL-1
cardiac [34], C2C12 (ATCC CRL-1772), and inducible
C2.7 [141] skeletal muscle-derived mouse myoblasts,
human coronary artery smooth muscle (hcasmc), and
neonatal rat cardiac ventricular myocytes (nrcm) [178] as
well as C3H/10T1/2 (ATCC CCL-226) mouse fibroblasts
ectopically expressing Myf5 or MyoD all contain desmin
and vimentin IFs. 3T3 (ATCC CRL-1658) mouse fibro-
blasts contain vimentin. Vimentin-free mouse embryonic
fibroblasts (MEFs) isolated from vimentin knockout mice
and spontaneously immortalized do not express cytoplas-
mic IF proteins [37]. Moreover, both MCF7 (ATCC HTB-
22) human epithelial cells and bovine mammary gland
epithelium cells grown in the presence of hormones
BMGE+H [154] are vimentin-free and express only ker-
atin IF proteins. SW13 (ATCC CCL-105) human epithelial
cells do not express any IF protein.

The overall data derived from studies using these cell
types indicated that the majority of desmin mutants are
incapable of forming a de novo desmin IF network, but
instead form non-IF structures and desmin-positive protein
aggregates. In addition, most of them induce the collapse of
a pre-existing IF network such as in 3T3 cells, although
several mutant desmin proteins integrate well, just like the
wild-type protein, into the vimentin network [9, 11, 16,
167]. As an example, we depict here the transfection of the
p-Argd406Trp desmin rod mutant into various cell types. In
the vimentin-free SW13 and BMGE+H cells, it forms dot-
like and short rod-like structures (Fig. 8a, b); in addition, in
3T3 cells it completely segregates from the endogenous
vimentin filaments and causes the reorganization of
vimentin IFs around the nucleus (Fig. 8c). Similarly, the
p-Leu345Pro desmin mutant completely avoids integrating
into the vimentin system (Fig. 8d-f); however, some
affinity for vimentin is observed in extended vimentin IFs
below the cell nucleus and outside of the area of the col-
lapsed vimentin IFs (Fig. 8f, arrowheads denote green
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desmin dots aligning with the red vimentin IFs). In the
collapsed area, the green and the red signals superimpose
to yield a yellow signal; however, the signals differ
entirely in shape, dots versus fibers, indicating that they
are not contained within the same structure but are only
located close to each other and thereby generate a yellow
signal.

In vitro filament assembly

The first disease mutant desmin to be analyzed at the
in vitro level for its assembly properties was the rather
drastic p.Argl73_Glul79del desmin “rod” mutation,
which misses seven amino acids in a row in coil 1B. In
both cell culture after cDNA-transfection and after forced
assembly of recombinant proteins, only non-IF structures
were obtained [121]. Later on, several other desmin disease
mutants were studied, and their ability to form IF networks
in vivo was analyzed by cellular cDNA transfection [11].
In order to reveal how desmin mutations influence basic
filament assembly properties, a consecutive study investi-
gated their assembly properties at the protein level [12].
Four major classes of pathological effects were observed
(Fig. 9): (1) after 10 s of assembly, filaments form by
lateral association of tetramers and subsequent longitudinal
annealing of ULFs (see also Fig. 5); however, upon further
incubation these IF-like filaments show an abnormal lateral
annealing leading to the formation of large “sheets”
(Fig. 9, p.Asn342Asp); (2) a second class forms IFs similar
to those generated from desmin WT, although the filaments
are less regular (Fig. 9, p.Ala360Pro); (3) other mutants
exhibit extended filaments at 10 s of assembly, but there-
after immediately decay into ball-like aggregates [13]
(Fig. 9, p.Leu370Pro); (4) filament assembly starts with
apparently normal ULFs; however, they fail to longitudi-
nally anneal as observed with wild-type desmin and instead
stay at the ULF-state or loosely associate longitudinally
such that the sub-filament structure remains visible (Fig. 9,
p-Arg406Trp). Notably, all desmin disease mutants that
were not able to form stable filaments on their own in vitro
also did not form IFs after transfection into IF-free cells.
Instead, they did segregate from the endogenous IF system
when transfected into vimentin- or desmin-containing cells
[13]. While the finding that truncated desmin mutants did
not properly assemble is not that unexpected, the observed
high pathogenicity of missense mutations suggests that
desmin filament assembly is a delicate process that can be
easily distorted.

Biomechanics: from filaments to cells and muscle tissue

A characteristic biophysical property of IFs is their elas-
ticity. In response to mechanical stretch, desmin filaments



Acta Neuropathol (2013) 125:47-75

65

desmin RAOBW

desmin L345P

Fig. 8 Ectopic expression of mutant desmin in cultured cells. The
desmin mutant p.Arg406Trp was transfected into (a) IF-free human
SW13 cells; b vimentin- and desmin-free bovine mammary gland
cells (BMGE+H) containing cytokeratins; and ¢ into mouse fibroblast
3T3 cells. Detection was by specific primary and secondary antibod-
ies: desmin stain in green, vimentin in red. Note that the p.Arg406Trp
desmin mutant does not form filaments on its own, and also in the
vimentin-containing cell the desmin mutant protein stays particulate.
Note furthermore that the vimentin system is re-organized (“col-
lapsed”) around the nucleus as a consequence of the mutant desmin

have been shown to extend in length in conjunction with a
thinning of their diameter. Experiments demonstrated that
upon a 3.4-fold extension, desmin filaments reduced their
diameter from 12.6 to 3.5 nm [98]. Moreover, the phe-
nomenon that IFs become more viscoelastic when exposed
to an external mechanical force is referred to as “strain
stiffening” [86, 155]. In striated muscle, the elasticity of
desmin filaments has been attributed to play a cell-pro-
tective role against mechanical stress. Thus, desmin
filaments may dissipate mechanical energy during muscle
contraction.

In this context, mutant desmin may exert a pathogenic
effect on the viscoelastic properties of the desmin filament
system, which consecutively may lead to progressive
muscle fiber damage and muscle weakness. The visco-
elastic properties of several disease-associated mutant
desmin protein species have been analyzed. Here, the focus
was on desmin mutants that are able to form apparently
normal filament networks in vitro and in vivo. Some of
these mutants showed nanomechanical properties similar to

des L345P /vimentin Stm

expression. In contrast to wild-type desmin, the mutant does not
integrate into vimentin filaments [11]. Similarly, the desmin mutant
p.Leu345Pro (proline is often called a “helix breaker”) segregates
from the endogenous vimentin system when transfected into 3T3
cells: d desmin antibody staining; e vimentin antibody staining;
f merged image highlighting green dot-like desmin structures on red
vimentin filaments (arrowheads). Also in areas where both proteins
are present, they clearly are in distinct structures. Images are taken
from [11]

that of wild-type desmin, while others displayed changes in
their tensile properties with reduced strain stiffening. Such
an increase in the resistance of desmin filaments to
an external pulling force may inflict changes in the
adaptability of muscle cells to mechanosensing and
mechanotransduction [14, 97]. Analysis of primary cul-
tured myoblasts derived from a patient with a heterozygous
p-Arg350Pro desmin mutation revealed an aberrant
response to mechanical stress. These cells displayed
increased cell stiffness and a higher rate of cell death and
substrate detachment [22]. A number of biomechanical
studies on mice lacking desmin have been reported. One
study provided evidence that the lack of desmin is asso-
ciated with a reduction of the overall passive elasticity of
intact isolated soleus muscle [2]. Another study focusing
on the diaphragm reported a reduced stiffness and visco-
elasticity of this muscle together with an increased tetanic
force production [23]. A further study showed a reduced
passive tensile strength after eccentric contraction associ-
ated with disrupted Z-discs in individual myofibrils.
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In addition, the maximal isometric force production in the
extensor digitorum longus muscle was reported to be
decreased, which points to a possible involvement of
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<« Fig. 9 In vitro filament assembly of wild-type desmin compared to

various mutants. Assembly was initiated at time point zero by
increase of the ionic strength of the incubation buffer and stopped at
10 s and 10 min, respectively, by addition of filament buffer
containing 0.2 % glutaraldehyde. The wild-type desmin (desmin
WT) and the mutants, indicated within the respective panels, were
analyzed after being negatively stained with uranyl acetate by
transmission electron microscopy. Images are taken from [12, 13]

desmin in excitation—contraction coupling [149]. This
assumption was further underlined by an additional study
reporting a defective excitation—contraction coupling in
intact extensor digitorum longus and soleus muscles of
desmin knockout mice. Here, the increased fatigue in
extensor digitorum longus muscle was assessed by con-
tinuous high frequency field stimulation and could be
overcome by the addition of caffeine. This combination of
results argues against a defect in the sarcoplasmic reticu-
lum calcium storage capacity [197]. However, this
interpretation was challenged by yet another study, which
used a more physiological high frequency stimulation
protocol with titanic trains. In this setting, a reduced fatigue
in intact soleus muscle without any change in the calcium
sensitivity of the contractile apparatus was observed [7].
Finally, a study described that the absence of desmin
resulted in an increased number of branched myofibers in
the flexor digitorum brevis muscle. This work reported
neither differences in the resting sarcoplasmic calcium
concentration nor in the sarcoplasmic calcium release
amplitude in desmin knockout myofibers [61].

