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Abstract: Publicly available (own) transcriptomic data have been analyzed to quantify the alteration
in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets
and predict the effects of their manipulation. The expression data have been generated by profiling
one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and
8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm
that considers the transcriptome as a multi-dimensional mathematical object based on the three
independent characteristics that can be derived for each gene from the expression data. We found
remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and
apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene
Master Regulator of the investigated PTC. The substantial increase in the expression synergism of
SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue
(NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis
with a negligible effect on the NOR cells. The predictive value of the expression coordination for
the expression regulation was validated with data from 8505C and BCPAP cell lines before and after
lentiviral transfection with DDX19B.

Keywords: 8505C cell line; apoptosis; BCPAP cell line; BRAF; CFLAR; IL6; oxidative phosphorylation;
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1. Introduction

Thyroid cancer (TC) has a lower incidence and mortality rate compared to other malignancies.
Still, in 2020 in the USA, 52,440 new cases (12,270 men and 40,170 women) are expected to be added.
Although TC affects over three times more women than men, the number of deaths (2180) is practically
equally distributed between the two sexes (1040 men and 1140 women) [1]. There are four major
types of thyroid cancers: papillary (hereafter denoted as PTC, 70–80% of total cases), follicular (FTC,
10–15%), medullary (MTC, ~2%) and anaplastic (APC, ~2%). PTC, FTC and MTC are composed of
well-differentiated cells and are treatable, while APC is undifferentiated and has a poor prognosis [2].

Considerable effort has been invested in recent decades to identify DNA mutations and the
oncogenes (which turn on) and tumor suppressor factors (which turn off) that are responsible for
triggering TC. The 25.0 release (22 July 2020) of the Genomic Data Commons Data Portal [3] includes
11,128 confirmed mutations detected on 13,564 genes sequenced from 1440 (553 male and 887 female)
TC cases. The most frequently mutated gene reported in the portal is BRAF (B-Raf proto-oncogene,
serine/threonine kinase), with up to 10 mutations identified in 20.56% of cases. Further down in
terms of mutation frequency are: NRAS (neuroblastoma RAS viral (v-ras) oncogene homolog) with
two mutations in 2.71% of cases, TTN (titin), with a total of 40 mutations in 2.29% of cases, and TG
(thyroglobulin), with a total of 26 mutations in 1.67% of cases [3]. For most genes, the portal [3] shows
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the specific types and locations of the mutations and the cancer form(s) where these mutations were
found. However, there is no bi-univocal correspondence between cancer forms and mutated genes:
each cancer was associated with numerous mutated genes and mutations of the same gene were
identified in several forms of cancer. How many mutated genes does one need in order to decide upon
the right form of cancer? Are there exclusive combinations of mutations for a particular form of cancer
and only for that form? If present, the number of the affected genes should be large enough to avoid any
overlap with other form of cancer. Although the incidence of each particular mutation in the explored
cohort of patients is known, it is impossible to determine the predictive values of combinations of
mutated genes because for more than three genes the number of possibilities (≥2.3 × 1011) exceeds
the human population of the Earth. Even though one can determine via conditioned probabilities
(actual conditioned frequencies) the chance of finding the same combination of mutations in other
persons, the diagnostic value is very poor. Moreover, one should not forget that the mutations were
identified with respect to a reference human genome obtained by averaging the DNA sequence results
from a large number of healthy individuals regardless of race, sex, age, environmental conditions,
etc. However, even among genomes of healthy individuals there are 0.1% (i.e., ~3mln nucleotides)
differences (0.6% when considering indels) [4].

There are several commercially available gene assays used for the preoperative diagnostic and
classification of TCs (e.g., [5,6]). Recently, Foundation Medicine [7] compiled a list of 310 genes with
full coding exonic regions for the detection of substitutions, insertion–deletions and copy-number
alterations. An additional list of the same Foundation contains 36 genes with intronic regions useful
for the detection of gene rearrangements (one gene with a promoter region and one non-coding RNA
gene) [7]. For all these assays, the question is how many and what genes should be mutated/regulated
to assign an accurate diagnostic? Most importantly, how did the researchers determine the predictive
values of each combination of genes? In [7], there are 346 combinations of one gene, 59,685 of two,
6,843,880 combinations of three, 587 million of four and over 40 billion of five and more. Therefore,
for practical reasons, only the most relevant three biomarkers, at most, are currently used, which
considerably limits the diagnostic accuracy.

While the diagnostic value of mutations and/or regulations is doubtful, what about their use for
therapeutic purposes? Is restoring the normal sequence/expression level of one biomarker enough to
cure the cancer? Considering that the “trusted” biomarkers were selected from the genes with the most
frequently altered sequence and/or expression level in large populations, this means that they are less
protected by the cellular homeostatic mechanisms. The cells are supposed to invest energy to protect
the sequence and expression level of genes, critical for their survival, proliferation, and integration
in multicellular structures. The low level of protection indicates that biomarkers are minor players,
and therefore the restoration of their structure/expression level may be of little consequence to the
cancer cells.

While we do not see a genomic solution for the cancer diagnostic at present, we believe that our Gene
Master Regulator (GMR) approach [8,9] is a reasonable alternative to the actual biomarker-oriented gene
therapy. The GMR of a particular cell phenotype is the gene whose highly protected sequence/expression
by the cellular homeostatic mechanisms regulates major functional pathways through expression
coordination with many of their genes. In our cancer genomic studies [8–10], we found that the GMR
of the cancer nodule is very low in the gene hierarchy of the surrounding cancer-free tissue of the
tumor. For this reason, manipulation of the GMR’s expression is expected to selectively destroy cancer
cells without affecting the normal ones much.

