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Abstract: Nuclear factor erythroid 2-related factor 2 Nfe2l2 (Nrf2) is believed to play a crucial role
in protecting cells against oxidative stress. In addition to its primary function of maintaining redox
homeostasis, there is emerging evidence that Nrf2 is also involved in energy metabolism. In this
review, we briefly discuss the role of Nrf2 in skeletal muscle metabolism from the perspective
of exercise physiology. This article is part of a special issue “Mitochondrial Function, Reactive
Oxygen/Nitrogen Species and Skeletal Muscle” edited by Håkan Westerblad and Takashi Yamada.
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1. Introduction

Reactive oxygen species (ROS) are produced in skeletal muscles both at rest and dur-
ing physical activity, mainly by mitochondria. Under physiological conditions, these ROS
are buffered by the cellular antioxidant system to prevent the accumulation of oxidative
damage. However, when the redox balance is disrupted, oxidative stress is known to be
associated with metabolic disorders and skeletal muscle dysfunction. Indeed, elevated
levels of oxidative stress markers can be observed in skeletal muscles in neuromuscular
diseases, such as muscular dystrophy (Duchenne [1], limb-girdle [2], and facioscapulo-
humeral [3]), and metabolic myopathies (McArdle disease [4], Pompe disease [5], and
mitochondrial disease [6]). Furthermore, physical inactivity, obesity, and aging-related
muscle dysfunctions are linked to the increase in oxidative stress [7–9]. In contrast, there is
growing evidence that ROS production promotes beneficial adaptations in skeletal mus-
cles, including mitochondrial biogenesis. From this point of view, several studies have
demonstrated that antioxidant supplementation hampers exercise training induced muscle
adaptations [10,11]. These hormesis (or mitohormesis) effects of exercise have drawn a
great deal of attention from researchers in both health and sports sciences [12,13]. As ROS
production is called a “double-edged sword”, it is important to consider its pros as well
as cons.

2. Nrf2 as a Master Regulator of the Response to Oxidative Stress

Nuclear factor erythroid 2-related factor 2 Nfe2l2 (known as Nrf2) is a transcription
factor that is believed to be the key regulator of the antioxidant response [14,15]. Un-
der quiescent/homeostatic conditions, Nrf2 is constantly degraded via the Kelch-like
ECH-associated protein 1 (Keap1) mediated ubiquitin-proteasome pathway. Under stress
conditions, however, Nrf2 translocates into the nucleus for binding to the antioxidant re-
sponse element (ARE) of the target cytoprotective genes. Studies using Nrf2-deficient mice
on a C57BL/6 background show that Nrf2 is important for antioxidant enzymes in skeletal
muscles (Table 1). Among the established downstream targets of Nrf2 identified in other
tissues, one of the most significantly down-regulated proteins in Nrf2 knockout (KO) mice
is NAD(P)H quinone oxidoreductase 1 (NQO1), which is involved in the detoxification
process [16].

However, Nrf2 deficiency has minimal effect on the expression of its downstream
antioxidant enzymes, except NQO1, in the skeletal muscles of young mice [17,18]. This
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may be due to the fact that Nrf2 plays only a limited role in skeletal muscle redox status
under basal/unstressed conditions. Nrf2 has been shown to be essential for antioxidant
and cytoprotective gene induction in response to muscle contraction [19], as well as in-
activity caused by surgical denervation [20]. In aged mice, the effects of Nrf2 deficiency
on antioxidant proteins seem to be much greater, indicating a lack of compensatory adap-
tation to age-associated ROS accumulation [18,21–23]. Indeed, loss of Nrf2 induces the
oxidative stress marker 4-HNE in whole muscle homogenates [18,21] and mitochondrial
fractions [23] of aged skeletal muscles. Similar observations have been reported in cardiac
muscle [24].

Table 1. Effects of Nrf2 deficiency on skeletal muscle antioxidants in C57/BL6 mice.

Reference Animal Age Protein Abundance/Enzyme Activity

Miller et al., [18] 2 months ↑ GCS; ↓ NQO1, G6PD; ↔ CAT, GSR, SOD1, SOD2
24 months ↑ SOD2; ↓ NQO1, CAT, GCS, GSR, G6PD; ↔ SOD1

Narasimhan et al., [21] >23 months ↓ NQO1, CAT, GPX1, G6PD, SOD1; ↔ GSR, SOD2

Crilly et al., [17] 3 months ↓ NQO1; ↔ HO-1, GPX1, G6PD

Ahn et al., [22] 24 months
↓ GPX4, GSR, GSTA3, GSTM1, GSTP1, PRDX1, TXN1, TXNRD1;
↔ GPX1, SOD1, SOD2

Kitaoka et al., [23] 22 months ↓ CAT; ↔ Total SOD

↑: Increased, ↓: Decreased, ↔: Unchanged vs. age-matched wild-type mice. Abbreviations: NQO1, NAD(P)H quinone oxidoreductase 1;
CAT, catalase; HO-1, heme oxygenase 1; GCS, glutamyl cysteine synthase; GPX, glutathione peroxidase; GSR, glutathione reductase; GSTA3,
glutathione S-transferase A3; GSTP1, glutathione S-transferase pi 1; G6PD, glucose 6-phosphate dehydrogenase; PRDX1, peroxiredoxin 1;
SOD: superoxide dismutase, TXN1, thioredoxin 1; TXNRD1, thioredoxin reductase 1.

