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Abstract: Observation of another person’s actions and feelings activates brain areas that support simi-
lar functions in the observer, thereby facilitating inferences about the other’s mental and bodily states.
In real life, events eliciting this kind of vicarious brain activations are intermingled with other com-
plex, ever-changing stimuli in the environment. One practical approach to study the neural underpin-
nings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal
was to find out how observed haptic events in a silent movie would affect the spectator’s sensorimotor
cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy sub-
jects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per
second throughout the session. Using canonical correlation analysis and spatial filtering, consistent
single-trial responses across subjects were uncovered, and their waveform changes throughout the
movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in con-
cordance with the participants’ average moment-by-moment ratings of own engagement in the haptic
content of the movie (correlation r=0.49; ratings collected after the MEG session). The results,
obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human
sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally
Varying haptic events. Hum Brain Mﬂpp 374061—4068, 2016. © 2016 The Authors Human Brain Mapping Pub-
lished by Wiley Periodicals, Inc.
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INTRODUCTION

Previous brain imaging studies have shown that observing
another person’s actions and feelings activates brain areas
that support similar functions in the observer. Such auto-
mated, vicarious activations contribute to our understanding
of the mental and bodily states of other people and facilitate
social interaction [for reviews, see, e.g., Frith and Frith, 2007;
Hari and Kujala, 2009]. Although the most prominent vicari-
ous activations have been demonstrated in pre-motor cortical
areas [for a review, see, e.g., Rizzolatti and Craighero, 2004],
also somatosensory cortices are engaged during observation
of actions [e.g., Avikainen et al., 2002; Mottonen et al., 2005;
Oouchida et al., 2004; Rossi et al., 2002] or while seeing other
people being touched [e.g., Blakemore et al., 2005; Ebisch
et al., 2008; Keysers et al., 2004; Martinez-Jauand et al., 2012;
Meyer et al., 2011; Pihko et al., 2010; Schaefer et al., 2009].

In every-day life, events that elicit vicarious activation
are inseparably intermingled with a complex and rapidly
changing social environment, and such experimental set-
tings are thus difficult to bring into a brain-imaging labo-
ratory. Our solution for studying the neural underpinnings
of life-like social perception is to image brain function of
subjects who are viewing movies that are rich in their
composition, but can—in contrast to real-life events—be
repeated in identical form to each individual viewer.

Vicarious activation of the sensorimotor cortex during
movie viewing has been demonstrated previously by func-
tional magnetic resonance imaging (fMRI). For example,
hand movements in the movie activated the postcentral
sulcus in the vicinity of cytoarchitectonic area 5 [Hasson
et al,, 2004], and the primary and secondary somatosen-
sory cortices were activated when the movie displayed a
boxing match [Nummenmaa et al., 2014].

Compared with the sluggishness of the hemodynamic
changes that are measured with fMRI, magnetoencepha-
lography (MEG) measures directly neuronal activity that
can be tracked with a millisecond-range temporal accu-
racy. In the current study, we used MEG to explore how
haptic events in a movie affect the spectator’s sensorimotor
cortex. We probed the functional state of the sensorimotor
cortex by delivering tactile stimuli to subjects’ fingers once
per second throughout the movie. We then compared the
moment-by-moment modulations of the resulting 880 sin-
gle evoked responses per subject with the level of the hap-
tic contents present in the movie.

We demonstrate time-varying and fine-grained vicarious
modulation of the sensorimotor cortex that is concordant
with the viewers’ moment-by-moment reports on their
own haptic engagement in the movie.

MATERIALS AND METHODS
Subjects

Sixteen healthy adults (8 females, 8 males; 2 left-handed;
mean age 28 years, range 20-60 years) participated in the

study. All subjects had normal or corrected-to-normal
vision. The study had a prior approval by the ethics com-
mittee of the Hospital District of Helsinki and Uusimaa.
All participants gave written informed consent prior to the
study.

Stimuli

During the MEG recordings, the subjects watched a 15-
min silent black-and-white film (“At Land” by Maya
Deren, 1944). The movie depicts a female character
engaged in a wide range of bodily activities in her envi-
ronment, such as crawling, climbing, or touching things.
The film was presented at 24 frames/s using Presentation
software (Neurobehavioral systems; http://www.neurobs.
com/) and projected to a back-projection screen located
1.25 m in front of the subject (viewing angle 13° horizontal,
10° vertical; screen size 28 cm X 22.5 cm).