In this report, we analyze previously published transcriptomic data [8] to quantify the
cancer-related remodeling of major functional pathways in the PTC nodule with respect to the
normal tissue of the resection margins (NOR) of a surgically removed thyroid tumor. The Gene
Commanding Height (GCH) hierarchy and the GMRs are determined in both PTC and NOR, and the
potential regulations of the apoptosis genes in response to the cancer GMR expression manipulation
are predicted. The GCH scores of the top genes are compared to those of the most mutated genes in TC
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as well as those of the usually considered cancer biomarkers. Transcriptomic profiles of two standard
TC cell lines before and after stable transfection with a gene were used to determine the predictive
value of the expression coordination with that gene in untreated cells for the regulation in treated
ones. The analysis presented here was derived from the Genomic Fabric Paradigm (GFP) that assigns
three independent measures to each gene and considers the transcriptome as a multi-dimensional
mathematical object [11].

2. Materials and Methods

2.1. Gene Expression Data

We used gene expression data from one case of papillary thyroid carcinoma, pathological stage
pT3NOMx, deposited in the Gene Expression Omnibus (GEO) of the National Center for Biotechnology
Information (NCBI) [12] as GSE97001. In that study, the quarters of the most homogeneous 20-mm3

part of the frozen unilateral, single, 32.0-mm PTC nodule and four small pieces from the NOR of the
same gland from the same patient were profiled separately. Thus, we got data from four biological
replicas of each region. Since each human is subjected to a unique set of transcriptome-regulating
factors (race, sex, age, medical history, environmental conditions, exposure to stress and toxins, etc.),
the normal tissue surrounding the cancer nodule is a far better reference than tissues from other healthy
persons. Expression values were normalized iteratively to the median of all quantifiable genes in all
samples and transcript abundances were presented as multiples of the expression level of the median
gene in each region.

Transcriptomic data from the surgically removed tumor were compared to the gene expression
profiles of two standard human thyroid cancer cell lines: BCPAP (papillary) and 8505C (anaplastic)
deposited as GSE97002. We determined the predictive value of the coordination analysis in untreated
cells for the expression regulation in treated ones by comparing the transcriptomic profiles of
these cell lines before and after stable transfection with DDX19B, NEMP1, PANK2 and UBALD1.
The results of transfection with DEAD (Asp-Glu-Ala-Asp) box polypeptide 19B (DDX17B) were
collected from GSE97028, those for nuclear envelope integral membrane protein 1 (NEMP1) from
GSE97031, for pantothenate kinase 2 (PANK2) from GSE97030 and for UBA-like domain containing 1
(UBALD1) from GSE97427. Although alterations of DDX19B [13], NEMP1 [14] and PANK2 [15] were
linked to some forms of cancer by other authors, these genes were selected only because their different
GCH scores in the two cell lines made them suitable to validate the GMR approach [8,9].

2.2. Single-Gene Transcriptomic Quantifiers

2.2.1. Biological Replicas, Profiling Redundancy and Average Expression Level

The four biological replicas experimental design provided for every single gene in each region
three independent measures: (i) average expression level, (ii) expression variation and (iii) expression
coordination with each other gene [16]. We used these three measures and combinations of them to
establish the gene hierarchies and characterize the contribution of each gene to the cancer-related
reorganization of the thyroid transcriptome.

The Agilent two-color expression microarrays used in the analyzed experiment redundantly
probed the genes with various number of spots from 1 to 20 (as for MIEF1 = mitochondrial elongation
factor 1) and SRRT = serrate, RNA effector molecule). Therefore, for each gene “i”, we computed the
average expression level over the group of Ri spots redundantly probing the same transcript of the
average expression levels measured by spot “k” across the biological replicas.

µ
(NOR/PTC)
i = 1

Ri

Ri∑
k=1

µ
(NOR/PTC)
i,k = 1

Ri

Ri∑
k=1

 1
4

4∑
j=1

a(NOR/PTC)
i,k, j

, where :

a(NOR/PTC)
i,k, j = expression level of gene “i” probed by spot “k” on biological replica “ j”

(1)
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2.2.2. Expression Variation

Because of the probing redundancy, instead of the coefficient of variation (CV), we used the
Relative Expression Variability (REV). REV is the Bonferroni-like corrected mid-interval of the chi-square
estimate of the pooled CV for all quantifiable transcripts of the same gene [17]

REV(NOR/PTC)
i =

1
2

(√
ri

χ2(ri; 0.975)
+

√
ri

χ2(ri; 0.025)

)
︸                                           ︷︷                                           ︸

correction coefficient

√√√√√√√√√√√√√√√ 1
Ri

Ri∑
k=1

 s(NOR/PTC)
ik

µ
(NOR/PTC)
ik


2

︸                     ︷︷                     ︸
pooled CV

× 100%

µik= average expression level of gene i probed by spot k (= 1, . . . , Ri) in the 4 biological replicas
sik = standard deviation of the expression level of gene i probed by spot k
ri = 4Ri − 1 = number of degrees of freedom
Ri= number of microarray spots probing redundantly gene i

(2)

A lower REV indicates stronger control by the cellular homeostatic mechanisms to limit the
expression fluctuations, expected for genes critical for survival, proliferation and phenotypic expression.
Therefore, we also use the Relative Expression Control (REC)

REC(NOR,PTC)
i ≡

〈REV〉(NOR/PTC)

REV(NOR/PTC)
i

− 1

〈〉= median for all genes profiled in that phenotype
(3)

As defined, positive RECs point to genes that are more controlled than the median while negative
RECs identify less controlled genes in that phenotype. It is natural to assume that the cell invests more
energy to control the expressions of more important genes for its survival, phenotypic expression and
integration into a multi-cellular structure. As such, REC is a major factor to consider in establishing the
gene hierarchy.

