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Abstract

Many computational theories have been developed to improve artificial phonetic classifica-

tion performance from linguistic auditory streams. However, less attention has been given to

psycholinguistic data and neurophysiological features recently found in cortical tissue. We

focus on a context in which basic linguistic units–such as phonemes–are extracted and

robustly classified by humans and other animals from complex acoustic streams in speech

data. We are especially motivated by the fact that 8-month-old human infants can accom-

plish segmentation of words from fluent audio streams based exclusively on the statistical

relationships between neighboring speech sounds without any kind of supervision. In this

paper, we introduce a biologically inspired and fully unsupervised neurocomputational

approach that incorporates key neurophysiological and anatomical cortical properties,

including columnar organization, spontaneous micro-columnar formation, adaptation to con-

textual activations and Sparse Distributed Representations (SDRs) produced by means of

partial N-Methyl-D-aspartic acid (NMDA) depolarization. Its feature abstraction capabilities

show promising phonetic invariance and generalization attributes. Our model improves the

performance of a Support Vector Machine (SVM) classifier for monosyllabic, disyllabic and

trisyllabic word classification tasks in the presence of environmental disturbances such as

white noise, reverberation, and pitch and voice variations. Furthermore, our approach

emphasizes potential self-organizing cortical principles achieving improvement without any

kind of optimization guidance which could minimize hypothetical loss functions by means

of–for example–backpropagation. Thus, our computational model outperforms multiresolu-

tion spectro-temporal auditory feature representations using only the statistical sequential

structure immerse in the phonotactic rules of the input stream.
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Introduction

It is well known that human beings can reliably discriminate phonemes as well as other lin-

guistic units by categorizing them, despite considerable variability across different speakers

with different pitches and prosody. Furthermore, this ability extends to noisy and reverberant

environments.

Although such proficiency could in part be attributed to top-down information [1] origi-

nated in the grammatical and semantic [2, 3] dimensions present in human language–beyond

the phonetic features in the speech signal–trained animals are also able to discriminate pho-

neme pairs categorically and to generalize in novel situations [4–10]. For instance, cortical

activations in naive ferrets revealed the existence of spectro-temporal tuning in Primary Audi-

tory Cortex (A1) with the capacity of supporting discrimination of many American English

phonemes [11], even when stimuli were distorted by additive noise and reverberation [12].

It is even more remarkable that an extremely complex task of early language acquisition as

is the segmentation of words from fluent speech, is fulfilled by 8-month-old infants based sim-

ply on the statistical relationships between neighboring speech sounds [13]. With only 2 min-

utes of exposure to a continuous speech stream generated by a speech synthesizer, infants

showed succesful phonetic acquisition and discrimination. Furthermore, in the training phase

there was no acoustic information about word boundaries beyond the statistical structure in

the phonotactic rules immerse in the stimuli, and the subjects received no external associative

supervision or reinforcement which could have guided or boosted the phonetic acquisition

task, which was entirely incidental.

This incidentally acquired invariance in phonetic perception found in mammals must be

grounded necessarily in anatomical and neurophysiological characterisitcs of the mammalian

cortex. The features we foresee as potentially relevant are brought together in order to pose

our computational hypotheses.

Anatomical and neurophysiological characteristics of mammalian cortex

Linden and Schreiner [14] highlighted that although auditory cortical circuits have some

unique characteristics which require special attention, their similarities with other sensory

regions–such as visual or somatosensory cortex–turn out to be categorical. First, at the sensory

level, the cochlear one-dimensional frequency map could be analogous to the two-dimensional

spatial maps which are found in the retina or body surface. Second, the tonotopic maps found

in the auditory system could be analogous to the retinotopic and somatotopic organization

found in visual and somatosensory cortices, respectively. Frequency tuning curves in the audi-

tory system could correspond to inhibition of spatial surrounding boundaries in visual and

somatosensory receptive fields. A correspondence could be drawn between amplitude modula-

tion rate in the auditory system and flicker sensitivity in the visual system, or whisker vibration

sensitivity in the somatosensory system. Finally, auditory receptive fields tuned for frequency-

sweep, could be analogous to visual and somatosensory motion sensitivity.

Compelling physiological studies have shown that Primary Auditory Cortex (A1) shares

common structural characteristics with other sensory cortices. Furthermore, when retinal

inputs are routed into the auditory thalamus, auditory cortical cells develop visual response

properties such as direction selectivity, orientation preference and complex and simple recep-

tive fields [15–17]. Retinotopic maps, in terms of orientation tuning with lateral connectivity

between orientation domains, emerge in superficial layers of the rewired auditory cortex [18,

19].

The above data suggest the existence of neuronal circuitry with similar processing capabili-

ties for different modalities. Consequently, we gather physiological and anatomical
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characteristics found in cortical tissue in general which we foresee as relevant for phonetic per-

ception invariance and generalization.

One of the main neuroanatomical features of brain cortex in mammals is that cortical cells

are spacially arranged into domains defined by common receptive field locations. These align-

ments are called Cortical Columns (CCs) [20–23]. Within CCs, cortical mini-columns are

clusters of cells which respond to stimuli with similar characteristics (Fig 1). In addition, corti-

cal columns are connected within and between different regions in cortical tissue forming a

complex and yet organized connectivity network [24].

One of the functional properties found in many of these networks is adaptation to contex-

tual stimuli [25, 26]. This mechanism is thought to enhance efficiency in the codification of

sensory information. For instance, a reduction in the responses to frequent sounds by means

of inhibitory networks, may enhance cortical sensitivity to rare sounds that may represent

unexpected events [27–29].

Finally, recent findings in neuroscience show that mammalian cortex processes informa-

tion by means of SDRs [30]. This mechanism allows robust and low-error-rate discrimination

of stimuli representations minimizing the neuronal activation during the task in relation to the

neural resources available for the representation [31]. Hawkins et al. [32] hypothetize that one

of the mechanisms that might be involved in cortical networks in order to achieve SDRs

implies the extended depolarization of the soma as the result of independent dendritic NMDA

branch activations produced by the excitation of certain number of distal synapses [33, 34].

In the present work the above mentioned anatomical and neurophysiological features of

the mammalian cortex are gathered as potentially relevant in order to attain phonetic invari-

ance in the mammalian auditory cortex. Our pyramidal neuron model dissociates proximal

from distal dendritic branches (Fig 2). Proximal dendrites act as a homogeneous set receiving

only afferent information. Information in proximal dendrites determines a bunch of neural

units in a CC which could be activated depending on the previous activations in the same as

well as in neighboring CCs.