Animal models
Desmin knockout models
Des* *! and Des* *?

Desmin knockout mouse models from two independent
research groups were published in 1996 (Desk" #1 [104] and
Des*e # [116]). Desmin knockout mice were viable and
fertile and showed no overt defects in muscle development.
However, they developed clinical and morphological signs
of a progressive myopathy and cardiomyopathy [68, 104,
116]. The skeletal muscle pathology, most prominent in
weight-bearing muscles, was characterized by disorganized
and nonaligned fibers, Z-disc streaming, and subsarco-
lemmal accumulation of mitochondria. In addition,
myofibrillogenesis in regenerating muscles was reported to
be disturbed [104, 105, 116]. An in situ analysis of mito-
chondrial function revealed a reduced maximal rate of
ADP-stimulated oxygen consumption [114]. Furthermore,
an abnormal folding of the postsynaptic apparatus of the
neuromuscular junction was noted [1]. The lack of desmin
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led to changes in the subcellular distribution of synemin
and nestin (synonym: paranemin), but not of plectin [29].
Heart function of desmin knockout mice was investi-
gated by a cardiac MRI study. This demonstrated
significantly reduced left and right ventricular ejection
fractions and cardiac output, an increased left ventricular
mass, and segmental wall thinning and akinesia [171].
In vivo electrophysiological studies revealed reduced atrial
but prolonged ventricular refractory periods, ventricular
conduction slowing, enhanced inducibility of atrial fibril-
lation, and a reduced susceptibility to ventricular
arrhythmias [157]. Histopathological analyses of cardiac
tissue showed areas of hemorrhage, fibrosis, ischemia, and
calcification [104, 116]. Isolated cardiomyocytes showed
an increased cell volume [115]. In addition, changes in the
morphology of intercalated discs, disruptions of the sar-
colemma, as well as an abnormal shape and distribution of
mitochondria were observed [179]. The mitochondrial
pathology in cardiac tissue was further characterized by an
aberrant conventional kinesin (synonym: kinesin-1) distri-
bution, a lower amount of cytochrome ¢, and a re-
localization of Bcl-2 [109]. Furthermore, ketone body and
acetate metabolism, NADH shuttle proteins, amino-acid
metabolism, and respiratory enzymes were affected [49].

Desko #Z/Bcl_2tg overexpression

The issue of cardiac pathology was further addressed by
crossbreeding desmin knockout mice with transgenic mice
overexpressing apoptosis regulator Bcl-2 [196]. These
double-mutant mice showed a reduced occurrence of
fibrotic lesions in the myocardium, prevention of cardiac
hypertrophy, restoration of cardiomyocyte ultrastructure,
and significant improvement of cardiac function. In addi-
tion, an improved calcium handling of mitochondria was
observed. Hence, it was concluded that the mitochondrial
abnormalities, which are regarded as the primary cause of
the cardiomyopathy in desmin knockout mice, can be
ameliorated by the overexpression of Bcl-2.

Deskn #Z/Destg p-lle451Met

In an additional study the desmin knockout strain was
crossbred with another desmin mouse model with trans-
genic expression of the p.lle451Met mutant [113]. Note
that only mice homozygous for the desmin knockout and
with presence of the p.Ille451Met desmin transgene were
analyzed. In this setting, the p.lle451Met desmin showed
an aberrant subcellular distribution, was expressed at lower
levels (compared to wild-type desmin in wild-type control
mice), and was found to lack the N-terminal 20-30 amino
acids. The latter finding has been attributed to a specific
cleavage of the mutant desmin in cardiomyocytes.

DESko #Z/Destg p.Asp26leu/TNth overexpression

In the context of a mouse model for tumor necrosis factor
alpha-induced cardiomyopathy, it was found that increased
expression of TNF-alpha leads to degradation and changes
in the subcellular distribution of desmin and to pathological
aggregate formation. The latter process was attenuated in
TNF-alpha overexpressing mice that additionally expressed
p-Asp263Glu mutant desmin instead of the wild-type
endogenous protein in the heart. This effect has been
attributed to a resistance of the mutant desmin to caspase-6
cleavage [134].

Desmin transgenic mouse models

Desl‘g truncated/chimeric desmin

In 1996 the first transgenic desmin mouse was published
[145]. In this model a hamster desmin—vimentin chimeric
protein (last 129 aa of desmin replaced by last 13 aa of
vimentin) was expressed under control of the hamster
desmin promoter. The expression of this truncated desmin
(approximately 10 % mutant compared to wild-type des-
min) had a dominant-negative effect on the desmin IF
network. Desmin immunostains of skeletal and cardiac
muscle tissue revealed an aberrant desmin distribution
characterized by a loss of the cross-striated pattern.
Ultrastructural analysis showed intermyofibrillar deposits
of fibrillar and membranous electron-dense material and
fragmented sarcomeres as well as abnormalities of the
T-tubule system.

Destg p.Argl73_Glul79del

A second transgenic desmin mouse model expressing a
desmin mutant with a small in-frame deletion of seven
amino acids was reported in 2001 [194] recapitulating the
human mutation reported by [121]. A three-fold overex-
pression of the p.Argl73_Glul79del desmin compared to
the endogenous wild-type desmin led to a dominant neg-
ative effect with a disruption of the extra-sarcomeric
cytoskeleton and presence of desmin-positive granular fil-
amentous protein aggregates in cardiac tissue. These
animals further showed a compromised ability of the heart
to respond to B-agonist stimulation. Control animals with a
three-fold overexpression of wild-type desmin showed no
overt clinical or morphological effect. Skeletal muscle
tissue was not addressed in this study.
Electrophysiological investigations of this mouse model
showed increased P-wave duration and slowing of ven-
tricular conduction [53]. Although no changes in the
expression level of connexin-43, desmoplakin, plakoglo-
bin, and N-cadherin were observed, immunostains showed
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significantly reduced signal intensities of these junctional
proteins. At the ultrastructural level, intercalated discs were
found to be highly convoluted and to contain fewer gap
junctions and desmosomes.

Destg p-Argl73_Glul 79del/Cryabtg p.ArgR120Gly

Cardiac pathology of the p.Argl73_Glul79del desmin
mouse was also analyzed after crossbreeding with trans-
genic mice overexpressing the p.ArgR120Gly mutant small
heat shock protein aB-crystallin [193]. This aB-crystallin
mutant had previously been shown to cause a cardiomy-
opathy characterized by desmin-positive protein aggregates
in heterozygous humans and transgenic mice [187, 195].
The double-mutant mice presented with an accentuated
cardiac pathology and died of congestive heart failure in
the first 2 months of life. Further analyses revealed
increased levels of desmin proteins and an increased
abundance of pathological aggregates compared to
p-Argl173_Glul79del desmin mice.

Argl 1
Desz‘g p.Argl73_Glu 79del/GFPdgntg

The p.Argl73_Glul79del desmin mouse was further
crossbred with a transgenic mouse model expressing the
GFPdgn ubiquitin—proteasome system reporter substrate
(GFP fused to an ubiquitination signal sequence) [100].
This study provided evidence that the p.Argl173_Glul79del
mutant desmin impairs the proteolytic function of the
ubiquitin-proteasome system by an impaired entry of
ubiquitinated proteins into the 20S proteasome [110].

Destg p.Argl 73_Glu]79del/GFP_LC3tg

Moreover, the p.Argl73_Glul79del desmin mouse had
been crossed with a autophagy reporter mouse model
expressing a GFP-LC3 fusion protein [120]. Here,
expression of the desmin deletion mutant led to an
increased autophagic flux associated with an increased
expression of p62 [200].

Destg p-Leu345Pro

The only transgenic mouse model expressing a desmin
missense mutation in addition to the endogenous protein
was reported in 2008. The animal model with low
expression (approximately 10 % of total desmin) of the
HA-tagged p.Leu345Pro desmin mutant was reported to
show a reduced contractile function and recovery from
fatigue in soleus muscle. Moreover, cardiac alterations
consisting of a hypertrophic left ventricular posterior wall
and decreased left ventricular chamber dimension were
described. Though no MFM typical desmin-positive
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protein aggregates were detected, this animal presented
evidence for a mitochondrial pathology characterized by
swelling and vacuolization as well as increased calcium
levels [94].