2.2.3. Expression Coordination

The expression coordination of two genes in the same region was quantified by their pair-wise
momentum-product Pearson correlation coefficient between the two sets of expression levels across
biological replicas, “ρ(NOR/PTC)

i j ”. The statistical significance was evaluated with the two-tail t-test for
the degrees of freedom df = 4(biological replicas)*R (number of spots probing redundantly each of
the correlated transcripts) − 2. Two genes were considered as synergistically expressed (positive or
in-phase coordination) if their expression levels fluctuated in phase across biological replicas. They are
considered as antagonistically expressed (negative or anti-phase coordination) when their expression
levels manifest opposite tendencies and are independently expressed (neutral coordination) when
the expression fluctuations of one gene are not related to the fluctuations of the other [17]. Although
not (yet) validated through molecular biology studies, the expression coordination was speculated
to reflect the “transcriptomic stoichiometry” of the encoded proteins that are produced in certain
proportions to optimize the cellular functional pathways [18].

We also computed the coordination power CP(NOR/PTC)
i,Γ [19] and the Overall Coordination

OC(NOR/PTC)
i,Γ of a gene “i” with respect to the functional pathway “Γ” in each of the two profiled

regions (NOR and PTC)

CP(NOR/PTC)
i,Γ ≡ ρ

(NOR/PTC)
i j

∣∣∣∣∣
∀ j∈Γ. j,i

× 100%, OC(NOR/PTC)
i,Γ ≡ exp

 4
N

∑
j∈Γ, j,i

ρ2
i j − 1

 (4)

Both CP(NOR/PTC)
i,Γ and OC(NOR/PTC)

i,Γ are measures of the gene “i” influence on “Γ”.
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2.3. Gene Commanding Height (GCH) and Gene Master Regulator (GMR)

In previous papers [8–10], we introduced the Gene Commanding Height (GCH), a combination of
the expression control and expression coordination with all (ALL) other genes, to establish the gene
hierarchy in each phenotype

GCH(NOR,PTC)
i ≡

(
REC(NOR,PTC)

i + 1
)
OC(NOR/PTC)

i,ALL ≡
〈REV〉(NOR/PTC)

REV(NOR/PTC)
i

exp

 4
N

∑
j∈ALL, j,i

ρ2
i j − 1

 (5)

The top gene (highest GCH) in each phenotype was termed Gene Master Regulator (GMR) of that
phenotype. The very strict control of the GMR expression suggests that this gene is utterly important
for cell survival, while the very high overall coordination indicates how much its expression regulates
the expression of many other genes.

2.4. Expression Regulation

A gene was considered as significantly regulated in the PTC with respect to the NOR if the
absolute expression ratio exceeds the cut-off (CUT) value computed individually for each gene by
considering the expression variabilities of that gene in both compared conditions [9].

∣∣∣∣x(NOR→PTC)
i

∣∣∣∣ > CUTi = 1 + 1
100

√
2
((

REV(NOR)
i

)2
+

(
REV(PTC)

i

)2
)
, where :

xi ≡


µ
(PTC)
i

µ
(NOR)
i

, if µ(PTC)
i > µ

(NOR)
i

−
µ
(NOR)
i

µ
(PTC)
i

, if µ(PTC)
i < µ

(NOR)
i

, µ
(PTC/NOR)
i = 1

Ri

Ri∑
k=1

µ
(PTC/NOR)
ik

(6)

The “CUT” criterion for individual genes eliminates the false positives and the false negatives
selected by considering uniform absolute fold-change cut-off (e.g., 1.5x). In addition to the percentage
of up- and down-regulated genes (that considers all genes as equal contributors to the alteration of a
pathway), or the expression ratios “x”, we prefer the Weighted Individual (gene) Regulation [20], “WIR”:

WIR(NOR→PTC)
i ≡ µ

(NOR)
i

xi
|xi |

(|xi| − 1)(1− pi) where :

µ
(NOR)
i = average expression in the normal tissue,

pi= p-value of the regulation

(7)

Note that in Equation (7), WIR takes into account the normal expression of that gene (i.e., in NOR),
its expression ratio (PTC vs. NOR) and the confidence interval (1-p) of the regulation.

2.5. Quantifiers of the Functional Genomic Fabrics

The Kyoto Encyclopedia of Genes and Genomes [21,22] was used to select the genes involved in
the thyroid hormone synthesis (THS), cell cycle (CC) and oxidative phosphorylation (OPH), as well as
how experimental manipulation of the PTC GMR might regulate the programmed cell death (apoptosis,
APO). Although almost all functional pathways were perturbed in cancer, THS, CC, OPH and APO
were selected because of their importance for the thyroid function and cancer development. There are
reports of altered THS in cancer progression and apoptosis (e.g., [23]) and the role of the thyroid
hormone in regulating the cell-cycle [24] and the oxidative phosphorylation [25].