Fig 1. Cortical tissue organization. Left: Pyramidal cell. The most common excitatory neuron in cortical tissue. Center: Cortical

mini-column. A cluster on neural cells which responds to stimuli of similar characteristics. Right: Cortical Column. A group of mini-

columns with a common receptive field location. Adapted from (Fabuio, Own work, CC BY 4.0, https://commons.wikimedia.org/w/

index.php?curid=60707501).

https://doi.org/10.1371/journal.pone.0217966.g001
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Fig 2. Connectivity profile of a pyramidal neural unit in the Encoder Layer (EL). Proximal connections are formed only by

afferent connections from the Multiresolution Spectro-Temporal Sound Analysis (MRSTSA) while distal connections are formed by

lateral and apical connections from neighboring columns and from columns in another cortical layer above respectively. The EL is

the most important stage in our computational approach while the MRSTSA pre-processes the audio corpora in order to feed the EL.

Adapted from (Fabuio—Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=60707501).

https://doi.org/10.1371/journal.pone.0217966.g002
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Distal dendrites receive only lateral and apical information acting as independent detectors.

Distal dendritic information pre-activates neural units putting them in a predictive state in

order to receive future afferent information.

We test those principles paying special attention to temporal dynamics of speech, which

play the most important role in linguistic contrasts [35]. We use a completely unsupervised

and biologically-inspired computational model, since we aim to mimic infant incidental pho-

netic acquisition in whose circumstances no supervision could be justified. Our model pro-

duces levels of phonetic classification accuracy similar to those of state-of-the-art deep pattern

classification approaches. We therefore propose an alternative path towards addressing pho-

netic discrimination based on observing structural and functional properties present in the

mammalian cortex.

Materials and methods

Corpora generation

We generate corpora of 500 words with mono, di and trisyllabic randomly chosen English

words from 10 different vocabularies of five words for each syllabic condition using Festival

Text to Speech Synthesis [36].

We generate cross synthesizer mark-up-language files with SABLE [37]. In such files, we

instruct Festival Text to Speech to generate corpora with 500 words from vocabularies of 5

words uttered by 10 different voices available from the synthesizer.

The organization of the corpora has certain rules and restrictions in order to avoid biases in

the training processes. The voices are sequentially chosen (pseudo-randomly) with the restric-

tion that no voice could utter a second time until all the voices had uttered in their turns.

Every voice utters two words per turn–in pseudo-random order–and no word is repeated until

all the words are used by such voice.

We use two sets of 10 different English speaking voices, each provided by Festival. Set one

consisted of 8 male and 2 female voices: cmu_us_fem_cg, cmu_us_gka_cg,
cmu_us_ksp_cg, cmu_us_rxr_cg, cmu_us_jmk_cg, cmu_us_rms_cg,
cmu_us_slt_cg, cmu_us_jmk_arctic_clunits, cmu_us_rms_arctic_
clunits, cmu_us_slt_arctic_clunits. Set two had 5 male and 5 female voices:

cmu_us_ahw_cg, cmu_us_aup_cg, cmu_us_axb_cg, cmu_us_eey_cg,
cmu_us_awb_cg, cmu_us_bdl_cg, cmu_us_clb_cg, cmu_us_ljm_cg,
cmu_us_bdl_arctic_clunits, cmu_us_clb_arctic_clunits.

Every word in the audio file is followed by a silence gap whose time is equivalent to the

uttering time of the monosyllabic word cat, uttered by the same voice used for the last word.

We use the text2wave program provided by Festival in order to generate a wav file from

the SABLE file.

We generated all the datasets (audio file corpora) employed in the present research to train

the EL and the SVMs and to test the complete Cortical Spectro-Temporal Model (CSTM).

This folder includes a set of 840 corpora which are distributed in 2 corpora for each configura-

tion organized by 2 sets of synthesized voices, 3 syllabic conditions and 10 vocabularies all dis-

tributed in 6 acoustic variants, beyond the original version of the corpora. The 6 acoustic

variants corresponds to: two levels of white noise (19.8 dB and 13.8 dB Signal to Noise Ratio

(SNR) average Root Mean Square (RMS) power rate), two levels of reverberation (Revebera-

tion-Time 60 dB (RT-60) value of 0.61 seconds and 1.78 seconds) and variations of pitch on

both directions (from E to G and from E to C).
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Computational model

We propose a computational approach called CSTM, which simulates a patch of cortical tissue

and incorporates columnar organization, spontaneous micro-columnar formation, partial

NMDA depolarization and adaptation to contextual activations. We simulate pyramidal cells

with proximal connections from afferent dendritic branches and distal connections from lat-

eral dendritic branches. Similar afferent stimuli activate clusters of neurons with proximal

physical locations in a CC in the same way that afferent information activates the mini col-

umns found in cortical tissue.

Afferent information activates different clusters of units in a CC establishing a first and raw

approximation of the phonetic features abstracted from the input auditory stream. Our model

fine-tunes such raw features by means of previous contextual activations produced in the same

and/or in neighboring CCs. Such contextual information is sent to each CC by means of lateral

distal dendritic branches which work as independent processing elements in a cell. Current

activation in such dendritic elements will affect the way in which cells receives future afferent

information.

Novel computational theories have posited a feasible explanation about the role of distal

synapses related to NMDA phenomenon [32] by combining it with SDRs [31]. In our model,

we adopt a similar approach to the one in [32] in which current activation patterns produce

partial depolarization of certain cells by means of distal dendritic branch connections. A state

of partial depolarization is sustained in time in some cells within future afferently excited clus-

ters of neurons. Partially depolarized cells fire in advance with respect to other cells in the

excited clusters, thereby preventing other cells from firing by means of proximal lateral

GABAergic inhibition, obtaining in this way, SDRs.

In addition, we simulate the growth of distal dendritic branch synapses by means of Spike-

timing dependent plasticity (STDP) mechanisms together with homeostatic regulations. In

this way, distal synapses will be established only among pyramidal cells with sequential pat-

terns of activation. Afferently excited clusters which do not have partially depolarized cells,

will fire together producing a Massive Firing Event (MFE) (lack of inhibition) as a response to

a prediction fault (unexpected sequential stimuli in the stream of data); otherwise they will

respond with normal firing events (inhibition and therefore SDRs) when the sequential stimu-

lus is correctly predicted.

SDRs exhibit interesting mathematical properties which give them high noise rejection and

fault tolerance [38]. These are typical characteristics in cortical tissue where individual cells are

far from 100% reliable and the cells die and regenerate continuously. To simulate this phenom-

enon, we incorporate stochastic characteristics by which neural cells inside afferently activated

clusters are chosen to be active by a discrete distribution whose probabilities are determined

by the afferent excitability of individual cells during training.

Hence, the evolution of our network does not predetermine a neuron to fire but biases its

probability of doing so during training. Additionally and under specific conditions, afferent

dendritic arborizations activate themselves at random with levels whose boundary values are

established by learning.

It has been shown that overfitting–a phenomenon in which a statistical model describes

random error or noise instead of the underlying relationship–is greatly reduced by stochastic

properties in training procedures applied to neural networks (dropout) [39].

In order to produce the inputs from auditory streams we base on MRSTSA [40]. In our soft-

ware implementation, we primarily follow its cortical section rather than its sub-cortical coun-

terpart, incorporating different neurophysiological phenomena found in A1 [41] such as

symmetry [42], bandwidth [43], and frequency modulation selectivity [42, 44, 45].
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The CSTM consists of two parts: The Multiresolution Spectro-Temporal Sound Analysis

(MRSTSA) layer and the Encoder Layer (EL).