3. Nrf2 and Mitochondrial Function

Mitochondria are energy-producing organelles, and hence their content in skeletal
muscles is strongly correlated with endurance exercise capacity [25,26]. As byproducts of
oxidative metabolism, mitochondrial ROS are produced in complexes I and III, and this
ROS production might lead to cumulative mitochondrial/cellular damage. Given that
mitochondria have their own DNA, which lacks protective histones, their quality control
mechanism is essential for the maintenance of mitochondrial function [27]. Mitochondria
are highly dynamic organelles that constantly undergo fusion and fission. The fusion
process allows the sharing of nucleic acids as well as metabolic substrates, while the fission
process enables damaged mitochondria to be detached and degraded [28].

It has been demonstrated that acute exposure to ROS induces fragmentation of the
mitochondrial network, with reduced number of fusion and fission events in C2C12 my-
oblasts [29,30]. Therefore, it seems to be logical to assume that ablation of Nrf2 affects
skeletal muscle mitochondria and, particularly, exacerbates aging-associated mitochondrial
dysfunction. Since previous studies have shown that Nrf2 deficiency leads to impaired mi-
tochondrial respiration in mouse embryonic fibroblasts, as well as various tissues including
liver and brain [31–33], this review focused on research on skeletal muscles. Table 2 illus-
trates the effects of Nrf2 deficiency on mitochondria in mouse skeletal muscles. Although
the loss of Nrf2 does not have much impact on skeletal muscle mitochondrial volume and
morphology in young mice, impaired mitochondrial dynamics and increased percentage
of abnormal mitochondria are observed in an age-dependent manner [34]. Increased ROS
production in aged Nrf2 KO mice is observed in both permeabilized muscle fibers [22]
and isolated mitochondria [23]. Interestingly, even in young mice, the lack of Nrf2 reduces
state 4 respiration and increased ROS emission in intermyofibrillar mitochondria, but these
changes are not observed in subsarcolemmal mitochondria [17], indicating that the effect
of Nrf2 deficiency depends on subcellular localization of mitochondria. Recently, mass
spectrometry analysis revealed that Nrf2 KO changes the expression of over a hundred
proteins, including several proteins essential for normal mitochondrial function, in skeletal
muscle specific transgenic mouse model [35]. The decline in complex I expression in Nrf2
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KO muscle is consistent with the findings of another study, that examined respiratory func-
tion and showed reduced complex I-linked oxygen consumption rate [22]. Further studies
are needed to probe the differences in respiratory function depending on the substrate.

Table 2. Effects of Nrf2 deficiency on skeletal muscle mitochondria in C57/BL6 mice.

Reference Summary of Effects

Crilly et al., [17] Decreased state 4 respiration and increased ROS emission in isolated IMF mitochondria

Merry et al., [36] Abolished exercise training-induced increase in mtDNA copy number and CS activity

Ahn et al., [22] Reduced complex I-linked respiration and increased ROS production in PMF

Kitaoka et al., [23] Increased ROS production and oxidative stress markers in isolated mitochondria

Huang et al., [34] Decreased mtDNA copy number and impaired mitochondrial morphology

Wang et al., [37] Abolished effects of hypoxia preconditioning on CS activity and OXPHOS protein levels

Gao et al., [35] Downregulated proteins involved in mitochondrial health/remodeling

Abbreviations: ROS, reactive oxygen species; IMF, intermyofibrillar; mtDNA, mitochondrial DNA; CS, citrate synthase; PMF, permeabilized
muscle fibers; OXPHOS, oxidative phosphorylation.

Although the number of studies is limited, it is worth noting that Nrf2 has been
reported to mediate exercise-induced mitochondrial biogenesis in skeletal muscles. Lack
of Nrf2 impairs treadmill running induced increases in citrate synthase (CS) activity and
mitochondrial DNA copy number [36] and attenuates voluntary wheel running induced
increase in cytochrome-c oxidase (COX) activity [17]; these are well known markers of
mitochondrial content. Another study reported that Nrf2 deficiency abolishes the effects
of hypoxia preconditioning for 48 h on exercise-induced CS activity and oxidative phos-
phorylation (OXPHOS) protein levels [37]. Despite this, not all mitochondrial proteins are
affected by the loss of Nrf2, and intriguingly, mitochondrial transcription factor A (TFAM)
expression has been shown to be higher in Nrf2 KO mice [16]. These studies suggest that
Nrf2 is required for complete exercise-induced mitochondrial adaptation in skeletal mus-
cles, but the molecular mechanisms of how Nrf2 interacts with other signaling pathways
already known to be involved in mitochondrial biogenesis remain to be elucidated.