Conclusion and outlook

The last 2 decades have led to a number of important
insights into the molecular pathogenesis of desminopathies,
but the precise and sequential molecular mechanisms
leading from mutant desmin to consecutive pathological
protein aggregation and progressive muscle damage still
remain to be elucidated. Though many desmin mutants
obviously compromise the desmin filament formation, the
progressive human muscle pathology cannot solely be
attributed to such a simple mechanistic explanation. If
desmin mutants have such a toxic effect on the desmin
filament system, why does it take decades of life until
clinical symptoms of muscle weakness become apparent?
Our review of the currently available data on desmin and
desminopathies enforces a complex and multilevel concept
of disease development in which mutant desmin addition-
ally interferes with the binding to desmin interaction
partners, signaling cascades, protein quality control sys-
tems, and the function of cell organelles. Further work is
needed to evaluate, broaden, and integrate these different
aspects. Respective future studies shall provide essential
novel insights into the atomic structure of the desmin tet-
ramer and its assembly reactions, the biomechanics of
desmin-mutant cells and tissues, the expression and sub-
cellular localization of mutant desmin, the composition
of pathological protein aggregates, the characterization of
aberrant post-translational modifications and interactions of
desmin with other proteins and nucleic acids, epigenetic
factors, and dysfunction of various cell organelles. For
studies of early disease stages, the generation and charac-
terization of physiological cell and mouse models, i.e., with
a knockin of a desmin mutation into the murine desmin
gene, are necessary.

To date, no specific treatment is available for desmin-
opathies and even basic clinical questions—e.g., is physical
exercise beneficial or harmful for the course of the dis-
ease?—cannot finally be answered on the basis of the
currently available literature. A regular neurological, car-
diological, and pulmonological diagnostic workup is
certainly mandatory for all desminopathy patients. Future
studies on desminopathy-related cell and animal models
will provide answers with respect to potential therapies: Do
anti-aggregation drugs such as small heat shock protein
inducers and autophagy and proteasome modulators have a
cell-protective effect that ameliorates or even cures the
progressive muscle pathology? Or should we further
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explore muscle-specific gene transfer approaches, for
example, siRNA-based silencing of the mutant desmin
allele, overexpression of the wild-type desmin, or expres-
sion of other protective proteins such as heat shock proteins
and Bcl-2?

Acknowledgments This work is supported by grants of the Deut-
sche Forschungsgemeinschaft (DFG) awarded to C.S.C, H.H., and
R.S. (FOR1228: CL 381/7-1; HE 1853/9-1, 9-2; SCHR 562/13-1). For
this work C.S.C. and R.S. are also supported by the Deutsche
Gesellschaft fiir Muskelkranke e.V. (DGM). Furthermore, R.S. is
supported by the Johannes & Frieda Marohn Stiftung. S.V.S. was
supported by the Katholieke Universiteit Leuven Research Supple-
ment (OT) grant 07/071 and by the Research Foundation Flanders
(FWO) grant G.0709.12. We are grateful to Prof. Oliver Friedrich
(University of Erlangen-Nuremberg) for his input on biomechanical
aspects, to Mr. cand. med. Gerrit Haaker (University Hospital Er-
langen) for assistance with data acquisition for Table 1, and Mr.
Matthias Béhre for his assistance in preparation of Figs. 5 and 6.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

1. Agbulut O, Li Z, Perie S, Ludosky MA, Paulin D, Cartaud J,
Butler-Browne G (2001) Lack of desmin results in abortive
muscle regeneration and modifications in synaptic structure.
Cell Motil Cytoskelet 49:51-66

2. Anderson J, Li Z, Goubel F (2001) Passive stiffness is increased
in soleus muscle of desmin knockout mouse. Muscle Nerve
24:1090-1092

3. Arbustini E, Morbini P, Grasso M, Fasani R, Verga L, Bellini O,
Dal Bello B, Campana C, Piccolo G, Febo O, Opasich C,
Gavazzi A, Ferrans VJ (1998) Restrictive cardiomyopathy,
atrioventricular block and mild to subclinical myopathy in
patients with desmin-immunoreactive material deposits. J Am
Coll Cardiol 31:645-653

4. Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Pre-
vitali S, Repetto A, Bellini O, Azan G, Scaffino M, Campana C,
Piccolo G, Vigano M, Tavazzi L (2006) Desmin accumulation
restrictive cardiomyopathy and atrioventricular block associated
with desmin gene defects. Eur J Heart Fail 8:477-483

5. Arias M, Pardo J, Blanco-Arias P, Sobrido MJ, Arias S, Dapena
D, Carracedo A, Goldfarb LG, Navarro C (2006) Distinct phe-
notypic features and gender-specific disease manifestations in a
Spanish family with desmin L370P mutation. Neuromuscul
Disord 16:498-503

6. Ariza A, Coll J, Fernandez-Figueras MT, Lopez MD, Mate JL,
Garcia O, Fernandez-Vasalo A, Navas-Palacios JJ (1995) Des-
min myopathy: a multisystem disorder involving skeletal,
cardiac, and smooth muscle. Hum Pathol 26:1032-1037

7. Balogh J, Li Z, Paulin D, Arner A (2003) Lower active force gen-
eration and improved fatigue resistance in skeletal muscle from
desmin deficient mice. J] Muscle Res Cell Motil 24:453-459

8. Bang ML, Gregorio C, Labeit S (2002) Molecular dissection of
the interaction of desmin with the C-terminal region of nebulin.
J Struct Biol 137:119-127

9. Bir H, Fischer D, Goudeau B, Kley RA, Clemen CS, Vicart P,
Herrmann H, Vorgerd M, Schroder R (2005) Pathogenic effects

10.

11.

12.

13.

14.

15.

16.

18.

20.

21.

22.

23.

24.

of a novel heterozygous R350P desmin mutation on the
assembly of desmin intermediate filaments in vivo and in vitro.
Hum Mol Genet 14:1251-1260

Bir H, Goudeau B, Walde S, Casteras-Simon M, Miicke N,
Shatunov A, Goldberg YP, Clarke C, Holton JL, Eymard B,
Katus HA, Fardeau M, Goldfarb L, Vicart P, Herrmann H
(2007) Conspicuous involvement of desmin tail mutations in
diverse cardiac and skeletal myopathies. Hum Mutat 28:374—
386

Biér H, Kostareva A, Sjoberg G, Sejersen T, Katus HA, Herr-
mann H (2006) Forced expression of desmin and desmin
mutants in cultured cells: impact of myopathic missense muta-
tions in the central coiled-coil domain on network formation.
Exp Cell Res 312:1554-1565

Bér H, Miicke N, Kostareva A, Sjoberg G, Aebi U, Herrmann H
(2005) Severe muscle disease-causing desmin mutations inter-
fere with in vitro filament assembly at distinct stages. Proc Natl
Acad Sci USA 102:15099-15104

Bér H, Miicke N, Ringler P, Miiller SA, Kreplak L, Katus HA,
Aebi U, Herrmann H (2006) Impact of disease mutations on the
desmin filament assembly process. J Mol Biol 360:1031-1042
Biar H, Schopferer M, Sharma S, Hochstein B, Miicke N,
Herrmann H, Willenbacher N (2010) Mutations in Desmin’s
carboxy-terminal “Tail” domain severely modify filament and
network mechanics. J] Mol Biol 397:1188-1198

Bir H, Sharma S, Kleiner H, Miicke N, Zentgraf H, Katus HA,
Aebi U, Herrmann H (2009) Interference of amino-terminal
desmin fragments with desmin filament formation. Cell Motil
Cytoskeleton 66:986-999

Bir H, Strelkov SV, Sjoberg G, Aebi U, Herrmann H (2004) The
biology of desmin filaments: how do mutations affect their struc-
ture, assembly, and organisation? J Struct Biol 148:137-152

. Baron CP, Jacobsen S, Purslow PP (2004) Cleavage of desmin

by cysteine proteases: calpains and cathepsin B. Meat Sci
68:447-456

Bellin RM, Sernett SW, Becker B, Ip W, Huiatt TW, Robson
RM (1999) Molecular characteristics and interactions of the
intermediate filament protein synemin. Interactions with alpha-
actinin may anchor synemin-containing heterofilaments. J Biol
Chem 274:29493-29499

. Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin

in cardiac tissue. Association with actin and desmin filaments.
Circ Res 71:288-294

Benvenuti LA, Aiello VD, Falcao BA, Lage SG (2012) Atrio-
ventricular block pathology in cardiomyopathy by desmin
deposition. Arq Bras Cardiol 98:e3-e6

Bergman JE, Veenstra-Knol HE, van Essen AJ, van Raven-
swaaij CM, den Dunnen WF, van den Wijngaard A, van
Tintelen JP (2007) Two related Dutch families with a clinically
variable presentation of cardioskeletal myopathy caused by a
novel S13F mutation in the desmin gene. Eur J Med Genet
50:355-366

Bonakdar N, Luczak J, Lautscham L, Czonstke M, Koch TM,
Mainka A, Jungbauer T, Goldmann WH, Schréder R, Fabry B
(2012) Biomechanical characterization of a desminopathy in
primary human myoblasts. Biochem Biophys Res Commun
419:703-707

Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M,
Rodarte J, Tidball JG (2001) Desmin integrates the three-
dimensional mechanical properties of muscles. Am J Physiol
Cell Physiol 280:C46-C52

Brachvogel B, Pausch F, Farlie P, Gaipl U, Etich J, Zhou Z,
Cameron T, von der Mark K, Bateman JF, Poschl E (2007)
Isolated Anxa5 +/Sca-1 + perivascular cells from mouse
meningeal vasculature retain their perivascular phenotype
in vitro and in vivo. Exp Cell Res 313:2730-2743