The algorithm MRSTSA, which processes the sound waves to feed inputs to the EL, is a

technique inspired by Chi T. et al. [40]. In their work, accumulating experimental findings

from the central auditory system were exploited demonstrating its applications in the objective

evaluation of speech intelligibility. As the authors pointed out, the model was not biophysical

in spirit, but rather it abstracted from the physiological data an interpretation which was likely

to be relevant in the design of sound engineering systems. In our MRSTSA implementation,

we follow main guidelines from the higher cortical representations developed in [40].

The EL converts a multidimensional array of real numbers into a multidimensional Sparse

Distributed Representation (SDR). This stage is composed by a set of Self Organizing Maps

(SOMs) [46, 47] and incorporates neurophysiological phenomena such as columnar organiza-

tion, afferent spontaneous micro-columnar formation, proximal and distal dendritic arboriza-

tion, lateral intercolumn interaction by means of independent dendritic NMDA branch

activations, MFEs with contextual stimulus adaptation, proximal lateral intracolumn inhibi-

tion, Long-Term Potentiation (LTP), Long-Term Depression (LTD), STDP and distal synaptic

homeostatic regulations.

Multiresolution Spectro-Temporal Sound Analysis (MRSTSA). As mentioned above,

Chi T. et al. [40] developed a computational model of auditory analysis inspired by psychoa-

coustical and neurophysiological findings in early and central stages of the auditory system.

The original algorithm has a subcortical and a cortical stage. For the subcortical stage, first

an affine wavelet transform of the acoustic signal represents the spectral analysis performed by

the cochlear filter bank. Second, the cochlear filter outputs are transduced into auditory-nerve

patterns by a hair cell stage consisting of a high-pass filter, a nonlinear compression and a

membrane leakage low-pass filter. Third, a first-order derivative with respect to the tonotopic

axis followed by a half-wave rectifier simulates the action of a lateral inhibitory network postu-

lated to exist in the cochlear nucleus, which effectively enhances the frequency selectivity of

the cochlear filter bank. The final output of this stage is obtained by integrating over a short

window, with time constant of 8 ms, mimicking the further loss of phase locking observed in

the midbrain.

The cortical stage mimics aspects of the responses of higher central auditory stages, espe-

cially A1. Functionally, this stage estimates the spectral and temporal modulation content of

the auditory spectrogram. It does so computationally via a bank of filters that are selective to

different spectrotemporal modulation parameters that range from slow to fast rates tempo-

rally, and from narrow to broad scales spectrally. The Spectro-Temporal Receptive Fields

(STRFs) of these filters are also centered at different frequencies along the tonotopic axis.

In the present work, since we aim to integrate neurophysiological properties–mainly cen-

tered in cortical features–we followed the main guidelines in the implementation of the corti-

cal section of such model. As shown in Fig 3, we implemented the initial stage in our model

with the application of FFT to the audio vector with a different sample window for each resolu-

tion. We then extracted the power spectral density from each resolution. In this way we

obtained a multiresolution spectral analysis of the audio signal, with high spectral and low

temporal resolution for wider sample windows and vice versa. Such different time windows in

the FFT, incorporated–at the same time–leakage low-pass filters with a time constant for each

resolution accounting for decrease of phase-locking in the auditory nerve. We then applied a

Mel Filter Bank (MFB) with 128 elements to each spectrum in order to represent the spectral

analysis performed by the cochlear filter bank. Then, we convolved each resolution obtained

in the last step along its tonotopic axis with a complex multiresolution function whose real

part was a symmetric Mexican hat function and its imaginary part was its antisymmetric
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Hilbert transform. With this strategy we simulate the phenomena of symmetry [42], band-

width [43] and frequency modulation selectivity [42, 44, 45] found in A1 and incorporated in

the original algorithms [41].

We obtained the magnitude of each convolution and applied normalization to each time

window as a mean of automatic gain control in order to prioritize the information delivered

by the spectral configuration and not the absolute values delivered by the filters.

By means of this constraint we account for the mechanical and chemical properties of hair

cells in the mammalian inner ear which constitute a transduction mechanism that appears to

adapt to recent stimulus history in a way that can affect its gain [48–50]. We decided to be con-

servative, not including sound intensity dimension but just the shape of the filter responses.

Encoder Layer (EL). The EL is responsible for generating SDRs from the inputs delivered

by the MRSTSA stage described in the previous section and from the activation history in its

own CCs.

The EL simulates a patch of cortical tissue called Cortical Layer (CL)using an n-dimensional

array of complex structures called Complex Self-Organizing Maps (CSOMs) that simulate CCs

in the brain.

Each CC in the EL is connected to the MRSTSA below by means of afferent connections. It

is also connected to neighboring CCs–including possibly itself–in the EL by means of lateral

connections and to CCs from other CLs above by means of apical connections. Such connec-

tion scheme is shown in Fig 4.

Both lateral and apical are feedback connections that constitute contextual information

channels. These channels put the current afferent excitation under the context of previous acti-

vations. Such connections damp the activity of some units allowing only the precise activations

of specific neural units in an afferently excited CC. Such precise activations match the sequen-

tial paradigms learned by the network.

Fig 3. Multiresolution Spectro-Temporal Sound Analysis (MRSTSA) algorithm. Sound waves are processed by FFTs with

different time windows, then each spectrum is processed by a Mel Filter Bank (MFB) and each resolution is convolved with a

complex signal with a different coefficient. Finally, each filter coefficient is obtained computing the modulus from the convolution

and then applying an automatic gain control.

https://doi.org/10.1371/journal.pone.0217966.g003
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Recent findings in neuroscience [51] support the idea that feedback could potentially

enhance visual representations in time and space damping the activity of certain cells while

allowing the activations of others which agree with their predictions.

In the present work we only implement lateral connections since there are no upper layers

from which to bring apical information in the present implementation.

Fig 4. Connection scheme for a cortical column in the Encoder Layer. Each cylinder in the EL and in the CL

represents a CC in neural tissue. Each prism in the MRSTSA represents a real valued variable. This is a visualization of

a CC (in red) and its three receptive fields (in yellow). The receptive field of a CC is an array that defines a set of CCs

with which such column could be connected. The receptive field of a CC on the MRSTSA determines an array of real

valued variables with which such column could be connected. A subset of CCs in a receptive field (in green) represents

the CCs that are really connected with the CC in red. A similar scenario could be described for the green prisms on the

MRSTSA. The size, wrap-around property and percentage of established links (in green) inside a receptive field are

tunable parameters for the model. In this work, only lateral connections have been implemented since in the current

implementation there are no upper cortical layers from which to bring apical connections.

https://doi.org/10.1371/journal.pone.0217966.g004
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Each cell unit in a CC has two types of dendritic branches; proximal and distal. Proximal

and distal dendritic branches lead to proximal and distal connections in a cell unit respectively.