4. Nrf2 Signaling in Response to Physical Activity

Regular physical activity has numerous health benefits, while a sedentary lifestyle
leads to reduced tolerance to stressors and increased risk of chronic diseases [38]. It is
widely known that exercise acutely produces ROS in skeletal muscles as energy demand
rapidly increases [12,39]. Hence, the question is whether acute exercise/chronic training
changes Nrf2 expression. Previous studies involving exercise intervention using mouse
models are listed in Table 3. Several studies have demonstrated that acute treadmill running
increases Nrf2 transcription [36,40] and ARE binding activity with translocation into the
nucleus [17,41,42] in mouse skeletal muscles.

An acute bout of treadmill exercise for 60–150 min transiently increases Nrf2 mRNA
levels in mouse skeletal muscles, followed by a return to the baseline levels by 18 h [36,40].
At the protein level, incremental exercise tests to exhaustion [17,42] and for 6 h, but not 1
h of running at 20 m/min [41], activates Nrf2 signaling, suggesting that longer exercise
duration induces higher responses. In C2C12 cells using electrical pulse stimulation model,
the response of Nrf2 has been shown to depend on the intensity and time of muscle
contraction [19]. More recently, muscle stimulation of both high (100 Hz) and low (50 Hz)
frequency has been found to activate Nrf2-ARE binding in stimulated muscles. Surprisingly,
Nrf2-ARE activation was also observed in contralateral unstimulated muscles after high
intensity stimulation, suggesting that Nrf2 signaling is activated in peripheral tissues in
response to exercise [43].
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Despite the fact that exercise training increases antioxidant enzymes [44], there are
conflicting reports regarding the effects of chronic training on Nrf2 protein content in
whole muscle homogenates in mice [17,42,45]. This may be due to the difference in
training modes (voluntary or forced treadmill), period (4 wk or 6 wk), recovery before
muscle sampling (24 h or 48 h), and strain of mice (C57BL/6 or ICR/CD-1). Importantly,
Merry et al. reported that commercially available Nrf2 antibodies were unable to detect the
single band corresponding to Nrf2 in muscle lysates at correct molecular weight, that was
not seen in lysates from Nrf2 KO mice [36]. Also, it should be noted that there has been a
misconception about the molecular weight of Nrf2 [46]. Given the short half-life of Nrf2,
which is considered to be less than 20 min [47], downstream targets of Nrf2, rather than
Nrf2 itself, should be examined as chronic adaptations.

Table 3. Effects of exercise on Nrf2 expression in mouse skeletal muscles.

Nrf2
ProteinReference Study Design

mRNA
Whole Muscle Nucleus ARE-Binding

Li et al., [41] AE — — ↑ ↑
AE — — ↑ ↑Crilly et al., [17]
TR — ↓ — —

Merry et al., [36] AE ↑ — — —
TR ↑ — — —

Wang et al., [40] * AE ↑ ↑ — —
Mei et al., [45] TR ↑ ↔ — —

AE — — ↑ ↑
Yamada et al., [42] TR — ↑ — —

↑: Increased, ↓: Decreased, ↔: Unchanged vs. age-matched wild-type mice, —not reported. *: examined using ICR/CD-1 mice, while
C57/BL6 mice were used in all of the unmarked references. Abbreviations: ARE, antioxidant response element; AE, acute exercise;
TR, training.

In a human study, muscle Nrf2 protein levels were reported to be higher in active old
subjects than in subjects with a sedentary lifestyle [9]. In agreement with mouse studies, an
acute bout of exercise, examining both endurance (30 min of continuous cycling) and Tabata
(4 min of supramaximal interval exercise) protocols, up-regulated Nrf2 mRNA expression
in human skeletal muscles [48]. Similarly, both the two 30 min cycling trials (high-intensity
interval and constant workload) elicited an increase in Nrf2 levels in nuclear fractions of
the peripheral blood mononuclear cells from young subjects [49]; however, the increase
in nuclear Nrf2 induced by 30 min cycling at 70% VO2max was not observed in older
subjects [50]. Nrf2 signaling is activated by acute high intensity interval exercise in humans,
but the exposure to a hypoxic environment does not seem to augment the response [51,52].
Future studies are needed to clarify the exercise conditions (mode, intensity, and duration)
required for increasing Nrf2 expression in human skeletal muscles.