Median REC over a gene selection (e.g., apoptosis pathway) was used to compare the expression
controls of that selection in different regions or two different gene selections in the same region.
Alteration of the genomic fabrics was quantified by the average “X” of the absolute expression ratios
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and by Weighted Pathway Regulation (WPR), the average of the absolute WIRs over a particular
“selection” of genes

X(NOR→PTC)
selection ≡

∣∣∣∣x(NOR→PTC)
i

∣∣∣∣
∀i∈selection

WPR(NOR→PTC)
selection ≡

∣∣∣∣WIR(NOR→PTC)
i

∣∣∣∣
∀i∈selection

(8)

3. Results

3.1. Overall Results

A total of 14,903 well-quantified unigenes in all PTC and NOR samples, and in BCPAP and 8505C
cells before and after transfection with one of the four targeted genes, were considered in the sequent
analyses. The groups redundantly probing the same transcript were replaced by their averages in each
biological replica. Eukaryotic translation elongation factor 1 α 1 (EEF1A1) had the largest expression
(82.31 median gene expression units) in NOR (not significantly regulated in PTC). Niemann-Pick
disease, type C2 (NPC2) had the largest expression in PTC (86.97 median gene expression units),
up-regulated by 7.24x with respect to NOR. Notch 1 (NOTCH1) with 82.35 had the largest expression
in the BCPAP cells and myelin protein zero-like 3 (MPZL3) with 107.60 tops the gene expression level
in the 8505C cells.

Out of the quantified unigenes, 1225 (8.22%) were down-regulated and 1852 (12.42%) were
up-regulated in PTC with respect to NOR. The average absolute PTC/NOR expression ratio for all
genes was X = 1.768 (median |x| = 1.309) and the WPR was 1.071 (median WIR = 0.046). Chitinase
3-like 1 (CHI3L1) was the most up-regulated (x = 219.38) and trefoil factor 3 (intestinal) (TFF3) the
most down-regulated (x-99.86) gene in PTC. Because expression coordination and average expression
level are independent measures, the high regulation of these genes in PTC with respect to NOR has no
relevance for their networking in either of the two profiled regions.

3.2. Three Independent Measures for Each Gene

Figure 1 illustrates the independence of the three measures for the first 50 alphabetically ordered
genes involved in the KEGG-derived [22] human apoptosis pathway (hsa04210). We chose IL6
(interleukin 6) to illustrate the expression coordination of apoptotic genes owing to the significant
role of the encoded protein (IL6) in the PTC development [26]. However, coordination with any other
gene supports the same conclusion. In addition to the clear independence of the three measures,
transcriptomic differences between the two histo-pathologically distinct profiled regions from the
thyroid are evident.

In this gene selection, FBJ murine osteosarcoma viral oncogene homolog (FOS) has the highest
average expression level (45.37) in NOR (significantly down-regulated by −2.06x in PTC). Cathepsin H
(CTSH) had the largest expression (35.23), up-regulated by 6.78x with respect to NOR. FOS, cathepsin
K (CTSK) and inhibitor of kappa light polypeptide gene enhancer in B-cells kinase γ (IKBKG) were
among the significantly down-regulated genes. In contrast, BID (H3 interacting domain death agonist),
CTSH and DIABLO (diablo, IAP-binding mitochondrial protein), were among the up-regulated genes
of the selection.

CASP8 and FADD-like apoptosis regulator (CLFAR) was the most variably expressed gene in
the normal tissue and DNA fragmentation factor (DFFB), 40kDa, β polypeptide (caspase-activated
DNase) the most variably expressed in PTC. Note that most of the selected genes have larger expression
variability in the normal tissue than in the cancer nodule. This result confirms our previous reports
(see Discussions) about diseases triggering increased control exerted by the cellular homeostatic
mechanisms on the transcripts abundances as a way to protect against extensive damages.

Observe also that 20 (40%) of the illustrated apoptotic genes are synergistically expressed with
IL6 in the normal tissue and only two (4%) in the PTC nodule, suggesting the decoupling of the
programmed cell death from the inflammatory response in cancer.
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expression ratios and weighted individual (gene) regulations. The percentages are restricted to only 
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Figure 1. Three independent characteristics of every gene in each region. (a) average expression
level, (b) expression variation and (c) expression coordination (here with IL6). The dashed black
lines in panel (c) indicate the interval out of which the positive/negative coordination is considered as
statistically significant.