Proximal and distal connections produce different effects on a neural unit’s plasticity and acti-

vation. Neural units in the EL simulates pyramidal cells in cortical tissue in the brain. Fig 2

shows the connectivity profile in such units.

In reference to proximal dendritic connections in the EL, each neural unit in a CC has the

same set of proximal connections to the MRSTSA (Fig 5). Such connections constitute a mul-

tidimensional space of real numbers. In order to acquire the statistical distribution in such

multidimensional real space we use a multidimensional SOM in each cortical column

(Alg. 1).

Algorithm 1 Plasticity in Proximal Synapses. Self Organizing Map (SOM)

algorithm.
1: given an input vector, find the nearest unit to such input vector
in the input space
2: move such unit towards the input vector in the input space (the
magnitude of such movement depends on the learning rate)
3: also move neighbor units to the nearest one towards the input
vector (the magnitude of such movement depends on the learning rate
and on a neighborhood measure over the topology of the network of
units)

A SOM is an unsupervised clustering algorithm which distributes a continuous multidi-

mensional distribution in a discrete multidimensional distribution of units [46, 47]. In this

Fig 5. Encoder Layer (EL) proximal connections. Each CC in the EL–exemplified here in red–has its receptive field over the

MRSTSA–in yellow. (A) A set of MRSTSA components–in green inside the receptive field–is randomly chosen to be connected with

such CC. (B) Each neural unit in such CC is connected with the same set of MRSTSA components.

https://doi.org/10.1371/journal.pone.0217966.g005
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way we ended up with an array of units of m dimensions in which each unit represents a set of

vectors from the continuous distribution in an input space of n dimensions. Generally, m< n
in order to reduce the dimensionality in the discrete representation. We added such restriction

in our columnar algorithm.

In the SOM algorithm, each input vector has to be completely determined. In our case, sev-

eral elements in the inputs from the MRSTSA could be null, and considering such null inputs

could inpair learning. Hence, each input vector could not have the information of each of its

components available. We incorporated a stochastic mechanism in the EL in order to deal

with such situation. We made each afferent connection to learn statistical boundaries from its

corresponding input. We establish a minimum-maximum margin in each proximal connec-

tion in the EL. Such margin is consistent with the statistical distribution in the history of its

corresponding input. When an afferent input is undetermined, in a context in which some

afferent inputs have available information, the EL chooses the value in the undetermined input

randomly between the boundaries learned for such input.

We call our implementation of the SOM algorithm, Static Self-Organizing Map (SSOM).

The SSOM algorithm accounts for proximal lateral intra-column interaction, LTP and LTD. It

also dissociates proximal dendritic inputs from distal dendrites, since it modifies proximal

connections following the statistical distribution from the MRSTSA independently of the units

that fire in such CC. This independence in the plasticity of the proximal dendritic inputs is

supported by the property found in cortical tissue by means of which there is dendritic plastic-

ity in the context of partial depolarization of the soma [52]–that is, without an Action Potential

(AP).

The term static comes from the fact that the patterns learned from proximal afferent den-

drites do not account for the contextual history in the dynamic evolution of the algorithm.

In terms of distal dendritic branches, each CC in the EL is connected to other CCs–in green

in Fig 4–by means of such branches inside the receptive fields–in yellow in Fig 4–from the

same EL and from another CL above. Each link between the red CC and a green CC–Fig 6A–

symbolizes the fact that each cell unit in the red CC is linked with a different subset of cell

units in the green CC–Fig 6B.

Such links in Fig 6A, represent dendritic branches in neural tissue and we call each connec-

tion in Fig 6B, potential connection. Potential connections represent synapses in the dendritic

branch. A cell unit inside the red CC ends up with as many dendritic branches as green CCs

inside its receptive field (Fig 6A).

The term potential connection is used, because it describes a pair of neural units linked by

its physical location and dendritic and axonal disposition in cortical tissue (Fig 6C). However,

an effective connectivity between such neurons will depend upon their sequential pattern of

activation which will establish developed synapses between them. If two neural units–a red

one and a yellow one in Fig 6D–are linked by means of a distal potential connection–produced

by a synapse between a distal dendritic branch from the red one and an axonal branch from

the yellow one–such connection will grow only if there is a sequential activation of the red cell

after an activation of the yellow cell, in two consecutive time steps. If such phenomenon does

not repeat itself over time, such synapse will decrease its strength with respect to other synap-

ses in the dendritic branch in the red cell in Fig 6D. A simultaneous activation in both neural

units–the red one and the yellow one in Fig 6D–will decrease the strength in such potential

connection.

We implemented distal dendritic synaptic plasticity mechanisms by means of an algorithm

called Dynamic Self-Organizing Map (DSOM) (Alg. 2). The learning mechanisms imple-

mented on such algorithm simulate neurophysiological phenomena such as STDP, and
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homeostatic regulation plasticity in the synaptic strength regulation in distal dendritic

branches.

Algorithm 2 Plasticity in Distal Synapses. This algorithm accounts for Spi-

ketiming dependent plasticity (STDP) and homeostatic regulation phenomenon in distal den-

dritic synapses.
1: for every active unit in this cortical column do
2: for every dendrite in this active unit do
3: increment all the synapses–in this dendrite–potentially con-
nected to units which were active in the last time step
4: end for
5: end for
6: for every active unit in this cortical column do
7: for every dendrite in this active unit do
8: decrement all the synapses–in this dendrite–potentially con-
nected to units which are active in this time step
9: end for
10: end for

Fig 6. Distal dendrite connections. (A) Distal dendritic branches from neighboring CCs inside the receptive field of a CC in the EL.

A distal dendritic branch between the red CC and a green CC means that every neural unit in the red CC is linked with a different

subset of neural units in the green CC by means of potential connections. (B) Potential connections in a dendritic branch which link

a neural unit in the red CC with a subset of neural units in a green CC. The subset of potential connections comes from a percentage

of neural units inside the green CC. Such percentage is a tunable parameter for the CC. (C) A distal dendritic branch between a

pyramidal cell in a CC and a sub-set of pyramidal cells in a neighboring CC inside its receptive field in the EL. (D) Physical

proximity of a dendritic branch from the red cell to axonal branches from yellow cells constitutes potential connections which could

prosper becoming in established synapses depending on the sequential activity among cells.

https://doi.org/10.1371/journal.pone.0217966.g006
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11: if updated step reaches certain value then
12: for every unit in this cortical column do
13: for every dendrite in this unit do
14: if the sum of the synapses in this dendrite is greater than
one then
15: normalize all synapses in this dendrite
16: end if
17: end for
18: end for
19: updated step = 0
20: end if
21: updated step++

Basically, Alg. 2 updates all distal axonal-dendritic synapses, incrementing them always that

pre and post-synaptic neural units become active in consecutive time steps, and decrementing

them when they become active at the same time step. Occasionally, all the synaptic weights

belonging to the same dendrite are normalized every certain number of time steps. This nor-

malization is repeated for all neural units and for all dendritic branches in each neural unit

whose sum of synaptic weights is beyond unity.