5. Nrf2 and Muscle Contractile Function

Skeletal muscle characteristics of Nrf2 KO mice are summarized in Table 4. In accor-
dance with mitochondrial adaptations, Nrf2 deficiency does not dramatically influence
skeletal muscle mass [17,20] or cross-sectional area [34,53] in young mice, whereas aged
Nrf2 KO mice show a trend of reduction in these indices compared with age-matched
wild-type (WT) mice [18,22,23,34]. Likewise, Nrf2 has negligible impact on denervation-
induced [20] and streptozotocin-induced [54] muscle atrophy. When mice have access to
a running wheel in their cage, there is no difference in daily running distance between
Nrf2 KO mice and WT mice. Nrf2 deficiency decreases maximal grip strength and in-
verted grid hanging duration in aged mice, but not in young mice [22,34,42]. These studies
suggest that that Nrf2 deficiency affects muscle mass and physical function mainly in an
age-dependent manner.
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Table 4. Effects of Nrf2 deficiency on skeletal muscle function in C57/BL6 mice.

Animal Age
Characteristics

2–8 Months 20–24 Months

Muscle mass ↔ [17,20] ↓ [22,23]
Cross sectional area ↔ [34,53,54] ↓ [18,34]
Grip strength ↔ [34,42] ↓ [22,34]
Running capacity
Voluntary wheel running
Incremental treadmill running

↔ [17,42]
↓ [35,53], ↔ [17,34,42]

—
↓ [34]

In situ/in vitro contractility ↓ [17,35] ↓ [22]

↑: Increased, ↓: Decreased, ↔: Unchanged vs. age-matched wild-type mice, —not reported. The numbers in brackets are reference numbers.

However, in isolated muscle, it is important to note that Nrf2 KO mice show a signif-
icantly reduced force generation with time, and a greater rate of fatigue, irrespective of
age [17,22,35]. Exercise capacity, as evaluated by an incremental treadmill test to exhaus-
tion, has also been found to be impaired in Nrf2 KO mice [34,35,53], though some studies
failed to find any significant changes compared with WT mice [17,42]. These conflicting
results are not only because of animal age, but also due to differences in experimental
protocols, such as treadmill incline, speed patterns, criteria for exhaustion, and acclima-
tization to the treadmill. Furthermore, it should be noted that while most of the studies
referred to in this review used global Nrf2 KO mice, some used skeletal muscle specific [42],
and also inducible [35], KO models. Another study demonstrated that improvement in
aerobic capacity after forced treadmill running, which is observed in WT mice, is not
observed in Nrf2 KO mice [36]. Recently, Keap1 deficiency, which activates the Nrf2 path-
way, has been shown to enhance exercise capacity as well as force generation in mouse
skeletal muscles [35,55]. Moreover, Sulforaphane treatment, which is known to activate
Nrf2, increases running distance in an exhaustive treadmill running test in WT mice [53],
and alleviates the reduction in grip strength and exercise capacity in mdx mice, the most
widely used animal model of Duchenne muscular dystrophy [56]. Similarly, treatment
with phytochemicals known to activate Nrf2 (marketed as Protandim) has been found to
enhance exercise-training induced skeletal muscle adaptations. Interestingly, it does not
blunt the positive effects of exercise, which are observed in response to supplementation
with exogenous antioxidants such as vitamin C [57]. Taken together, these results indicate
that Nrf2 is important for skeletal muscle function and exercise performance, possibly
beyond the role of the master regulator of antioxidant genes.

6. Summary and Perspectives

Given the rapid changes in energy demand during exercise, it seems obvious that
antioxidant systems regulated by Nrf2 are important for athletic performance. In skeletal
muscle, Nrf2 signaling is activated by acute exercise, and this response is required for
exercise-mediated enhancement of antioxidant proteins and, at least in part, mitochondrial
biogenesis. It has been reported that the loss of Nrf2 reduces skeletal muscle contractile
function, while activation of Nrf2 enhances exercise performance in mice. However, Nrf2
deficiency does not necessarily change the expression of muscular antioxidant enzymes
under basal conditions especially in young mice, indicating the existence of compensatory
mechanisms. Considering that there are various types and sources of ROS produced in
skeletal muscle during exercise, it will be necessary to clarify how each of them is involved
in athletic performance and adaptation of energy metabolism to exercise training. In
particular, it should be emphasized that subcellular localization of ROS production and
scavenging needed to be taken into account, as glycogen and mitochondria are distinctly
distributed within skeletal muscle cells [58,59]. Furthermore, in addition to the cellular
antioxidant systems, effects of dietary antioxidants should also be considered. Lastly, it is
important to highlight that data obtained from mice cannot be directly applied to humans,
especially highly trained athletes.
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