@ Springer



70

Acta Neuropathol (2013) 125:47-75

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Breckler J, Lazarides E (1982) Isolation of a new high molecular
weight protein associated with desmin and vimentin filaments
from avian embryonic skeletal muscle. J Cell Biol 92:795-806
Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a
highly versatile protein folding motif. Trends Cell Biol
11:82-88

Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras
S (2007) Muscle intermediate filaments and their links to
membranes and membranous organelles. Exp Cell Res
313:2063-2076

Carlsson L, Li Z, Paulin D, Thornell LE (1999) Nestin is
expressed during development and in myotendinous and neu-
romuscular junctions in wild type and desmin knockout mice.
Exp Cell Res 251:213-223

Carlsson L, Li ZL, Paulin D, Price MG, Breckler J, Robson RM,
Wiche G, Thornell LE (2000) Differences in the distribution of
synemin, paranemin, and plectin in skeletal muscles of wild-
type and desmin knockout mice. Histochem Cell Biol 114:39-47
Carlsson L, Thornell LE (2001) Desmin-related myopathies in
mice and man. Acta Physiol Scand 171:341-348

Carmignac V, Sharma S, Arbogast S, Fischer D, Serreri C,
Serria M, Stoltenburg G, Maurage CA, Herrmann H, Cuisset
IJM, Bir H, Ferreiro A (2009) A homozygous desmin deletion
causes an Emery-Dreifuss like recessive myopathy with desmin
depletion. Neuromuscul Disord 19:600

Chen F, Chang R, Trivedi M, Capetanaki Y, Cryns VL (2003)
Caspase proteolysis of desmin produces a dominant-negative
inhibitor of intermediate filaments and promotes apoptosis.
J Biol Chem 278:6848-6853

Chernyatina AA, Nicolet S, Aebi U, Herrmann H, Strelkov SV
(2012) Atomic structure of the vimentin central alpha-helical
domain and its implications for intermediate filament assembly.
Proc Natl Acad Sci USA 109:13620-13625

Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB,
Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a
cardiac muscle cell line that contracts and retains phenotypic
characteristics of the adult cardiomyocyte. Proc Natl Acad Sci
USA 95:2979-2984

Clemen CS, Fischer D, Reimann J, Eichinger L, Muller CR,
Muller HD, Goebel HH, Schroder R (2009) How much mutant
protein is needed to cause a protein aggregate myopathy in vivo?
Lessons from an exceptional desminopathy. Hum Mutat
30:E490-E499

Clemen CS, Fischer D, Roth U, Simon S, Vicart P, Kato K,
Kaminska AM, Vorgerd M, Goldfarb LG, Eymard B, Romero
NB, Goudeau B, Eggermann T, Zerres K, Noegel AA, Schroder
R (2005) Hsp27-2D-gel electrophoresis is a diagnostic tool to
differentiate primary desminopathies from myofibrillar myopa-
thies. FEBS Lett 579:3777-3782

Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S,
Babinet C (1994) Mice lacking vimentin develop and reproduce
without an obvious phenotype. Cell 79:679-694

Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS
(2004) Desmin: molecular interactions and putative functions of
the muscle intermediate filament protein. Braz J Med Biol Res
37:1819-1830

Dagvadorj A, Goudeau B, Hilton-Jones D, Blancato JK,
Shatunov A, Simon-Casteras M, Squier W, Nagle JW, Goldfarb
LG, Vicart P (2003) Respiratory insufficiency in desminopathy
patients caused by introduction of proline residues in desmin
c-terminal alpha-helical segment. Muscle Nerve 27:669-675
Dagvadorj A, Olive M, Urtizberea JA, Halle M, Shatunov A,
Bonnemann C, Park KY, Goebel HH, Ferrer I, Vicart P, Dalakas
MC, Goldfarb LG (2004) A series of West European patients
with severe cardiac and skeletal myopathy associated with a de
novo R406 W mutation in desmin. J Neurol 251:143-149

@ Springer

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Dalakas MC, Dagvadorj A, Goudeau B, Park KY, Takeda K,
Simon-Casteras M, Vasconcelos O, Sambuughin N, Shatunov A,
Nagle JW, Sivakumar K, Vicart P, Goldfarb LG (2003) Pro-
gressive skeletal myopathy, a phenotypic variant of desmin
myopathy associated with desmin mutations. Neuromuscul
Disord 13:252-258

Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K,
Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy
with cardiomyopathy caused by mutations in the desmin gene.
N Engl J Med 342:770-780

Duprey P, Paulin D (1995) What can be learned from interme-
diate filament gene regulation in the mouse embryo. Int J Dev
Biol 39:443-457

Elamrani N, Brustis JJ, Dourdin N, Balcerzak D, Poussard S,
Cottin P, Ducastaing A (1995) Desmin degradation and
Ca(2 +)-dependent proteolysis during myoblast fusion. Biol
Cell 85:177-183

Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begre N,
Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L,
Fontao L (2011) Plectin interacts with the rod domain of type III
intermediate filament proteins desmin and vimentin. Eur J Cell
Biol 90:390-400

Ferrer I, Martin B, Castano JG, Lucas JJ, Moreno D, Olive M
(2004) Proteasomal expression, induction of immunoproteasome
subunits, and local MHC class I presentation in myofibrillar
myopathy and inclusion body myositis. J Neuropathol Exp
Neurol 63:484-498

Fidzianska A, Kotowicz J, Sadowska M, Goudeau B, Walczak
E, Vicart P, Hausmanowa-Petrusewicz I (2005) A novel desmin
R355P mutation causes cardiac and skeletal myopathy. Neu-
romuscul Disord 15:525-531

Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K,
Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A,
Huebner A, Kress W, Reimann J, Schroder R, Eymard B, Far-
deau M, Udd B, Goldfarb L, Vorgerd M, Olive M (2008)
Distinct muscle imaging patterns in myofibrillar myopathies.
Neurology 71:758-765

Fountoulakis M, Soumaka E, Rapti K, Mavroidis M, Tsangaris
G, Maris A, Weisleder N, Capetanaki Y (2005) Alterations in
the heart mitochondrial proteome in a desmin null heart failure
model. J Mol Cell Cardiol 38:461-474

Fujii T, Takagi H, Arimoto M, Ootani H, Ueeda T (2000)
Bundle formation of smooth muscle desmin intermediate fila-
ments by calponin and its binding site on the desmin molecule.
J Biochem 127:457-465

Garcia-Verdugo I, Synguelakis M, Degrouard J, Franco CA,
Valot B, Zivy M, Chaby R, Tanfin Z (2008) Interaction of
surfactant protein A with the intermediate filaments desmin and
vimentin. Biochemistry 47:5127-5138

Gard DL, Lazarides E (1982) Analysis of desmin and vimentin
phosphopeptides in cultured avian myogenic cells and their
modulation by 8-bromo-adenosine 3’,5'-cyclic monophosphate.
Proc Natl Acad Sci USA 79:6912-6916

Gard JJ, Yamada K, Green KG, Eloff BC, Rosenbaum DS,
Wang X, Robbins J, Schuessler RB, Yamada KA, Saffitz JE
(2005) Remodeling of gap junctions and slow conduction in a
mouse model of desmin-related cardiomyopathy. Cardiovasc
Res 67:539-547

Georgatos SD, Weber K, Geisler N, Blobel G (1987) Binding of
two desmin derivatives to the plasma membrane and the nuclear
envelope of avian erythrocytes: evidence for a conserved site-
specificity in intermediate filament-membrane interactions. Proc
Natl Acad Sci USA 84:6780-6784

Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat:
malfunctioning desmin causes skeletal and cardiac muscle dis-
ease. J Clin Invest 119:1806-1813



Acta Neuropathol (2013) 125:47-75

71

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Goldfarb LG, Dalakas MC (2011) Erratum for: “Tragedy in a
heartbeat: malfunctioning desmin causes skeletal and cardiac
muscle disease”. J Clin Invest 121:455

Goldfarb LG, Olive M, Vicart P, Goebel HH (2008) Interme-
diate filament diseases: desminopathy. Adv Exp Med Biol
642:131-164

Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS,
Vasconcelos O, Nagle JW, Semino-Mora C, Sivakumar K, Dalakas
MC (1998) Missense mutations in desmin associated with familial
cardiac and skeletal myopathy. Nat Genet 19:402-403

Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin
myopathy. Brain 127:723-734

Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The
calpain system. Physiol Rev 83:731-801

Goodall MH, Ward CW, Pratt SJ, Bloch RJ, Lovering RM
(2012) Structural and functional evaluation of branched myofi-
bers lacking intermediate filaments. Am J Physiol Cell Physiol
303:C224-C232

Goudeau B, Rodrigues-Lima F, Fischer D, Casteras-Simon M,
Sambuughin N, de Visser M, Laforet P, Ferrer X, Chapon F,
Sjoberg G, Kostareva A, Sejersen T, Dalakas MC, Goldfarb LG,
Vicart P (2006) Variable pathogenic potentials of mutations
located in the desmin alpha-helical domain. Hum Mutat
27:906-913