Finally, in reference to the activation rules of neural units inside a CC in the EL, first a

group of cell units in a CC is partially depolarized by distal connections among such neural

units and cell units activated in the previous time step in the EL–Fig 7A. That is, neural units

activated in time step t = 0 in the EL, will partially depolarize a set of neural units in time step

t = 1 in such CC, by means of distal–lateral and apical–dendritic branch synapses established

by learning in the DSOM algorithm.

Second, afferent proximal connections from MRSTSA will tend to depolarize

certain clusters of units in such CC in time step t = 1–Fig 7B. The tentative depolarization

is produced by the inputs from the MRSTSA with proximal synapses established by

learning in the SSOM algorithm. Such group of neural units are randomly chosen from a dis-

crete distribution whose probabilities are established by the state of excitation in afferent

inputs.

If a sufficient number of partially depolarized units are in the set of afferently excited units,

such partially depolarized units will fire previously in the group–Fig 7B left. Those units–

which fire before–prevent neighboring units in the excited clusters from firing, hyperpolariz-

ing them by means of lateral inhibitory connections in the column.

Partial depolarization states put cell units in a predictive state generated by the activations

produced in the EL in previous time steps. That is, lateral and apical activation in previous

time steps constitute a context in which current afferent inputs are received.

From the group of units that tend to be depolarized by current afferent inputs from the

MRSTSA, only a reduced sub-set of those units are likely to fire in the previous contextual fir-

ing history in the EL–Fig 7C left.

In case there is no context, that is, if not enough units normally depolarized by afferent

inputs are partially depolarized by previous–lateral and apical–activations–Fig 7B right–, all

units in the afferent excited clusters will be active, covering more hypotheses for next inputs–

Fig 7C right.

Such activation mechanism is depicted in Alg. 3. In Alg. 3 (Part 1) a ranking is established

among neural units–inside a CC–in terms of its afferent excitability, given the afferent inputs

(lines 1 and 2). The number of afferently excited units refers to the maximum number of units

that can be activated by the afferent input in a CC and minimum number of active units refers

to the number of units that will be active in a CC if a SDR is achieved as a result of optimal pre-

diction (lines 3 and 4 respectively).
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Algorithm 3 Units activation (Part 1). This algorithm establishes the activation

rules in a CSOM object.
1: distances = given an input vector find the euclidean distance each
unit has to such input in the input space from proximal afferent
synapses
2: ranking = sort indexes from the smallest to the largest distances
3: number of afferently excited units = proximal activation percenta-
ge�number of units
4: minimum number of active units = (1-sparsity)�number of units
5: if randomness is disabled then
6: excited units = gets the first number of afferently excited units
elements from ranking
7: else
8: excited units = gets number of afferently excited units random
indexes from distances with probabilities determined by the relative
reciprocal of the distances element values

Fig 7. Dynamic cellular activation in a CC in the EL. A red cortical column is linked with two green cortical columns by means of

distal dendrites. (A) Cellular activation in green CCs–highlighted yellow cells–puts neural units in red CC in a partially depolarized–

predictive state highlighted in blue. (B) Cluster of neural cells activated by afferent inputs. Left: A substantial amount of partially

depolarized cells are in the afferently excited cellular clusters. Right: There is no substantial amount of partially depolarized cells

inside afferently excited cellular clusters. (C) CC with active cellular units highlighted in yellow. Left: Sparse pattern of cellular

activation. Right: Massive pattern of activation.

https://doi.org/10.1371/journal.pone.0217966.g007
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9: end if
10: for unit = 0 to unit = number of units do
11: auxiliary = 0
12: for dendrite = 0 to dendrite = number of distal dendrites do
13: dendrite accumulator = 0
14: for active unit = 0 to active unit = number of linked active
units do
15: potential index = find the first coincident index in poten-
tial connections[dendrite][unit] with linking units[dendrite][active
unit]
16: if there exist coincidence then
17: dendrite accumulator += dynamic synapses[dendrite][unit]
[potential index]
18: end if
19: end for
20: if dendrite accumulator > 100�DISTAL_SYNAPTIC_THRESHOLD then
21: auxiliary++
22: end if
23: end for
24: total responses[unit] += auxiliary
25: end for
26: updated distances = element wise quotient between distances and
total responses
27: updated ranking = sort indexes from the smallest to the largest
updated distances

If randomness is enabled, number of afferently excited units units is chosen at random by

means of a discrete distribution whose probabilities are the afferent excitation of each unit. If

randomness is disabled, number of afferently excited units first units are chosen from the rank-

ing of afferently excited units (lines 5 to 9).

From line 10 to 25 each neural unit accumulates distal–lateral and apical–excitation in

order to determine its partial depolarization from units which were active in the previous

time step. For each neural unit in a CC, for each distal dendrite in such unit and for each

active unit in such distal dendrite the algorithm looks for coincidences between some poten-

tial connection in such distal dendrite in the neural unit and the active unit in such distal den-

drite. That is, in line 15, the algorithm asks if there is coincidence between some potential

connection in this distal dendrite inside the unit and the neural unit activated in the previous

time step in the CC linked by such distal dendrite. If there is coincidence, the value of the syn-

aptic weight in such potential connection is accumulated in a dendrite accumulator. After all

active units are examined for this dendrite, if the dendrite accumulator is greater than certain

threshold, such dendrite is considered active and the total response of the unit is incremented

in one.

Each neural unit ends up with an excitation value due to its distal dendrites. The unit dis-

tances vector is element- wise divided by distal dendritic excitations vector to get the updated

distances and an updated ranking of the units (lines 26 and 27). In this way, units with more

distal excitation will decrease its distance more and will be put in a more favorable place in the

ranking in order to be activated.

In Alg. 3 (Part 2) the minimum updated distance is found in the group of afferently excited

units. Then, a set of units–inside the group of afferently excited units–is identified which have

such minimum updated distance. While the number of identified units is less than minimum
number of active units, the next minimum updated distance is found in the group of afferently

excited units and a new set of units–inside the group of afferently excited units–is identified

which have such next minimum updated distance. This new set is added to the previous one
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until the number of units in this accumulative set is greater than or equal to the minimum

number of active units.