3.3. Expression Regulation

Figure 2 illustrates the contributions of the first 50 alphabetically ordered quantified oncogenes
to the overall regulation in PTC measured by the percentages of the up- and down-regulated genes,
expression ratios and weighted individual (gene) regulations. The percentages are restricted to only
the significantly regulated genes (considered as equal −1/+1 contributors). By contrast, both X and
WIR take into account all (regulated and not regulated) genes and the contributions of these genes are
no longer uniform. More informative than the expression ratio, WIR weights the contribution of each
gene by its normal expression level (i.e., in NOR), fold-change in cancer and statistical significance of
the regulation.
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Figure 2. Three ways to consider the contribution of a gene to the pathway regulation. (a) uniform;
(b) by expression ratio; (c) as Weighted Individual (gene) Regulation. Red/green/grey columns
indicate up-/down-/not regulated genes. Black columns are the fold-change cut-offs (negative for
down-regulation). Regulated genes: v-akt murine thymoma viral oncogene homolog 1 (AKT1),
Cbl proto-oncogene, E3 ubiquitin protein ligase (CBL), cell adhesion associated, oncogene regulated
(CDON), v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3), v-ets avian
erythroblastosis virus E26 oncogene homolog 1 (ETS1), homologs of FBJ murine osteosarcoma viral
oncogene (FOS/FOSB), FYN proto-oncogene, Src family tyrosine kinase (FYN), Harvey rat sarcoma
viral oncogene homolog (HRAS), jun proto-oncogene (JUN), Kirsten rat sarcoma viral oncogene
homolog (KRAS), v-yes-1 Yamaguchi sarcoma viral related oncogene homolog (LYN), v-maf avian
musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), c-mer proto-oncogene tyrosine kinase
(MERTK) and met proto-oncogene (MET).
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3.4. Regulation of the Thyroid Hormone Synthesis

Figure 3 presents the regulations of the genes involved in the (KEGG-determined) thyroid hormone
synthesis (hsa04918). In this pathway, 10.0 (20%) of the 50 quantified genes were up-regulated and six
(12%) were down-regulated.
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Figure 3. Regulation of thyroid hormone synthesis pathway (modified from hsa04918). Regulated
genes: asialoglycoprotein receptor 1 (ASGR1), ATPase, Na+/K+ transporting, β 3 polypeptide (ATP1B3),
dual oxidases (DUOX1/2), dual oxidase maturation factor 2 (DUOXA2), glutathione peroxidases
(GPX1/3/4/6/7), inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2), paired box 8 (PAX8), protein kinases
C (PRKCA/B), thyroid peroxidase (TPO) and transcription termination factor, RNA polymerase II (TTF2).

3.5. Regulation of the Cell-Cycle Pathway

Figure 4 presents the regulation of the genes involved in the (KEGG-determined) cell cycle
pathway (hsa04110), where, out of the 93 genes quantified, three (3.23%) were down-regulated and
14 (15.05%) were up-regulated. Except PTTG2, all other regulated genes are located in the DNA
replication (S-phase) and the two temporal gaps, G1 and G2, separating the S phase from mitosis
(M-phase), indicating faster replication but stationary differentiation.
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Figure 4. Regulation of the KEGG-determined cell cycle (hsa04110). Regulated genes:
cyclins (CCNB2/D1/D2), cell division cycle 45 (CDC45), cyclin-dependent kinase inhibitors
(CDKN1A/1C/2A/2C/2D), growth arrest and DNA-damage-inducibles (GADD45B/D), histone
deacetylase 1 (HDAC1), minichromosome maintenance complex component 4 (MCM4), membrane
associated tyrosine/threonine 1 (PKMYT1), pituitary tumor-transforming 2 (PTTG2), stratifin
(SFN), SMAD family member 3 (SMAD3), transforming growth factor, β 1 (TGFB1) and tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation proteins (YWHAB/Z).

3.6. Remodeling of the Oxidative Phosphorylation Pathway

Figure 5 presents the remodeling of the coordination networks interlinking the five complexes
([C1], [C2], [C3], [C4], [C5]) of the oxidative phosphorylation in the PTC nodule with respect to
NOR tissue. The genes were selected from the KEGG hsa 00190. Note the substantial increase in the
synergistically expressed gene pairs in PTC (273) with respect of the NOR (155) and that there is no
antagonistically expressed gene pair in PTC, while in NOR there are 105. When the coordination inside
each complex is added, there are 781 synergistic and 0 antagonistic pairs in PTC versus 458 synergistic
and 242 antagonistic pairs in NOR. In addition to the eight up-regulated and three down-regulated
genes within the selection of the 92 oxidative-phosphorylation genes, these results indicate a significant
increase in the coordination of the complexes involved in the OP activity.
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connected genes are synergistically/antagonistically expressed in that region. Red/blue numbers in
parentheses indicate the number of synergistically/antagonistically expressed gene pairs between the
two complexes. Regulated genes: ATPase, H+ transporting, lysosomal proteins (ATP6AP1, ATP6V1B2,
ATP6V1C1), cytochrome c oxidase subunits (COX6B2, COX7B, COX7C), NADH dehydrogenase
(ubiquinone) 1 α/β subcomplexes (NDUFA5, NDUFA6, NDUFB2), succinate dehydrogenase complex,
subunit A, flavoprotein (Fp) (SDHA) and T-cell, immune regulator 1, ATPase, H+ transporting,
lysosomal V0 subunit A3 (TCIRG1).