Throughout the movie, the viewers received pneumatic
tactile stimuli on the volar distal phalanges of their five
left-hand fingers, one finger at a time. These probe stimuli
(total duration 178 ms) were produced by expanding a
thin plastic membrane with an air puff [Mertens and
Liitkenhoner, 2000]. The fingers were stimulated in ran-
dom order once every 1,005 ms. Each subject received 880
stimuli over the 15-min movie. Figure 1 illustrates the
measurement setup.

The timings of both the video and the tactile stimuli
were aligned with MEG acquisition system and were iden-
tical for all subjects.

MEG and MRI Recordings

MEG signals were recorded in a magnetically shielded
room (MEG Core, Aalto Neurolmaging, Aalto University)
with a 306-channel whole-scalp neuromagnetometer com-
prising 204 planar gradiometers and 102 magnetometers at
102 sensor units (Elekta NeuromagTM, Elekta Oy, Helsinki,
Finland). MEG was bandpass-filtered from 0.03 to 330 Hz
and sampled at 1,000 Hz. The head position with respect
to the MEG sensors was continuously followed by using
head-position-indicator (HPI) coils. Vertical and horizontal
electro-oculograms (EOGs) were recorded at the same
time.

For source-level analysis, T1-weighted anatomical MRIs
were acquired at the Advanced Magnetic Imaging Centre
of Aalto Neuroimaging, Aalto University, or previously
acquired MRIs were used. In total, MR images were avail-
able for 10 out of 16 subjects.

Preprocessing of MEG Data

MEG data of each subject were preprocessed to compen-
sate for head movements inside the sensor helmet, and to
suppress magnetic interference by temporal signal-space
separation (tSSS) method [Taulu and Simola, 2006]
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Figure 1.
Pneumatic tactile stimuli were delivered to the five left hand fin-
gers in random order every 1,005 ms while the subject was
watching the movie on the screen. Simultaneously, whole-scalp
MEG was measured. Both the movie and tactile stimuli timings
were aligned with the MEG acquisition system by trigger signals,
and were thus identical across all the subjects.

implemented in Maxfilter software version 2.2 (Elekta Oy,
Helsinki, Finland). Default parameter settings of the soft-
ware were used.

Figure 2 summarizes all pre-processing steps and the
extraction of consistent single-trial waveforms across sub-
jects over the entire movie. Data from 204 planar gradiom-
eters were analyzed. The raw data were bandpass-filtered
from 1 to 40 Hz and, on the basis of stimulus triggers, split
into 400-ms epochs containing the evoked response. The
mean value was removed from each epoch for the subse-
quent multi-set canonical correlation analysis (MCCA). As
the further analysis was insensitive to occasional artifacts
in individual single-trials, and because signal decomposi-
tion based on MCCA is inherently resilient to artifacts that
are not exactly time-locked across subjects, no further arti-
fact rejection was needed.

In the last step of preprocessing (step B in Fig. 2), spatial
principal component analysis (PCA) was applied to reduce
data dimensionality from the original 204 down to D=67,
corresponding to the degrees of freedom of the data
matrix remaining after the tSSS artifact reduction.

MCCA-Based Spatial Filtering

We aimed to follow waveform changes of the single-
trial tactile responses throughout the movie. As the sub-
jects viewed the movie only once, it was not possible to
improve signal-to-noise ratio by signal averaging. Instead,
we applied multi-set canonical correlation analysis

[MCCA: Kettenring, 1971; Li et al., 2009] in the spatial fil-
tering scheme at sensor-level to uncover consistent single-
trial responses across subjects at 1-s intervals over the
entire movie [Lankinen et al., 2014].
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Figure 2.
Preprocessing and multiset canonical correlation analysis

(MCCA). (A) Continuous data X™ from 204 MEG channels for
each subject were used in the analysis. (B) Preprocessing steps
included artifact reductions, filtering to |1-40 Hz band, splitting
data to 400 ms epochs (time-locked to onset of tactile stimuli),
and reducing the data dimension from 204 to 67 by spatial PCA
(resulting data matrix denoted by Z™). (C) MCCA was used to
find optimal spatial filters W™ for each subject. In MCCA, the
projections Y"=(yT,... ,y’,S')T are formed so that the overall
correlation between all ¥, and y!, (i #jii,j € [l,16]) is maxi-
mized for each component d € [I,67]. (D) As a result, the most
consistent components across the subjects were extracted. The
figure illustrates two first MCCA components, with data from
all subjects superimposed.
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Figure 3.