Algorithm 3 Units activation (Part 2). This algorithm establishes the activation

rules in a CSOM object.
1: new distances = get the updated distances elements whose indexes
are in excited units
2: new minimum distance = get the minimum element from new distances
3: minimum indexes = get indexes from updated distances vector whose
values are equal to new minimum distance
4: apt to be active = get the coincident indexes between excited units
and minimum indexes
5: erase from new distances vector, all the elements whose value is
equal to new minimum distance
6: while number of elements in apt to be active vector < minimum number
of active units and new distances has at least one element do
7: new minimum distance = get the minimum element from new distances
8: minimum indexes = get indexes from updated distances vector whose
values are equal to new minimum distances
9: partial apt to be active = get the coincident indexes between
excited units and minimum indexes
10: incorporate partial apt to be active elements into apt to be
active vector
11: erase from new distances vector, all the elements whose value is
equal to new minimum distance
12: end while
13: if ENABLE_RANDOM_BEHAVIOUR then
14: shuffle apt to be active vector
15: end if
16: for number = 0 to number = number of apt to be active elements do
17: incorporate to output the excited units[apt to be active
[number]]
18: end for
19: return output

The functional result of Alg. 3 is that there must be a sufficient amount of–partially and pre-

viously depolarized–neural units inside the afferently activated cluster of units in order to get a

SDR pattern of activation. Otherwise, the CC will end up with a massive activation pattern, a

Massive Firing Event (MFE) in which more than a minimum number of active units will be

active. In the case of the occurrence of a MFE, the synaptic plasticity is modulated in order to

form stronger synapses of those neural units activated during such event.

Each neural unit in a CC establishes its state of partial depolarization based on the contribu-

tion from distal dendritic branches from lateral and apical connections. A dendritic branch

will contribute to the partial depolarization of the soma in such cell only if such dendritic

branch exceeds an activation threshold by means of the contribution from its individual syn-

apses in the context of the patterns of activation in the previous time step.

This mechanism has compelling sequential properties [32], which have already been

applied in the classification of artificially generated sequential data [53]. We apply such mecha-

nism in the DSOM algorithm by adding the contribution of synapses–in a dendritic branch–

whose connections are linked with cells that were active in the previous time step in the EL.

Implementation. Regarding MRSTSA, we apply FFT to the audio files with a sample

period of 8 milliseconds. We use the FFTW package [54, 55] with time windows of 8, 16, 32,

64 and 128 milliseconds in order to obtain a multiresolution power spectral analysis of the sig-

nal. In addition, we apply the Mel Filter-Bank technique with 128 filters to each spectral reso-

lution and convolve such filters along their tonotopic axis. For the convolution, we use a
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multiresolution complex function whose real part is a Mexican hat function and its imaginary

part is the corresponding Mexican hat Hilbert transformation.

The function coefficients are 10 for the 8 ms time window, 8 for the 16 ms time window, 6

for the 32 ms time window, 4 for the 64 ms time window and 2 for the 128 ms time window.

We then compute the magnitude from the convolution and normalize in each time step. By

means of this procedure we obtain from the audio file a multiresolution spectro-temporal

response composed by an array of 128 columns–one column per filter–and 5 rows–one row

per resolution–with real numbers which range from 0 to 1, for each time step.

In reference to the EL, we implement an EL with 225 CSOMs arranged in a two-dimen-

sional array of 15 by 15 CCs. Each CC is automatically distributed using individual locations

along its afferent inputs in a uniform way. Each CC receives afferent information by means of

two-dimensional afferent receptive fields of 5 by 227 filters centered at individual locations

over the MRSTSA. We enable the wraparound property in order to make each receptive field

span the entire MRSTSA array. We also instruct each column to receive only 31 inputs, which

is a minor percentage of such receptive field. Individual afferent inputs for each CC are chosen

randomly in the EL initialization.

For this model instance we implement only distal lateral dendritic branches since there are

no more CLs from which to bring information through apical dendritic branches. We config-

ure each CC to have a lateral receptive field with 9 by 9 neighboring CCs and to receive infor-

mation from 72 of the 81 CCs in the receptive field–a 90% of the receptive field.

Each CC is composed of a two-dimensional array with 15 by 15 (225) neural units and each

unit in a column could be potentially connected with only 6 neural units from each linked

neighboring column. That is, each neural unit in a CC ends up with 72 lateral dendritic branches

with 6 potential connections each (432 distal potential synapses per cellular unit). Such potential

synapses are randomly chosen for each neural cell and for each dendritic branch in the cell dur-

ing the Encoder initialization procedure. The EL consists of 50625 cellular units with 1569375

proximal synapses and 21870000 distal synapses. Such specifications state the number of free

parameters of the model, but it is important to highlight that distal synapses represent potential

connections from which only a small percentage has a significant synaptic weight as to be con-

sidered as an established connection. Weak synapses are periodically pruned by means of

homeostatic processes in the network leaving distal dendrites with a sparse connectivity in the

receptive fields. Typical sparseness in such connectivity matrices could exceed the 90%.

We train the EL using a 500 word corpora generated by the procedure described in section

Corpora generation. The training procedure consists of 4 stages and for each stage the EL

receives the same corpus 4 times.

During each learning stage, certain parameters–such as the learning rates in proximal and

distal synapses and the lateral intra-column interaction–are exponentially and progressively

decreased from an initial value, which also decreases for each successive stage. An additional

stage is executed with the learning parameters fixed.

The sparsity in the activation for each CC is 99% (just 2 neural units out of 225 could be

active for normal activation events). On the other hand, the afferent excitation affects 10% of

the units inside the clusters in each CC (22 neural units, which could be activated in case of a

MFE; Fig 7).

In regards to SVM classification, we use supervision by means of the SVM classification

method, receiving the outputs from each algorithm [56, 57]. We do this to test the invariance

properties in the phonetic features abstracted by the EL in comparison with the phonetic fea-

tures abstracted by the MRSTSA, (Fig 8).

We use the silent temporal gaps between consecutive words in the MRSTSA outputs in

order to introduce marks to detect the beginning and end of each word.
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We then produce a vector per word in the corpus summing the activity in the MRSTSA as

well as in the EL between consecutive marks and use such vectors to train both classifiers (the

one receiving outputs from the MRSTSA and the one receiving outputs from the EL).

Afterwards, we scale the vectors–as the Library for Support Vector Machine (LIBSVM)

documentation suggests–so as to improve the classification performance. We train and test the

SVM classifiers using 5-fold cross-validation and configure them to use a linear kernel with

one parameter C which we swept to find the best trained model for each classifier.

Experiments. In the present work, we studied the level of invariance in the phonetic fea-

tures abstracted by the EL, by means of comparing such representations with the multiresolu-

tion spectro-temporal auditory features returned by the MRSTSA algorithm. To this end, we

evaluated the features returned by each algorithm in different word classification tasks. In

order to asses word classification performance in each algorithm, we used the SVM tech-

nique–section Computational model–with the experimental setup depicted in Fig 8.

In the experimental procedure we first trained 10 different ELs–section Computational

model–for each syllabic condition. Such ELs were trained using the voices in set one and the

corpora were generated by the method described in section Corpora generation. Afterwards,

we processed the same corpora with the corresponding ELs in inference mode. In such mode,

the ELs processed the information with their learning properties disabled. In this manner, dur-

ing inference, the ELs did not modify its synapses and just returned patterns of activation in

Fig 8. Experimental setup to test word classification task performances. Sound waves are processed by the MRSTSA algorithm.