3.7. Gene Hierarchy

Figure 6 presents the GCH scores of the 12 most frequently mutated genes in TC (reported in [1])
and the top 12 genes in NOR and PTC. Mutated genes: B double prime 1, subunit of RNA polymerase
III transcription initiation factor IIIB (BDP1), B-Raf proto-oncogene, serine/threonine kinase (BRAF),
DST (dystonin), eukaryotic translation initiation factor 1A, X-linked (EIF1AX), Harvey rat sarcoma
viral oncogene homolog (HRAS), lysine (K)-specific methyltransferase 2A (KMT2A), microtubule-actin
crosslinking factor 1 (MACR1), metastasis associated lung adenocarcinoma transcript 1 (non-protein
coding) (MALAT1), neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), thyroglobulin (TG),
ubiquitin-specific peptidase 9, X-linked (USP9X), zinc finger homeobox 3 (ZFHX3). Note that none of
the most frequently mutated genes are among the top 12 genes in either region. Even BRAF, mutated
in 20.56% of the 1440 cases, has no competitive GCH to be a good candidate for the PTC gene therapy
(GCH of BRAF in PTC is 11.79). However, SPINT2, the PTC’s GMR (GCH(PTC)

SPINT2 = 54.97), appears to be
the most legitimate target for this case. While significant alteration of the expression of SPINT2 would
have lethal impact on the cancer cells, due to the very low GCH in NOR (GCH(NOR)

SPINT2 = 1.93), it might
have very little consequences on the normal cells. Importantly, the GCH scores of the top genes in PTC
are substantially lower in NOR and vice-versa.

For comparison, we added the GCH scores of the top 23 genes in each of the standard TC cell
lines BCPAP (papillary) and 8505C (anaplastic). Remarkably, 14 genes in the BCPAP cells and three
genes in the 8505C cells have GCH scores higher than SPINT2 in PTC. As an additional reference,
Figure S1 shows the GCH scores of most of the genes from FoundationOne®CDx (Foundation Medicine,
Cambridge, MA, U.S.A.) used by Foundation Medicine [7] for genomic testing of solid tumors, including
“Non-Small Cell Lung (NSCLC), Colorectal, Breast, Ovarian, and Melanoma. The list contains genes
with full coding exonic regions for the detection of substitutions, insertion-deletions (indels), and
copy-number alterations (CNAs). It also includes genes with select intronic regions for the detection of
gene rearrangements, one gene with a promoter region (telomerase reverse transcriptase (TERT)) and
one non-coding RNA gene (TERC). These genes might be useful for diagnostic purposes. However,
with their GCH score far below the GMR’s and with not enough difference between PTC and NOR,
they should have little therapeutic value for this particular case. Substantially lower than the PTC
GMR were the biomarkers, oncogenes, apoptosis genes and the ncRNAs determined in the same
specimens and presented in Figure 2 from [8].



Genes 2020, 11, 1030 13 of 22

Genes 2020, 11, x FOR PEER REVIEW 13 of 23 

 

 
Figure 6. Gene Commanding Height (GCH). (a) GCH and mutation frequency of the 12 reported most 
frequently mutated genes and the top 12 genes in the normal tissue (NOR) and the papillary nodule 
(PTC). The mutation frequency is plotted on the right axis. (b) GCH of the top 23 genes in the papillary 
(BCPAP) and anaplastic (8505C) thyroid cancer cell lines and their scores in NOR and PTC. Top 3 
genes in NOR: RAS, dexamethasone-induced 1 (RASD1), POTE ankyrin domain family, member F 
(POTEF), reticulocalbin 2, EF-hand calcium binding domain (RCN2). Top 3 genes in PTC: serine 
peptidase inhibitor, Kunitz type, 2 (SPINT2), RNA polymerase II associated protein 3 (RPAP3), basic 
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patient’s malignancy. What are the mechanisms by which experimental alteration of SPINT2 
expression might selectively kill the cancer cells but not the normal ones? SPINT2 is highly 
coordinated with numerous genes from almost all major functional pathways. However, we 
considered that apoptosis might be the best candidate to evaluate (from a bioinformatics point of 
view) the effects of SPINT2 manipulation. Therefore, we analyzed the expression coordination of 
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Figure 6. Gene Commanding Height (GCH). (a) GCH and mutation frequency of the 12 reported
most frequently mutated genes and the top 12 genes in the normal tissue (NOR) and the papillary
nodule (PTC). The mutation frequency is plotted on the right axis. (b) GCH of the top 23 genes in
the papillary (BCPAP) and anaplastic (8505C) thyroid cancer cell lines and their scores in NOR and
PTC. Top 3 genes in NOR: RAS, dexamethasone-induced 1 (RASD1), POTE ankyrin domain family,
member F (POTEF), reticulocalbin 2, EF-hand calcium binding domain (RCN2). Top 3 genes in PTC:
serine peptidase inhibitor, Kunitz type, 2 (SPINT2), RNA polymerase II associated protein 3 (RPAP3),
basic leucine zipper and W2 domains 1 (BZW1). Top 3 genes in BCPAP cells: ribosome production
factor 1 homolog (S. cerevisiae) (RPF1), TIMP metallopeptidase inhibitor 2 (TIMP2), epithelial cell
transforming 2 (ECT2). Top 3 genes in 8505C cells: ribosomal protein L13a (RPL13A), aldolase A,
fructose-bisphosphate (ALDOA), TIMELESS interacting protein (TIPIN).

3.8. The Gene Master Regulator at Play

Our study identified SPINT2, a not regulated gene in the investigated PTA, as the GMR of this
patient’s malignancy. What are the mechanisms by which experimental alteration of SPINT2 expression
might selectively kill the cancer cells but not the normal ones? SPINT2 is highly coordinated with
numerous genes from almost all major functional pathways. However, we considered that apoptosis
might be the best candidate to evaluate (from a bioinformatics point of view) the effects of SPINT2
manipulation. Therefore, we analyzed the expression coordination of SPINT2 with the 112 apoptosis
genes quantified in the two regions. Table 1 presents the apoptosis genes that are significantly up/down
regulated in PTC or/and significantly synergistically/antagonistically/independently expressed with
SPINT2 in NOR or/and PTC.
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Table 1. Apoptosis genes that are significantly up(U)/down(D) regulated in PTC with respect to NOR
or/and significantly synergistically (S)/antagonistically (A)/independently (I) expressed with SPINT2 in
NOR or/and PTC.