Granger BL, Lazarides E (1980) Synemin: a new high molecular
weight protein associated with desmin and vimentin filaments in
muscle. Cell 22:727-738

Greenberg SA, Salajegheh M, Judge DP, Feldman MW, Kuncl
RW, Waldon Z, Steen H, Wagner KR (2012) Etiology of limb
girdle muscular dystrophy 1D/1E determined by laser capture
microdissection proteomics. Ann Neurol 71:141-145

Gudkova A, Kostareva A, Sjoberg G, Smolina N, Turalchuk M,
Kuznetsova I, Rybakova M, Edstrom L, Shlyakhto E, Sejersen T
(2012) Diagnostic challenge in desmin cardiomyopathy with
transformation of clinical phenotypes. Pediatr Cardiol. doi:
10.1007/s00246-00012-00312-x

Hager S, Mahrholdt H, Goldfarb LG, Goebel HH, Sechtem U
(2006) Images in cardiovascular medicine. Giant right atrium in
the setting of desmin-related restrictive cardiomyopathy. Cir-
culation 113:e53-e55

Halperin R, Fleminger G, Kraicer PF, Hadas E (1991) Desmin
as an immunochemical marker of human decidual cells and its
expression in menstrual fluid. Hum Reprod 6:186-189
Haubold KW, Allen DL, Capetanaki Y, Leinwand LA (2003)
Loss of desmin leads to impaired voluntary wheel running and
treadmill exercise performance. J Appl Physiol 95:1617-1622
Hedberg C, Melberg A, Kuhl A, Jenne D, Oldfors A (2012)
Autosomal dominant myofibrillar myopathy with arrhythmo-
genic right ventricular cardiomyopathy 7 is caused by a DES
mutation. Eur J] Hum Genet 20:984-985

Herrmann A, Tozzo E, Funk J (2012) Semi-automated quanti-
tative image analysis of podocyte desmin immunoreactivity as a
sensitive marker for acute glomerular damage in the rat puro-
mycin aminonucleoside nephrosis (PAN) model. Exp Toxicol
Pathol 64:45-49

Herrmann H, Aebi U (1998) Structure, assembly, and dynamics
of intermediate filaments. Subcell Biochem 31:319-362
Herrmann H, Aebi U (2000) Intermediate filaments and their
associates: multi-talented structural elements specifying cyto-
architecture and cytodynamics. Curr Opin Cell Biol 12:79-90
Herrmann H, Aebi U (2004) Intermediate filaments: molecular
structure, assembly mechanism, and integration into functionally
distinct intracellular Scaffolds. Annu Rev Biochem 73:749-789
Herrmann H, Bér H, Kreplak L, Strelkov SV, Aebi U (2007)
Intermediate filaments: from cell architecture to nanomechanics.
Nat Rev Mol Cell Biol 8:562-573

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Herrmann H, Fouquet B, Franke WW (1989) Expression of
intermediate filament proteins during development of Xenopus
laevis. 11. Identification and molecular characterization of des-
min. Development 105:299-307

Herrmann H, Hiner M, Brettel M, Ku NO, Aebi U (1999)
Characterization of distinct early assembly units of differ-
ent intermediate filament proteins. J Mol Biol 286:1403-
1420

Herrmann H, Hiner M, Brettel M, Miiller SA, Goldie KN,
Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and
assembly properties of the intermediate filament protein
vimentin: the role of its head, rod and tail domains. J Mol Biol
264:933-953

Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM
(2003) Functional complexity of intermediate filament cyto-
skeletons: from structure to assembly to gene ablation. Int Rev
Cytol 223:83-175

Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Inter-
mediate filaments: primary determinants of cell architecture and
plasticity. J Clin Invest 119:1772-1783

Herrmann H, Wiche G (1987) Plectin and IFAP-300 K are
homologous proteins binding to microtubule-associated proteins
1 and 2 and to the 240-kilodalton subunit of spectrin. J Biol
Chem 262:1320-1325

Hirako Y, Yamakawa H, Tsujimura Y, Nishizawa Y, Okumura
M, Usukura J, Matsumoto H, Jackson KW, Owaribe K, Ohara O
(2003) Characterization of mammalian synemin, an intermediate
filament protein present in all four classes of muscle cells and
some neuroglial cells: co-localization and interaction with type
III intermediate filament proteins and keratins. Cell Tissue Res
313:195-207

Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P,
Beggs AH, Payrastre B, Mandel JL, Laporte J (2011) Myotu-
bularin controls desmin intermediate filament architecture and
mitochondrial dynamics in human and mouse skeletal muscle.
J Clin Invest 121:70-85

Hong D, Wang Z, Zhang W, Xi J, Lu J, Luan X, Yuan Y (2011)
A series of Chinese patients with desminopathy associated with
six novel and one reported mutations in the desmin gene.
Neuropathol Appl Neurobiol 37:257-270

Hiibbers CU, Clemen CS, Kesper K, Boddrich A, Hofmann A,
Kamarainen O, Tolksdorf K, Stumpf M, Reichelt J, Roth U,
Krause S, Watts G, Kimonis V, Wattjes MP, Reimann J, Thal
DR, Biermann K, Evert BO, Lochmuller H, Wanker EE,
Schoser BG, Noegel AA, Schroder R (2007) Pathological con-
sequences of VCP mutations on human striated muscle. Brain
130:381-393

Hurlimann J (1994) Desmin and neural marker expression in
mesothelial cells and mesotheliomas. Hum Pathol 25:753-757

Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Visco-
elastic properties of vimentin compared with other filamentous
biopolymer networks. J Cell Biol 113:155-160

Janue A, Odena MA, Oliveira E, Olive M, Ferrer 1 (2007)
Desmin is oxidized and nitrated in affected muscles in myoti-
linopathies and desminopathies. J Neuropathol Exp Neurol
66:711-723

Janue A, Olive M, Ferrer I (2007) Oxidative stress in des-
minopathies and myotilinopathies: a link between oxidative
damage and abnormal protein aggregation. Brain Pathol 17:
377-388

Kaminska A, Strelkov SV, Goudeau B, Olive M, Dagvadorj A,
Fidzianska A, Simon-Casteras M, Shatunov A, Dalakas MC,
Ferrer I, Kwiecinski H, Vicart P, Goldfarb LG (2004) Small
deletions disturb desmin architecture leading to breakdown of
muscle cells and development of skeletal or cardioskeletal
myopathy. Hum Genet 114:306-313

@ Springer


http://dx.doi.org/10.1007/s00246-00012-00312-x

72

Acta Neuropathol (2013) 125:47-75

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Kartenbeck J, Franke WW, Moser JG, Stoffels U (1983) Specific
attachment of desmin filaments to desmosomal plaques in car-
diac myocytes. EMBO J 2:735-742

Kawano F, Fujita R, Nakai N, Terada M, Ohira T, Ohira Y
(2012) HSP25 can modulate myofibrillar desmin cytoskeleton
following the phosphorylation at Serl5 in rat soleus muscle.
J Appl Physiol 112:176-186

Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl
A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B,
Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H
(2010) De novo desmin-mutation N116S is associated with
arrhythmogenic right ventricular cardiomyopathy. Hum Mol
Genet 19:4595-4607

Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I,
Paulin D, Schroder R, Wiche G (2008) Myofiber integrity
depends on desmin network targeting to Z-disks and costameres
via distinct plectin isoforms. J Cell Biol 181:667-681
Kostareva A, Sjoberg G, Bruton J, Zhang SJ, Balogh J, Gudkova
A, Hedberg B, Edstrom L, Westerblad H, Sejersen T (2008)
Mice expressing L345P mutant desmin exhibit morphological
and functional changes of skeletal and cardiac mitochondria.
J Muscle Res Cell Motil 29:25-36

Kostareva A, Sjoberg G, Gudkova A, Smolina N, Semernin E,
Shlyakhto E, Sejersen T (2011) Desmin A213 V substitution
represents a rare polymorphism but not a mutation and is more
prevalent in patients with heart dilation of various origins. Acta
Myol 30:42-45

Kouloumenta A, Mavroidis M, Capetanaki Y (2007) Proper
perinuclear localization of the TRIM-like protein myospryn
requires its binding partner desmin. J Biol Chem 282:35211—
35221

Kreplak L, Biar H (2009) Severe myopathy mutations modify the
nanomechanics of desmin intermediate filaments. J Mol Biol
385:1043-1051

Kreplak L, Herrmann H, Aebi U (2008) Tensile properties of
single desmin intermediate filaments. Biophys J 94:2790-2799
Kuisk IR, Li H, Tran D, Capetanaki Y (1996) A single MEF2
site governs desmin transcription in both heart and skeletal
muscle during mouse embryogenesis. Dev Biol 174:1-13
Kumarapeli AR, Horak KM, Glasford JW, Li J, Chen Q, Liu J,
Zheng H, Wang X (2005) A novel transgenic mouse model
reveals deregulation of the ubiquitin-proteasome system in the
heart by doxorubicin. FASEB J 19:2051-2053

Langley RC Jr, Cohen CM (1986) Association of spectrin with
desmin intermediate filaments. J Cell Biochem 30:101-109

Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi
WA, Hill R, Bachinski LL, Mann DL, Roberts R (1999) Desmin
mutation responsible for idiopathic dilated cardiomyopathy.
Circulation 100:461-464

Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capet-
anaki Y (1994) Inhibition of desmin expression blocks myoblast
fusion and interferes with the myogenic regulators MyoD and
myogenin. J Cell Biol 124:827-841

Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M,
Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions
and skeletal myopathy in mice lacking desmin. Dev Biol
175:362-366

Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L,
Thornell LE, Babinet C, Paulin D (1997) Desmin is essential for
the tensile strength and integrity of myofibrils but not for
myogenic commitment, differentiation, and fusion of skeletal
muscle. J Cell Biol 139:129-144

Li ZL, Lilienbaum A, Butler-Browne G, Paulin D (1989)
Human desmin-coding gene: complete nucleotide sequence,
characterization and regulation of expression during myogenesis
and development. Gene 78:243-254

@ Springer

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Lichtenstern T, Miicke N, Aebi U, Mauermann M, Herrmann H
(2012) Complex formation and kinetics of filament assembly
exhibited by the simple epithelial keratins K8 and K18. J Struct
Biol 177:54-62

Lindahl Allen M, Koch CM, Clelland GK, Dunham I, Antoniou
M (2009) DNA methylation-histone modification relationships
across the desmin locus in human primary cells. BMC Mol Biol
10:51

Linden M, Li Z, Paulin D, Gotow T, Leterrier JF (2001) Effects
of desmin gene knockout on mice heart mitochondria. J Bioen-
erg Biomembr 33:333-341

Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, Wang
X (2006) Impairment of the ubiquitin-proteasome system in
desminopathy mouse hearts. FASEB J 20:362-364

Lockard VG, Bloom S (1993) Trans-cellular desmin-lamin B
intermediate filament network in cardiac myocytes. J Mol Cell
Cardiol 25:303-309

Lyon GE, Buckingham ME (1993) Myogenic factor gene
expression in mouse somites and limb buds. In: Bernfield M (ed)
Molecular basis of morphogenesis. Symposia of the society for
developmental biology series, vol 13, Ist edn. John, New York,
pp 155-164

Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N,
Capetanaki Y (2008) A missense mutation in desmin tail domain
linked to human dilated cardiomyopathy promotes cleavage of
the head domain and abolishes its Z-disc localization. FASEB J
22:3318-3327

Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000)
Desmin cytoskeleton linked to muscle mitochondrial distribu-
tion and respiratory function. J Cell Biol 150:1283-1298
Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C,
Gerdes AM, Capetanaki Y (1999) The absence of desmin
leads to cardiomyocyte hypertrophy and cardiac dilation with
compromised systolic function. J Mol Cell Cardiol 31:2063—
2076

Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996)
Disruption of muscle architecture and myocardial degeneration
in mice lacking desmin. J Cell Biol 134:1255-1270

Mitsui T, Kawajiri M, Kunishige M, Endo T, Akaike M, Aki K,
Matsumoto T (2000) Functional association between nicotinic
acetylcholine receptor and sarcomeric proteins via actin and
desmin filaments. J Cell Biochem 77:584-595

Miyamoto Y, Akita H, Shiga N, Takai E, Iwai C, Mizutani K,
Kawai H, Takarada A, Yokoyama M (2001) Frequency and
clinical characteristics of dilated cardiomyopathy caused by
desmin gene mutation in a Japanese population. Eur Heart J
22:2284-2289

Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M,
Imamura M, Ozawa E, Watkins SC, Kunkel LM (2001) Des-
muslin, an intermediate filament protein that interacts with alpha
-dystrobrevin and desmin. Proc Natl Acad Sci USA 98:6156—
6161

Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi
Y (2004) In vivo analysis of autophagy in response to nutrient
starvation using transgenic mice expressing a fluorescent auto-
phagosome marker. Mol Biol Cell 15:1101-1111
Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang
Y, Roca X, Vela E, Mate JL, Coll J, Fernandez-Figueras MT,
Navas-Palacios JJ, Ariza A, Fuchs E (1998) A dysfunctional
desmin mutation in a patient with severe generalized myopathy.
Proc Natl Acad Sci USA 95:11312-11317

Nelson WJ, Traub P (1983) Proteolysis of vimentin and desmin
by the Ca2 + -activated proteinase specific for these interme-
diate filament proteins. Mol Cell Biol 3:1146-1156

Nicolet S, Herrmann H, Aebi U, Strelkov SV (2010) Atomic
structure of vimentin coil 2. J Struct Biol 170:369-376



Acta Neuropathol (2013) 125:47-75

73

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

Nitou M, Ishikawa K, Shiojiri N (2000) Immunohistochemical
analysis of development of desmin-positive hepatic stellate cells
in mouse liver. J Anat 197(Pt 4):635-646

O’Connor CM, Asai DJ, Flytzanis CN, Lazarides E (1981)
In vitro translation of the intermediate filament proteins desmin
and vimentin. Mol Cell Biol 1:303-309

Ohlsson M, Hedberg C, Bradvik B, Lindberg C, Tajsharghi H,
Danielsson O, Melberg A, Udd B, Martinsson T, Oldfors A
(2012) Hereditary myopathy with early respiratory failure
associated with a mutation in A-band titin. Brain 135:1682-
1694

Ohtakara K, Inada H, Goto H, Taki W, Manser E, Lim L, Izawa
I, Inagaki M (2000) p21-activated kinase PAK phosphorylates
desmin at sites different from those for Rho-associated kinase.
Biochem Biophys Res Commun 272:712-716

Olive M, Armstrong J, Miralles F, Pou A, Fardeau M, Gonzalez
L, Martinez F, Fischer D, Martinez Matos JA, Shatunov A,
Goldfarb L, Ferrer I (2007) Phenotypic patterns of desminopa-
thy associated with three novel mutations in the desmin gene.
Neuromuscul Disord 17:443-450

Olive M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A,
Sambuughin N, Martinez-Matos JA, Martinez F, Alio J, Farrero
E, Vicart P, Ferrer I (2004) Desmin-related myopathy: clinical,
electrophysiological, radiological, neuropathological and
genetic studies. J Neurol Sci 219:125-137

Olive M, Odgerel Z, Martinez A, Poza JJ, Bragado FG, Zabalza
RJ, Jerico I, Gonzalez-Mera L, Shatunov A, Lee HS, Armstrong
J, Maravi E, Arroyo MR, Pascual-Calvet J, Navarro C, Paradas
C, Huerta M, Marquez F, Rivas EG, Pou A, Ferrer I, Goldfarb
LG (2011) Clinical and myopathological evaluation of early-
and late-onset subtypes of myofibrillar myopathy. Neuromuscul
Disord 21:533-542

Olive M, van Leeuwen FW, Janue A, Moreno D, Torrejon-
Escribano B, Ferrer 1 (2008) Expression of mutant ubiquitin
(UBB + 1) and p62 in myotilinopathies and desminopathies.
Neuropathol Appl Neurobiol 34:76-87

Omary MB (2009) “IF-pathies”: a broad spectrum of interme-
diate filament-associated diseases. J Clin Invest 119:1756-1762
Otten E, Asimaki A, Maass A, van Langen IM, van der Wal A,
de Jonge N, van den Berg MP, Saffitz JE, Wilde AA, Jongbloed
JD, van Tintelen JP (2010) Desmin mutations as a cause of right
ventricular heart failure affect the intercalated disks. Heart
Rhythm 7:1058-1064

Panagopoulou P, Davos CH, Milner DJ, Varela E, Cameron J,
Mann DL, Capetanaki Y (2008) Desmin mediates TNF-alpha-
induced aggregate formation and intercalated disk reorganiza-
tion in heart failure. J Cell Biol 181:761-775

Park KY, Dalakas MC, Goebel HH, Ferrans VJ, Semino-Mora
C, Litvak S, Takeda K, Goldfarb LG (2000) Desmin splice
variants causing cardiac and skeletal myopathy. J Med Genet
37.851-857

Park KY, Dalakas MC, Semino-Mora C, Lee HS, Litvak S,
Takeda K, Ferrans VJ, Goldfarb LG (2000) Sporadic cardiac and
skeletal myopathy caused by a de novo desmin mutation. Clin
Genet 57:423-429

Paulin D, Huet A, Khanamyrian L, Xue Z (2004) Desminopa-
thies in muscle disease. J Pathol 204:418-427

Pfeffer G, Elliott HR, Griffin H, Barresi R, Miller J, Marsh J,
Evila A, Vihola A, Hackman P, Straub V, Dick DJ, Horvath R,
Santibanez-Koref M, Udd B, Chinnery PF (2012) Titin mutation
segregates with hereditary myopathy with early respiratory
failure. Brain 135:1695-1713

Pica EC, Kathirvel P, Pramono ZA, Lai PS, Yee WC (2008)
Characterization of a novel S13F desmin mutation associated
with desmin myopathy and heart block in a Chinese family.
Neuromuscul Disord 18:178-182