The outputs from the MRSTSA are processed by the EL. Word classification tasks are performed on both outputs by the SVM

algorithm. Each section in the CSTM has its biological counterpart.

https://doi.org/10.1371/journal.pone.0217966.g008
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response to the stimuli they received. We then used the outputs from the MRSTSA and the

ELs in inference mode to train the SVM classifiers with the procedure depicted in section

Implementation. The average cross validation training performances are shown in Table 1.

In a second stage, we ran the ELs in inference mode again, but this time we used different

corpora generated using the same voices and manipulated with several types of acoustic vari-

ants (white noise, reverberation and pitch variations), generated using the Audacity software.

We also ran the ELs in inference mode using corpora generated with different voices (set two

voices in section Corpora generation). We tested the performances of the–already trained–

classifiers in the presence of the features returned by the algorithms in response to the corpora

affected by the acoustic variants which we introduced to the new corpora by means of Audac-

ity [58]. The acoustic variants introduced to the new corpora included white noise, reverbera-

tion and pitch variations. We also tested the classifier performances in the presence of the

features returned by the algorithms in response to the new corpora generated with a different

set of voices.

Results

The classification performances are shown in Fig 9.

Regarding white noise, we introduced additive white noise to the corpora signals with sig-

nal-noise average RMS power rate of 19.9 dB (White Noise 1) and 13.8 dB (White Noise 2). In

terms of reverberation, we modified the corpora signals by means of RT-60 values of 0.61 sec-

onds (Reverberation 30%) and 1.78 seconds (Reverberation 60%). RT-60 Is the time that a sig-

nal takes to decrease its amplitude to 60 dBs under its initial value. As regards pitch variations,

we modified the corpora signals pitch in +20% (from E to G) (Pitch Up) and in–20% (from E

to C) (Pitch Down). We also used corpora generated with different voices from the ones used

to train the ELs and the SVMs.

Fig 9 shows a 5-way word classification accuracy for mono, di and trisyllabic word corpora

affected by white noise, reverberation and pitch and voice variations. As can be seen in the fig-

ures, the EL outperforms the MRSTSA in all cases. Such behavior persists for multisyllabic

words.

We performed two-tailed paired t-tests for 10 different corpora generated from 10 different

vocabularies–section Corpora generation. As can be seen in Fig 9–except for monosyllabic

words with White Noise 1 (p< 0.22)–there was Statistical Significance for all conditions con-

sidering (p< 0.05).

Given that we conducted 7 t-tests for each independent word classification task (i.e. mono,

di and trisyllabic words), we performed Holm–Bonferroni corrections with a correction factor

of 7 in order to reduce the probability of type I and type II errors in the context of the different

experimental conditions [59]. By means of such corrections we confirmed the statistical signif-

icance for all the cases showed in Fig 9.

Fig 10 shows average classification accuracies across all acoustic variants for mono, di and

trisyllabic words. In this case, we also performed two-tailed paired t-tests, but this time for 7

different acoustic variant conditions. As can be seen in the figure, all performed tests are

Table 1. SVM 5-fold cross validation training results.

MRSTSA Encoder Layer

Monosyllabic Words 99.4% 99.52%

Disyllabic Words 99.3% 99.48%

Trisyllabic Words 99.5% 99.58%

https://doi.org/10.1371/journal.pone.0217966.t001
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Fig 9. MRSTSA and EL average classification accuracies against different acoustic variants introduced to the signals for

monosyllabic, disyllabic and trisyllabic words. White Noise 1 determines a SNR average RMS power rate of 19.8 dB while White

Noise 2 13.8 dB. Reverberation 30% determines a RT-60 value of 0.61 seconds while Reverberation 60% determines a RT-60 value of

1.78 seconds. Pitch Up determines a pitch move from E to G, while Pitch Down determines a pitch move from E to C. Changed

Voices corresponds to corpora generated using a different set of voices from the one used to train the ELs and the classifiers. Error

bars depict 95% Confidence Interval values. The p values correspond to two-tailed paired t-tests and NS stands for Not Statistically

Significant.

https://doi.org/10.1371/journal.pone.0217966.g009
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statistically significant and the encoder layer clearly shows a sustained superiority across

words with different number of syllables.

Discussion

Results obtained in the present work support the computational hypotheses posed in our

modeling approach in order to mimic incidental phonetic invariance and generalization.

Some of these hypotheses have already been explained in terms of their properties [32], but

more specifically in terms of their sequence learning capabilities [53]. Nevertheless, there are

no precedents of such neurophysiological features tested in word classification tasks as the

ones carried out here, in which phonotactic rules are acquired without the application of

optimization procedures such as backpropagating errors by means of gradient descent. In

addition, our approach presents substantial differences in terms of feature algorithmic imple-

mentation. In the present work, distal synapses make continuous individual contributions and

our anatomical micro-columnar organization acquires its physiological behavior spontane-

ously from learning. We also tested such features in a realization with hundreds of cortical

columns each combining several micro-columns with stochastic afferent activation whose

future implementations are intended to explode large-scale simulations in leadership

supercomputers.

Computational models have been previously developed to understand how phonetic cate-

gories are acquired [60]. The goal in these works has been mainly to explain relevant aspects of

phonetic acquisition, without details about how the brain might provide such computations.

Lee et al. (2009), employed unsupervised feature learning for audio classification with Convo-

lutional Deep Belief Networkss (CDBNs) [61]. The authors tested classification performance

of a model with two layers in a 39-way phone classification accuracy task on the test data

Acoustic-Phonetic Continuous Speech Corpus (TIMIT) for various numbers of training sen-

tences. The first layer never outperformed the Mel Frequency Cepstral Coefficients (MFCC)

algorithm that was used as input for the network. Furthermore, such work did not report the

Fig 10. Average classification accuracies across all acoustic variants for mono, di and trisyllabic words. Error bars depict 95%

Confidence Interval values. The p values correspond to two-tailed paired t-tests.

https://doi.org/10.1371/journal.pone.0217966.g010
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second layer performance since it could not outperform the first one. The maximum perfor-

mance reported for the first layer was 64.4% vs. a performance of 79.6% for the Mel Frequency

Cepstral Coefficients (MFCC). It was just possible to report a performance of 80.3% by means

of combining both, the Mel Frequency Cepstral Coefficients (MFCC) and the first layer in the

CDBN.

In a more recent work, the capacity of Deep Maxout Networks (DMNs)–a modification of

Deep Neural Networks (DNNs) feed-forward architecture that uses a max-out activation func-

tion–to handle environmental noise was investigated into different broad phonetic classes and

for different noise conditions [62]. In such experiments–with the exception of fricatives pho-

nemes for 15 dB SNR Street Noise–accuracy never exceeded 70%. Furthermore, performance

was seriously impaired in the presence of 15 dB SNR white noise, resulting in classification

accuracy well below 60% in all cases.

In the present work, we reported classification performances of–for example–90.8% on the

EL vs. 78.58% on the MRSTSA for trisyllabic words against Changed Voices (i.e. voices never

“heard” by the EL during training; Fig 9), we also reported a performance above 70% on the

EL vs. a performance below 35% on the MRSTSA for trisyllabic words against 19.8 dB SNR

white noise and performances well above 40% for mono and disyllabic words against 13.8 dB

SNR white noise (Fig 9). We also reported that the EL outperformed the MRSTSA for all the

test conditions and that this behavior was sustained through different number of syllables in

the words by means of statistical significance tests (Fig 10).