GENE DESCRIPTION NOR PTC REG

ACTG1 actin, γ 1 S
AKT1 v-akt murine thymoma viral oncogene homolog 1 U
AKT3 v-akt murine thymoma viral oncogene homolog 3 S
ATF4 activating transcription factor 4 A
ATM ataxia telangiectasia mutated S
BAK1 BCL2-antagonist/killer 1 S
BAX BCL2-associated X protein U
BBC3 BCL2 binding component 3 S U
BCL2 B-cell CLL/lymphoma 2 I

BCL2A1 BCL2-related protein A1 U
BCL2L1 BCL2-like 1 S

BCL2L11 BCL2-like 11 S
BID BH3 interacting domain death agonist U

BIRC5 baculoviral IAP repeat containing 5 U
CAPN1 calpain 1, (mu/I) large subunit S
CASP2 caspase 2, apoptosis-related cysteine peptidase S
CASP3 caspase 3, apoptosis-related cysteine peptidase U
CASP6 caspase 6, apoptosis-related cysteine peptidase S
CASP9 caspase 9, apoptosis-related cysteine peptidase S
CFLAR CASP8 and FADD-like apoptosis regulator S
CTSC cathepsin C U
CTSD cathepsin D S
CTSH cathepsin H U
CTSK cathepsin K D
CTSL cathepsin L S
CTSV cathepsin V S
CYCS cytochrome c, somatic S D

DAB2IP DAB2 interacting protein S U
DFFA DNA fragmentation factor S

DIABLO diablo, IAP-binding mitochondrial protein S U
EIF2AK3 eukaryotic translation initiation factor 2-α kinase 3 S
EIF2S1 eukaryotic translation initiation factor 2, subunit 1 α S

FAS Fas cell surface death receptor U
FOS FBJ murine osteosarcoma viral oncogene homolog D

GZMB granzyme B (granzyme 2, cytotoxic
T-lymphocyte-associated serine esterase 1) S D

IKBKB inhibitor of kappa light polypeptide gene enhancer in
B-cells, kinase β

I S

ITPR2 inositol 1,4,5-trisphosphate receptor, type 2 U
JUN jun proto-oncogene D

LMNA lamin A/C U
LMNB2 lamin B2 S

MAP2K1 mitogen-activated protein kinase kinase 1 U
MAP2K2 mitogen-activated protein kinase kinase 2 S
MAP3K9 mitogen-activated protein kinase kinase kinase 9 S
MAPK1 mitogen-activated protein kinase 1 S
MAPK3 mitogen-activated protein kinase 3 S

NFKB1 nuclear factor of kappa light polypeptide gene enhancer
in B-cells 1 S

NFKBIA nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor, α D

NRAS neuroblastoma RAS viral (v-ras) oncogene homolog S
PARP1 poly (ADP-ribose) polymerase 1 U
PARP4 poly (ADP-ribose) polymerase family, member 4 S
PDPK1 3-phosphoinositide dependent protein kinase 1 S

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase,
catalytic subunit α S
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Table 1. Cont.

GENE DESCRIPTION NOR PTC REG

PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 D
PIK3R2 phosphoinositide-3-kinase, regulatory subunit 2 S U
PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 S U

RAF1 v-raf-1 murine leukemia viral oncogene homolog 1 S

RELA v-rel avian reticuloendotheliosis viral oncogene
homolog A S

TNFRSF10B tumor necrosis factor receptor superfamily, member 10b U
TNFRSF1A tumor necrosis factor receptor superfamily, member 1A S U

TRAF2 TNF receptor-associated factor 2 S
TUBA1C tubulin, α 1b I
TUBA3D tubulin, α 3c I
TUBA4A tubulin, α 4a U

XIAP X-linked inhibitor of apoptosis S

In PTC (21 significantly up-regulated andseven down-regulated apoptosis genes), we found
SPINT2 to be significantly synergistically expressed with 34 apoptosis genes, but with no significant
antagonistically or independently expressed partners. This is a substantial increase from the six
synergistically, one antagonistically and four independently expressed apoptosis partners of SPINT2 in
NOR. Interestingly, none of the significant correlations in NOR (with: ACTG1, ATF4, CASP9, CTSL,
CYCS, NFKB1) were maintained in PTC.

What effect the overexpression of an otherwise stably expressed but not regulated gene in PTC
(SPINT2) may have on cancer cells? Most probably, owing to the substantial expression synergistic
coordination with apoptosis genes, the experimental overexpression of SPINT2 would up-regulate
many of these genes, forcing the commanded (PTC) cells to enter programmed death.

There was no way to validate this hypothesis on the patient from whom we had profiled the
thyroid tumor. However, we tested the general hypothesis that expression coordination with one gene
predicts expression regulation when the expression of that gene is experimentally manipulated. For this
purpose, we analyzed the transcriptomes of the TC cell lines BCPAP and 8505C cells before and after
stable lentiviral transfection with either DDX19B, NEMP1, PANK2 or UBALD1 [8]. Figure 7a,b plots
the correlation coefficient with DDX19B in the untreated cells against the fold-changes (negative for
down-regulation) of the genes in the transfected cells. They clearly show that expression coordination
predicts (>86%) the expression regulation with reasonable accuracy. Similar validation (83–91%) was
obtained for the same cell lines transfected with either NEMP1, PANK2 or UBALD1. Based on this
validation, Figure 7c illustrates the predicted regulations of apoptosis genes if the expression level of
SPINT2 in PTC is significantly increased.