Temporal principal component analysis (PCA) was applied sepa-
rately to the MCCAI| and MCCA2 components projections. (A)
Data matrix Y’ contained single-trial MCCA projections of all
subjects. PCA uncovers the direction of maximum variance in

MCCA is a data-driven analysis method that finds maxi-
mally correlated signal components across data sets, or
here, across MEG recordings of individual subjects (Fig.
2). In our setting, spatial filtering refers to projection Y"=
W"Z" where Y" is the weighted sum of the preprocessed
MEG data Z", superscript m indicating the subject (m =1
... M, number of subjects). Y" and Z" are D X T matrices,
corresponding to the MEG signal dimension (D = 67) and
to the number of concatenated samples over time
(T =352,000, consisting of 880 epochs, each with 400 sam-
ples). W™ is a D X D weighting matrix estimated by
MCCA so that the projections Y"=(y",...,y")", that is
the canonical variates, are maximally correlated across
subjects but mutually uncorrelated within the dataset .
In other words, MCCA optimizes an objective function,
here MAXVAR [Kettenring, 1971], so that the canonical
variates achieve the maximum overall correlation. The per-
formance of MCCA improves as the number of datasets
increase [Li et al., 2009].

The key advantages of the MCCA approach are that (i)
the method reduced noise in individual evoked responses,
thereby enabling the inspection of characteristics of single-
trial signals throughout the entire movie without averaging;
(ii) it revealed a set of signal components that highlighted
complementary temporal and spatial characteristics of the
responses; and (iii) the method could be applied easily at

the data. (B) Eigenvectors e reveal the parts of the response
accounting the largest variability in Y'. (C) The corresponding
projections (PCA scores) p=elY’ quantify the changes in
single-trials during the movie viewing.

sensor level, so that the resulting signal components of dif-
ferent subjects covary in common signal subspace.

The training set of the MCCA model consisted of the first
440 trials out of 880 from all the subjects. For validation, the
MCCA coefficients were applied to a test set, which con-
sisted of the last 440 trials. To evaluate the statistical signifi-
cance of the resulting components for the test data, we
calculated pair-wise correlations of eight randomly selected
independent pairs (sampled without replacement from the
pool of 16 subjects) for each component. We applied the
t-test to find out whether the mean of these correlations
deviated significantly from zero. The significance level after
Bonferroni-correction was P < 0.05/D.

Principal Component Analysis for Single-Trials

After finding the most consistent time-courses Y" across
subjects by MCCA-based spatial filtering, we quantified
the changes in each single-trial response throughout the
movie by applying (temporal) principal component analy-
sis (PCA) (Fig. 3). First, separately for each MCCA compo-
nent, we formed a matrix Y’, the columns representing 400
time samples per trial, and the rows corresponding to the
number of single-trial responses pooled over subjects (880
trials/subject over 16 subjects) (matrix Y’ transposed in
Fig. 3A). Next we applied PCA to the matrix Y’ and
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selected the first PCA eigenvector e; (size 400 X 1; Fig. 3B)
and the corresponding first PCA projection (PCA score;
Fig. 3C) explaining the largest variance in the signals
across trials. Practically, the first eigenvector revealed parts
of the single-responses that explain the largest variance in
the data across the movie, and PCA projection to this
eigenvector quantifies the amount of change in the
responses at each trial.

In the subsequent analysis, separately for the first three
MCCA components, the first PCA score of each subject
were separated from the vector p and averaged across the
subjects. The resulting mean time series, denoted by p
(dimension 1 X 880), was also detrended to compensate
very slow linear drifts.

Ratings of Tactile Engagement with the Movie

After the MEG recordings, the subjects watched the
movie once again on the computer screen and rated their
level of engagement with the haptic contents of the movie
by shifting a cursor up and down on a scale presented on
the screen. The scale was continuous from 0 to 1 and the
ratings were sampled at 5 Hz. In each subject, the ratings
were linearly transformed to range from 0 to 1. Supporting
Information Figure S1 represents the average ratings
across all 16 subjects together with 25™ and 75" percen-
tiles. For further analysis, the ratings were averaged across
the subjects, and downsampled to correspond to the num-
ber of responses (=880).