Although this is a compelling scenario, we have to be cautious since we cannot ignore

important experimental differences from previous research results. First, our training material

was very different from that found in previous works. We used corpora generated by synthe-

sized voices instead of standardized TIMIT corpora. Our main aim was to mimic early pho-

netic acquisition in humans, which is incidentally accomplished by infants [13]. Given the

high quality of the voices synthesized by Festival Text to Speech [36] and its flexibility in order

to compose different kind of corpora–even with words that do not exist in any language–we

considered that this was an appropriate initial experimental procedure to test our approach in

a context of incidentally acquired phonotactic rules. Second, we pursued multisyllabic words

classification tasks in contrast to the phone classification experiments carried out in previous

research, since we mainly aimed to test the dynamic sequential capability of our model to

acquire the phonotactic rules behind the training vocabularies. Finally, we reported results on

5-way classification tasks vs. performance on 39-way classification tasks in [61]. On the one

hand, this last difference may have acted in favour of our approach considering that it is easier

to classify one category among 5 than one among 39. On the other hand, it is important to

highlight that previous works have had more extended training material with more vocabular-

ies, more speakers, etc. In our case, we presented more difficult training conditions, since our

model was trained with 500 words from a vocabulary of just 5 words uttered by 10 voices.

Despite the small sample size, the performance obtained by our neurocomputational model

exhibits a significant level of phonetic generalization with the capacity to acquire phonotactic

rules and to generalize to novel environmental contexts. This is a much more biologically

accurate scenario than those settled by other approaches, in which models are trained using

millions of examples. Our model therefore mimics experimental results which show that

8-month-old infants acquire the phonotactic rules immersed in auditory input streams with

only 2 minutes of exposure (180 words in total, from a vocabulary of four three-syllable words)

[13].

We are aware that more tests–in different scenarios–with different and standardized cor-

pora (such as TIMIT) will be needed to analyze the capacities of our approach more deeply.

Nevertheless, our main objective in the present work was to assess the sequential phonetic
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invariance exhibited by the EL under strictly controlled experimental conditions in which we

precisely knew the levels of noise, reverberation and pitch variations with which the stimulus

was affected. The EL training material included only the original corpora with 500 words, but

more importantly, the EL was never exposed–during learning–to the disturbances used to test

its classification performance. The experimental profile applied in this work (Fig 8) makes it

clear that the EL is completely unsupervised and that all supervision is limited to the SVM

algorithm. Furthermore, the EL does not optimize its synaptic weight updates using gradient

descent backpropagating errors from arbitrarily inserted loss functions. This is a fundamental

point to demonstrate the biological plausibility of our implementation since phonotactic con-

straints in a human language are learned incidentally [63, 64] and therefore, no supervision

could be supported under such behavioral circumstances.

In future researches, emergent dynamic properties could arise from the addition of subse-

quent cortical layers–beyond the Encoder Layer (EL)–in the processing pipeline of this model.

In this way we will be able to implement backward distal apical dendrites, which will bring

context through an unsupervised hierarchical implementation. Even though such feedback

could be beneficial in an incidental phonetic acquisition context, modeling adult phonetic

competence could possibly require the implementation of more complex hypotheses in our

model. The incorporation of biologically accurate cost functions in order to feed back any

kind of activation error would require precise biological hypotheses. Should those errors be

scalar signals (reinforcement mechanisms) or should they be vectors (supervised mecha-

nisms)? Should they come from the same modality or should they be gathered from a different

one? Should they vary across different cortical patches or should they vary during temporal

development? [65]. A supervised mechanism assisted from different cortical areas in a multi-

modal fashion could be a biologically accurate hypothesis, since it has been shown that iconic

gestures boost speech comprehension under adverse listening conditions [66]. Furthermore,

functional connectivity across different cortical areas facilitates speech comprehension when

the intelligibility of the speech signal is reduced [67]. Yet, beyond the cost functions hypothe-

ses, it is also important to determine the algorithms used to feed back activation errors.

Regardless of the fact that gradient descent is–at first glance–too complex to be implemented

by cortical tissue, several studies support the idea that credit assignment–the ultimate goal of

backpropagation–could be a phenomenon present in the brain [68]. Furthermore, in [69] the

authors presented a mechanism that performs backpropagation relaxing the backward connec-

tivity architecture and assigning blame by multiplying errors by random synaptic weights.

Apart from the above, there is no proof that the brain implements gradient descent as it is

implemented in current DNNs, thus novel strategies–with more biological plausibility–could

arise from the scientific community in the future.

Future versions of the model will increase biological plausibility by increasing the number

of cells per CC with massively scaling High Performance Computing (HPC) simulations and

using a Growing Self Organizing Map (GSOM) per CC in order to incorporate neural resource

recruitment specialization in each CC depending on the statistical dispersion of its stimuli

[70]. For instance, a four-dimensional array of neural units can be employed to simulate corti-

cal columns of approximately 34,000 cells. In this way, thousands of cortical columns can be

organized in multidimensional arrays. Using a leadership-class supercomputer (e.g. resources

from the Top 500 computing list, top500.org), and assuming one cortical column per com-

pute node with 64 cores, we could be running 527 neural units per thread in a CPU. Further-

more, configuring a three-dimensional array of 1000 cortical columns per cortical layer, a

model of 4 layers could be running on approximately 256,000 threads. Such simulations could

allow us to leverage phonotactic acquisition as well as phonetic generalization capacities

beyond the levels reported in this paper.
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Conclusion

We show via a computational simulation that our cortical model leverages the performance in

word classification tasks under specific environmental conditions (e.g., white noise and rever-

beration) and for certain acoustic variants applied to the auditory stimuli (e.g., pitch and voice

variations). The model acquires the phonotactic rules in the input, without any kind of super-

vised or reinforced optimization procedure, taking only advantage of auto-organized algorith-

mic properties. We also show effectiveness in classifying multisyllabic words, which suggests

that our implementation of neurophysiological predictive dynamics plus stochastic sparse pat-

terns of activation outperforms the MRSTSA algorithm in terms of phonotactic sequential

invariance for disturbances applied to the audio signal. Most importantly, the present model–

based on current neurophysiological and neuroanatomical data of the human auditory path-

way–is able to mimic incidental phonetic acquisition observed in human infants, which is a

key mechanism involved during early language learning. Increasing the models complexity

(by addition of further cortical layers), could allow the model to replicate further mechanisms

involved during human language acquisition, such as inferential learning or prediction genera-

tion. In addition, neurophysiological and anatomical properties in our model could be consid-

ered potentially relevant to the design of artificial intelligence systems and may achieve higher

levels of phonetic invariance and generalization than the ones achieved by current deep learn-

ing architectures.
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