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

Pinol-Ripoll G, Shatunov A, Cabello A, Larrode P, de la Puerta
I, Pelegrin J, Ramos FJ, Olive M, Goldfarb LG (2009) Severe
infantile-onset cardiomyopathy associated with a homozygous
deletion in desmin. Neuromuscul Disord 19:418-422

Pinset C, Montarras D, Chenevert J, Minty A, Barton P, Laurent C,
Gros F (1988) Control of myogenesis in the mouse myogenic C2
cell line by medium composition and by insulin: characterization
of permissive and inducible C2 myoblasts. Differentiation
38:28-34

Poon E, Howman EV, Newey SE, Davies KE (2002) Associa-
tion of syncoilin and desmin: linking intermediate filament
proteins to the dystrophin-associated protein complex. J Biol
Chem 277:3433-3439

Price MG (1987) Skelemins: cytoskeletal proteins located at the
periphery of M-discs in mammalian striated muscle. J Cell Biol
104:1325-1336

Pruszczyk P, Kostera-Pruszczyk A, Shatunov A, Goudeau B,
Draminska A, Takeda K, Sambuughin N, Vicart P, Strelkov SV,
Goldfarb LG, Kaminska A (2007) Restrictive cardiomyopathy
with atrioventricular conduction block resulting from a desmin
mutation. Int J Cardiol 117:244-253

Raats JM, Schaart G, Henderik JB, van der Kemp A, Dunia I,
Benedetti EL, Pieper FR, Ramaekers FC, Bloemendal H (1996)
Muscle-specific expression of a dominant negative desmin
mutant in transgenic mice. Eur J Cell Biol 71:221-236

Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G
(1999) Association of mitochondria with plectin and desmin
intermediate filaments in striated muscle. Exp Cell Res
252:479-491

Robson RM, Huiatt TW, Bellin RM (2004) Muscle intermediate
filament proteins. Methods Cell Biol 78:519-553

Rogatsch H, Jezek D, Hittmair A, Mikuz G, Feichtinger H
(1996) Expression of vimentin, cytokeratin, and desmin in
Sertoli cells of human fetal, cryptorchid, and tumour-adjacent
testicular tissue. Virchows Arch 427:497-502

Sam M, Shah S, Friden J, Milner DJ, Capetanaki Y, Lieber RL
(2000) Desmin knockout muscles generate lower stress and are
less vulnerable to injury compared with wild-type muscles. Am
J Physiol Cell Physiol 279:C1116-C1122

Sandoval 1V, Colaco CA, Lazarides E (1983) Purification of the
intermediate filament-associated protein, synemin, from chicken
smooth muscle. Studies on its physicochemical properties,
interaction with desmin, and phosphorylation. J Biol Chem
258:2568-2576

Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen
M, McDonald K, Stajich JM, Mahjneh I, Vihola A, Raheem O,
Penttila S, Lehtinen S, Huovinen S, Palmio J, Tasca G, Ricci E,
Hackman P, Hauser M, Katsanis N, Udd B (2012) Mutations
affecting the cytoplasmic functions of the co-chaperone
DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet
44(450-455):S451-5452

Sax CM, Farrell FX, Zehner ZE (1989) Down-regulation of
vimentin gene expression during myogenesis is controlled by a
5'-flanking sequence. Gene 78:235-242

Schaffeld M, Herrmann H, Schultess J, Markl J (2001) Vimentin
and desmin of a cartilaginous fish, the shark Scyliorhinus stel-
laris: sequence, expression patterns and in vitro assembly. Eur J
Cell Biol 80:692-702

Schmid E, Schiller DL, Grund C, Stadler J, Franke WW (1983)
Tissue type-specific expression of intermediate filament proteins
in a cultured epithelial cell line from bovine mammary gland.
J Cell Biol 96:37-50

Schopferer M, Béar H, Hochstein B, Sharma S, Miicke N,
Herrmann H, Willenbacher N (2009) Desmin and vimentin
intermediate filament networks: their viscoelastic properties
investigated by mechanical rheometry. J] Mol Biol 388:133-143

@ Springer



74

Acta Neuropathol (2013) 125:47-75

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

Schramm N, Born C, Weckbach S, Reilich P, Walter MC, Reiser
MF (2008) Involvement patterns in myotilinopathy and des-
minopathy detected by a novel neuromuscular whole-body MRI
protocol. Eur Radiol 18:2922-2936

Schrickel JW, Stockigt F, Krzyzak W, Paulin D, Li Z, Lub-
kemeier I, Fleischmann B, Sasse P, Linhart M, Lewalter T,
Nickenig G, Lickfett L, Schroder R, Clemen CS (2010) Cardiac
conduction disturbances and differential effects on atrial and
ventricular electrophysiological properties in desmin deficient
mice. J Interv Card Electrophysiol 28:71-80

Schroder R, Goudeau B, Simon MC, Fischer D, Eggermann T,
Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schoneborn S,
Zerres K, van der Ven PF, Fiirst DO, Kunz WS, Vicart P (2003)
On noxious desmin: functional effects of a novel heterozygous
desmin insertion mutation on the extrasarcomeric desmin cyto-
skeleton and mitochondria. Hum Mol Genet 12:657-669
Schroder R, Goudeau B, Simon MC, Fischer D, Eggermann T,
Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schoneborn S,
Zerres K, van der Ven PF, Fiirst DO, Kunz WS, Vicart P (2007)
Erratum for: “On noxious desmin: functional effects of a novel
heterozygous desmin insertion mutation on the extrasarcomeric
desmin cytoskeleton and mitochondria”. Hum Mol Genet
16:2989-2990

Schroder R, Schoser B (2009) Myofibrillar myopathies: a clin-
ical and myopathological guide. Brain Pathol 19:483-492
Schroder R, Vrabie A, Goebel HH (2007) Primary desminopa-
thies. J Cell Mol Med 11:416-426

Schroder R, Warlo I, Herrmann H, van der Ven PF, Klasen C,
Blumcke I, Mundegar RR, Furst DO, Goebel HH, Magin TM
(1999) Immunogold EM reveals a close association of plectin
and the desmin cytoskeleton in human skeletal muscle. Eur J
Cell Biol 78:288-295

Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM,
Capetanaki Y, Evans RM (2001) Paranemin and the organiza-
tion of desmin filament networks. J Cell Sci 114:1079-1089
Selcen D (2011) Myofibrillar myopathies. Neuromuscul Disord
21:161-171

Selcen D, Engel AG (2004) Mutations in myotilin cause myo-
fibrillar myopathy. Neurology 62:1363-1371

Selcen D, Ohno K, Engel AG (2004) Myofibrillar myopathy:
clinical, morphological and genetic studies in 63 patients. Brain
127:439-451

Sharma S, Miicke N, Katus HA, Herrmann H, Biar H (2009)
Disease mutations in the “head” domain of the extra-sarcomeric
protein desmin distinctly alter its assembly and network-forming
properties. J Mol Med 87:1207-1219

Sjoberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T
(1994) Colocalization of nestin and vimentin/desmin in skeletal
muscle cells demonstrated by three-dimensional fluorescence
digital imaging microscopy. Exp Cell Res 214:447-458
Sjoberg G, Saavedra-Matiz CA, Rosen DR, Wijsman EM, Borg
K, Horowitz SH, Sejersen T (1999) A missense mutation in the
desmin rod domain is associated with autosomal dominant distal
myopathy, and exerts a dominant negative effect on filament
formation. Hum Mol Genet 8:2191-2198

Sparn HG, Lieder-Ochs BA, Franke WW (1994) Immunohis-
tochemical identification and characterization of a special type
of desmin-producing stromal cells in human placenta and other
fetal tissues. Differentiation 56:191-199

Sprinkart AM, Block W, Traber F, Meyer R, Paulin D, Clemen
CS, Schroder R, Gieseke J, Schild H, Thomas D (2011) Char-
acterization of the failing murine heart in a desmin knockout
model using a clinical 3 T MRI scanner. Int J Cardiovasc
Imaging 28:1699-1705

Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu
KC, Jang SI, Goldman RD (1999) A high molecular weight

@ Springer

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

intermediate filament-associated protein in BHK-21 cells is
nestin, a type VI intermediate filament protein. Limited co-
assembly in vitro to form heteropolymers with type III vimentin
and type IV alpha-internexin. J Biol Chem 274:9881-9890
Strach K, Sommer T, Grohe C, Meyer C, Fischer D, Walter MC,
Vorgerd M, Reilich P, Bér H, Reimann J, Reuner U, Germing A,
Goebel HH, Lochmuller H, Wintersperger B, Schroder R (2008)
Clinical, genetic, and cardiac magnetic resonance imaging
findings in primary desminopathies. Neuromuscul Disord
18:475-482

Sugawara M, Kato K, Komatsu M, Wada C, Kawamura K,
Shindo PS, Yoshioka PN, Tanaka K, Watanabe S, Toyoshima I
(2000) A novel de novo mutation in the desmin gene causes
desmin myopathy with toxic aggregates. Neurology 55:986-990
Sung RK, Ursell PC, Rame JE, Bailey H, Caleshu C, Nussbaum
RL, Scheinman MM (2011) QTc prolongation and family his-
tory of sudden death in a patient with desmin cardiomyopathy.
Pacing Clin Electrophysiol 34:¢105-e108