Comparison of MEG Responses and Ratings

Next, we computed correlation between mean PCA
score p and averaged behavioral ratings. For this analysis,
both p and ratings were low-pass filtered at 0.1 Hz, as the
changes in manual ratings were relatively slow. Correla-
tion between p and the ratings was computed with time
lags from —20 to 20 s separately for the first two MCCA
components.

We used non-parametric stationary block bootstrapping
to determine the confidence intervals for the correlation
values, thus retaining temporal dependences in time-series
as well as stationarity in the data [Politis and Romano,
1994]. The average block lengths (between 38 and 46 sam-
ples) were estimated by the automatic optimization
method presented by Politis and White [2004] and Patton
et al. [2009]. We determined 95% confidence intervals for
the correlation coefficient between p and the average of
the behavioral ratings by repeating bootstrapping 10,000
times (Supporting Information Fig. S2).

Source Localization

To verify that the MCCA components reflect activity in
feasible brain areas, we inspected the spatial-filter weights
W™ from the MCCA-model in source space. The weights

W™ (D X D) were transformed back to the 204 dimen-
sions, W (204 X 204), corresponding to the original num-
ber of sensors. The spatial-filter weights were converted to
activation patterns (forward models) A= ZZW’”’Zy_ L
where X, and X, are covariance matrices of the data Z"
and projections Y" [Haufe et al., 2014].

The resulting sensor-level activation patterns A were
further transformed to the anatomical source space by
employing minimum-norm estimates [Hamalainen and
IImoniemi, 1994] with MNE Suite software package
(http:/ /www.martinos.org/mne/). Thus, for one MCCA
component, the input for MNE was a 1 by 204 vector.
MNE was calculated at discrete locations separated by
7 mm on the cortical surface, with “loose factor” 0.4 to
favor the dipole component normal to the surface, and
with “depth weighting” to reduce the bias toward superfi-
cial currents. For illustration, individual maps were
morphed by linear mapping to a common template
(“fsaverage” in FreeSurfer package) and averaged across
subjects.

RESULTS
Intersubject Correlation of MEG Time-Courses

Applying MCCA to the MEG data uncovered the con-
sistent signal components across the subjects during the
movie. Components MCCA1 and MCCA2 exceeded the
significance level with corresponding mean intersubject
correlations (ISC) of 0.17 and 0.10 for the test data. For
comparison, the correlation coefficients were with the
training data 0.30 and 0.21, respectively, which shows that
the spatial filters from the training data can be generalized
to the test data. Figure 4 illustrates the MCCA time-series.
Notably, different components revealed complementary
response characteristics and showed more consistent
waveforms across subjects than the original raw signals.

Correlation Between MEG Responses and
Ratings

Figure 5A illustrates the mean behavioral ratings (red)
of the manually rated haptic engagement with the movie
content together with the mean PCA scores p (black) (both
averaged across all 16 subjects). The maximum correlations
between the ratings and MCCA1-MCCA2 were 0.49 and
0.38, respectively (see Supporting Information Fig. S2 for
statistical testing). The corresponding time-lags were 7 and
5, the ratings lagging behind the PCA scores.

By visual inspection, the highest peaks both in the rat-
ings and in the PCA scores matched with the scenes
where the main character was, for example, crawling,
climbing, pulling herself up, picking up stones, or feeling
a rough rock surface against her cheek, or where her body
was gently moved by waves rolling on the shore.
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MCCA1 Raw

MCCA2

Time (ms)

Figure 4.
Raw MEG gradiometer signals and components MCCAI| and MCCA2 for all 16 subjects superim-
posed (10 first trials of test data). Corresponding trial averages across the whole movie are rep-
resented on the right panel, along with the time points of the main peaks. It is noteworthy that

the sign of both MCCA components is arbitrary.

Figure 5B represents the first PCA eigenvectors e; for
components MCCA1 and MCCAZ2. Notably, these eigen-
vectors account for the variance in the single-trial
responses most clearly at latencies 85-125 ms, and 125-175
ms for MCCA1 and MCCAZ2, respectively.

Source Estimates

To validate the feasibility of the obtained spatial filter
weights, we inspected their distribution both in sensor and
source space. The MEG channels mostly contributing to
MCCA components were found over the right hemisphere,
contralateral to the stimulated hand, with slightly different
distributions for the different MCCA components (see
Supporting Information Fig. S3 for sensor level maps). Fig-
ure 6 shows the averaged source level maps for 10 subjects
whose MR images were available. Corresponding individ-
ual source estimates are shown in Supporting Information
Figure S4. Expectedly, these maps verified the right senso-
rimotor cortex as the source of MCCA components.