Szeverenyi I, Cassidy AJ, Chung CW, Lee BT, Common JE,
Ogg SC, Chen H, Sim SY, Goh WL, Ng KW, Simpson JA, Chee
LL, Eng GH, Li B, Lunny DP, Chuon D, Venkatesh A, Khoo
KH, McLean WH, Lim YP, Lane EB (2008) The Human
Intermediate Filament Database: comprehensive information on
a gene family involved in many human diseases. Hum Mutat
29:351-360

Tam JL, Triantaphyllopoulos K, Todd H, Raguz S, de Wit T,
Morgan JE, Partridge TA, Makrinou E, Grosveld F, Antoniou M
(2006) The human desmin locus: gene organization and LCR-
mediated transcriptional control. Genomics 87:733-746

Taylor MR, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel
E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X,
Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P,
Mestroni L (2007) Prevalence of desmin mutations in dilated
cardiomyopathy. Circulation 115:1244-1251

Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D (1997)
Null mutation in the desmin gene gives rise to a cardiomyopa-
thy. J Mol Cell Cardiol 29:2107-2124

Tidball JG (1992) Desmin at myotendinous junctions. Exp Cell
Res 199:206-212

Tolstonog GV, Wang X, Shoeman R, Traub P (2000) Interme-
diate filaments reconstituted from vimentin, desmin, and glial
fibrillary acidic protein selectively bind repetitive and mobile
DNA sequences from a mixture of mouse genomic DNA frag-
ments. DNA Cell Biol 19:647-677

Traub P (1995) Intermediate filaments and gene regulation.
Physiol Chem Phys Med NMR 27:377-400

van Spaendonck-Zwarts K, van Hessem L, Jongbloed JD, de
Walle HE, Capetanaki Y, van der Kooi AJ, van Langen IM, van
den Berg MP, van Tintelen JP (2010) Desmin-related myopathy:
a review and meta-analysis. Clin Genet 80:354-366

van Spaendonck-Zwarts KY, van der Kooi AJ, van den Berg
MP, Ippel EF, Boven LG, Yee WC, van den Wijngaard A,
Brusse E, Hoogendijk JE, Doevendans PA, de Visser M, Jon-
gbloed JD, van Tintelen JP (2012) Recurrent and founder
mutations in the Netherlands: the cardiac phenotype of DES
founder mutations p.S13F and p.N342D. Neth Heart J
20:219-228

van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ,
Wiesfeld AC, Jongbloed JD, van den Wijngaard A, Kuks JB,
van Spaendonck-Zwarts KY, Notermans N, Boven L, van den
Heuvel F, Veenstra-Knol HE, Saffitz JE, Hofstra RM, van den
Berg MP (2009) Severe cardiac phenotype with right ventricular
predominance in a large cohort of patients with a single mis-
sense mutation in the DES gene. Heart Rhythm 6:1574-1583
Vernengo L, Chourbagi O, Panuncio A, Lilienbaum A, Baton-
net-Pichon S, Bruston F, Rodrigues-Lima F, Mesa R, Pizzarossa



Acta Neuropathol (2013) 125:47-75

75

187.

188.

189.

190.

191.

192.

C, Demay L, Richard P, Vicart P, Rodriguez MM (2010) Des-
min myopathy with severe cardiomyopathy in a Uruguayan
family due to a codon deletion in a new location within the
desmin 1A rod domain. Neuromuscul Disord 20:178-187
Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A,
Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M
(1998) A missense mutation in the alphaB-crystallin chaperone
gene causes a desmin-related myopathy. Nat Genet 20:92-95
Vorgias CE, Traub P (1986) Nucleic acid-binding activities of
the intermediate filament subunit proteins desmin and glial
fibrillary acidic protein. Z Naturforsch C 41:897-909

Vrabie A, Goldfarb LG, Shatunov A, Nagele A, Fritz P,
Kaczmarek I, Goebel HH (2005) The enlarging spectrum of
desminopathies: new morphological findings, eastward geo-
graphic spread, novel exon 3 desmin mutation. Acta Neuropathol
109:411-417

Wahbi K, Behin A, Charron P, Dunand M, Richard P, Meune C,
Vicart P, Laforet P, Stojkovic T, Becane HM, Kuntzer T, Duboc
D (2012) High cardiovascular morbidity and mortality in myo-
fibrillar myopathies due to DES gene mutations: a 10-year
longitudinal study. Neuromuscul Disord 22:211-218

Walter MC, Reilich P, Huebner A, Fischer D, Schroder R,
Vorgerd M, Kress W, Born C, Schoser BG, Krause KH, Klutzny
U, Bulst S, Frey JR, Lochmiiller H (2007) Scapuloperoneal
syndrome type Kaeser and a wide phenotypic spectrum of adult-
onset, dominant myopathies are associated with the desmin
mutation R350P. Brain 130:1485-1496

Wang Q, Tolstonog GV, Shoeman R, Traub P (2001) Sites of
nucleic acid binding in type I-IV intermediate filament subunit
proteins. Biochemistry 40:10342-10349

193.

194.

195.

196.

197.

198.

199.

200.

201.

Wang X, Klevitsky R, Huang W, Glasford J, Li F, Robbins J
(2003) oB-Crystallin Modulates Protein Aggregation of
Abnormal Desmin. Circ Res 93:998-1005

Wang X, Osinska H, Dorn GW 2nd, Nieman M, Lorenz JN,
Gerdes AM, Witt S, Kimball T, Gulick J, Robbins J (2001)
Mouse model of desmin-related cardiomyopathy. Circulation
103:2402-2407

Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M,
Lorenz J, Hewett T, Robbins J (2001) Expression of R120G-
alphaB-crystallin causes aberrant desmin and alphaB-crystallin
aggregation and cardiomyopathy in mice. Circ Res 89:84-91
Weisleder N, Taffet GE, Capetanaki Y (2004) Bcl-2 overex-
pression corrects mitochondrial defects and ameliorates
inherited desmin null cardiomyopathy. Proc Natl Acad Sci USA
101:769-774

Wieneke S, Stehle R, Li Z, Jockusch H (2000) Generation of
tension by skinned fibers and intact skeletal muscles from desmin-
deficient mice. Biochem Biophys Res Commun 278:419-425
Yuan J, Huiatt TW, Liao CX, Robson RM, Graves DJ (1999)
The effects of mono-ADP-ribosylation on desmin assembly-
disassembly. Arch Biochem Biophys 363:314-322

Yuri T, Miki K, Tsukamoto R, Shinde A, Kusaka H, Tsubura A
(2007) Autopsy case of desminopathy involving skeletal and
cardiac muscle. Pathol Int 57:32-36

Zheng Q, Su H, Ranek MJ, Wang X (2011) Autophagy and p62
in cardiac proteinopathy. Circ Res 109:296-308

Zhou H, Huiatt TW, Robson RM, Sernett SW, Graves DJ (1996)
Characterization of ADP-ribosylation sites on desmin and res-
toration of desmin intermediate filament assembly by de-ADP-
ribosylation. Arch Biochem Biophys 334:214-222

@ Springer



	Desminopathies: pathology and mechanisms
	Abstract
	General introduction
	Clinical phenotypes
	Epidemiology
	Skeletal muscle disease
	Cardiac disease
	Pulmonary and miscellaneous disease manifestations
	Disease progression and mortality

	Muscle biopsy findings
	Light microscopy
	Immunodetection
	Electron microscopy

	Cardiac pathology
	Differential diagnosis
	Genetics of desminopathies
	Human desmin gene
	Desmin mutation spectrum
	Autosomal dominant inheritance
	Autosomal recessive inheritance
	Sporadic forms

	Desmin protein
	Protein structure and filament assembly
	Protein expression
	Post-translational modifications
	Subcellular localization and functions
	Molecular interaction partners
	Interactions with other IF proteins
	Interactions with IF-associated proteins
	Interactions with sarcomeric and membrane-associated proteins
	Interactions with small heat shock proteins, apoptosis-related proteins, and nucleic acids


	Pathophysiology
	Subcellular localization and expression of wild-type and mutant desmin
	Aberrant modifications of desmin
	Dysfunctions in protein quality control

	Mitochondrial pathology
	Cytoskeletal organization
	In vitro filament assembly
	Biomechanics: from filaments to cells and muscle tissue

	Animal models
	Desmin knockout models
	Desko #1 and Desko #2
	Desko #2/Bcl-2tg overexpression
	Desko #2/Destg p.Ile451Met
	Desko #2/Destg p.Asp263Glu/TNFtg overexpression

	Desmin transgenic mouse models
	Destg truncated/chimeric desmin
	Destg p.Arg173_Glu179del
	Destg p.Arg173_Glu179del/Cryabtg p.ArgR120Gly
	Destg p.Arg173_Glu179del/GFPdgntg
	Destg p.Arg173_Glu179del/GFP-LC3tg
	Destg p.Leu345Pro


	Conclusion and outlook
	Acknowledgments
	References