DISCUSSION

We demonstrated that the haptic content of a movie
modulates dynamically the state of the viewer’s sensori-
motor cortex as established by fine-grained changes in
single-trial responses to simultaneously presented tactile
probe stimuli. This modulation covaried with the viewer’s
moment-by-moment ratings of haptic engagement with the
movie.

Vicarious activation of the sensorimotor cortex has been
demonstrated earlier (see references in the “Introduction”

10

time (min)

B
0.1

— MCCA1

— MCCA2
-0.1

0 400 ms
Figure 5.

Modulation of evoked response characteristics along with sub-
jective ratings of the engagement to the haptic movie contents.
(A) PCA scores for the components MCCAI and MCCA 2
(black) together with the subjective ratings (red). The ratings
are shifted in time to correspond to the lag with maximum cor-
relation. The amplitudes are normalized to zero mean and
standard deviation of |. All the signals represent the average
across all 16 subjects. (B) The eigenvectors of the MCCA com-
ponents accounting for the highest variance in the responses.
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a.u.

Figure 6.
Average source level activation patterns over 10 subjects (arbi-
trary units; activation pattern strength) showing areas that most
contribute to MCCA components. The dark gray color repre-
sents sulci and the light gray gyri.

section and Keysers et al., 2010 for a review) but never in
such naturalistic experimental settings as used in the pres-
ent study. Ours is also the first study to demonstrate that
the vicarious brain activity changes dynamically in con-
cordance with the subjects” perceived and rapidly varying
haptic engagement. Using novel analysis of the time-
sensitive MEG measures we were thus able to establish
that the abundance and richness of observed haptic inter-
action between other people and their environment vicar-
iously modulate the state of the viewer’s sensorimotor
cortex.

Vicarious somatosensory activation has been previously
linked mainly to area 2 of the primary somatosensory cor-
tex, whereas area 3b in the posterior wall of the central
sulcus (which is the main generation site of responses to
tactile stimuli applied to the own body) has been regarded
as “private” and thus insensitive to observed touch [for a
review, see, e.g., Keysers et al., 2010]. However, when the
observed stimuli are haptic (involving action in addition
to touch), also area 3b can be vicariously affected, as has
been shown previously in association with observed
manipulatory finger movements [Avikainen et al.,, 2002],
and, in the current study, with the haptic contents of a
movie.

Movies mimic real life, where the stimuli of interest (here,
haptic events) are intermingled with other sensory features.
Accordingly, the present movie “At Land” by Maya Deren
(1944) contains multiple overlapping sensory events that
can be perceived simultaneously (see [Kauttonen et al.,
2015] for detailed annotation). Consider, for instance, the
main character picking up stones while walking, or climbing
up barefoot an upright-standing driftwood. These actions
and haptic events engage somatosensory, proprioceptive,
and motor functions, which is concordant with our finding
that MEG signals were modulated in large regions of the
sensorimotor cortex.

The single-trial evoked responses characterized in the
present study are noisy, and we thus used a recently
described [Lankinen et al., 2014] MCCA-based procedure
to find common response waveforms across subjects fol-
lowing each single stimulus. This analysis was applied to
sensor-level signals in a data-driven way, and it was
informative about vicarious perception in a naturalistic
experimental setting. As MCCA finds similar temporal
patterns in the recordings over subjects, we acknowledge
the possibility that if the responses would highly differ in
some subsets of subjects, their responses might split into
different MCCA components. However, in further exami-
nation (not shown) we found that such splitting did not
occur in the present study; instead, the individual MCCA1
and MCCA2 waveforms were highly concordant with the
group averages of the corresponding components. Thus,
the MCCA-based approach revealed the most consistent
components across subjects and enabled moment-to-
moment comparison of these single trials to the behavioral
ratings during the movie viewing.

CONCLUSION

In our everyday world, we are surrounded by continu-
ously changing multisensory stimuli. The current study
demonstrates that observed haptic events modulate
dynamically the functional state of the viewer’s sensorimo-
tor cortex. Our results thus expand the current under-
standing of the nature of fine-grained and time-varying
vicarious brain activations in naturalistic settings.
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