In Figure 7c, we used the uniform contribution of the significantly altered genes to the percentages
of (up-/down-) regulated genes. Note that from 21 up-regulated and six down-regulated genes in
untreated PTC, overexpression of SPINT2 may result in 48 up-regulated and six down-regulated genes.
The expression of six genes, BBC3, DAB2IP, DIABLO, PIK3R2, PMAIP1, TNFRSF1A, which are already
up-regulated in PTC may be further increased by treatment, while the down-regulation of GZMB in
untreated PTC may be recovered by overexpressing SINT2.
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have low GCH and therefore little therapeutic value;  
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most influential gene for cancer cells while having very little role in the surrounding normal 
cells; 

4. SPINT2 was identified as the GMR of the PTC nodule of the profiled tumor and a gene with very 
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5. The up-regulation of the synergistically expressed apoptosis genes in untreated PTC following 
the experimental SPINT2 overexpression was identified as a potential mechanism of selectively 
killing the cancer cells. 

Figure 7. Prediction of the ripple effects of experimental gene regulation. (a) Expression coordination
with DDX19B in untreated BCAP cells accurately predicts 86.11% (40.05 + 46.06) the type of the
expression regulation in BCAP cells stably transfected with DDX19B; (b) Expression coordination with
DDX19B in untreated 8505C cells accurately predicts 89.88% (42.49 + 47.39) of the type of the expression
regulation in 8505C cells stably transfected with DDX19B; (c) Predicted regulation (1 for up-regulation
and −1 for down-regulation) of apoptotic genes in PTC following experimental overexpression of
SPINT2. REG = significant (1 = up-regulation, −1 = down-regulation). COR = significant expression
synergism. Only the regulated genes in the untreated PTC and those expected to be regulated in
treated PTC are represented. Red arrows indicate combined effect in treated tumor of regulation and
expression synergism in untreated PTC. The black arrow indicates the down-regulation in untreated
PTC expected to be compensated by the overexpression of SPINT2.

4. Discussion

Although with no molecular biology validation, the bioinformatics analysis of the gene expression
profiles in the cancer nodule and surrounding normal tissue of a surgically removed papillary tumor
produced some very interesting results, out of which the most important are:

1. Each cell phenotype from the tumor is governed by a different gene hierarchy and a distinct
organization of its transcriptome;

2. As selected from the most altered genes in a large population of cancer patients, the biomarkers
have low GCH and therefore little therapeutic value;

3. The GMR of the cancer nodule is the most legitimate target of the gene therapy because it is the
most influential gene for cancer cells while having very little role in the surrounding normal cells;

4. SPINT2 was identified as the GMR of the PTC nodule of the profiled tumor and a gene with very
low GCH score in NOR;

5. The up-regulation of the synergistically expressed apoptosis genes in untreated PTC following
the experimental SPINT2 overexpression was identified as a potential mechanism of selectively
killing the cancer cells.
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The analysis presented in this report is consistent with the genomic fabric paradigm [11] that
considers the transcriptome as a multi-dimensional object subjected to a dynamic set of expression
correlations among the genes. The traditional transcriptomic analysis is limited to the expression level
of individual genes and comparisons of the expression levels of distinct genes in the same condition
or of the same gene in different conditions. Our procedure considerably enlarges the transcriptomic
information by considering for each gene not one, but three independent features and all possible
combinations of these features to compare the genes and groups of genes in the same condition or
across various conditions.

Although high levels of EEF1A1 were reported in renal cell carcinoma [27], we found this gene to
have the highest expression in NOR and one of the highest levels in PTC (68.47), albeit not significantly
down-regulated. A high expression of NPC2 and its significant elevation in PTC were also detected in
meta-analyses of public PTC transcriptomes [28]. Overexpression of CHI3L1, the most up-regulated
gene in the analyzed PTC, was reported as associated with metastatic PTC [29] and its recurrence [30].
Significantly decreased expression of TFF3, the most down-regulated gene in our study, was also
reported in several other studies (e.g., [31]).

In addition to illustrating the independence of the three features, Figure 1 provides also some
interesting findings and confirmations of results reported by other authors. For instance, the high
expression of CTSH in PTC (up-regulated by 6.78x with respect to NOR) was related to the tumor
progression and migration of cancer cells [32].

The median REV has a statistically significant (p-value = 7.79 × 10−5) decrease from 39.75 in NOR
to 38.69 in PTC. According to the Second Law of Thermodynamics, the significantly larger overall
expression variability in NOR than in PTC indicates not only relaxed control by the homeostatic
mechanisms (average RECNOR = 0.084, average RECPTC = 0.113), but also that NOR is closer to
the thermodynamic (here physiological) equilibrium. Supporting this assertion is the reduction in
the median REV observed by us in all other gene expression studies on animal models of human
diseases (e.g., [33–35]) and in tissues of animals subjected to various stresses (e.g., [36–38] or to
genetic manipulations (e.g., [39,40]). The high expression variability of CFLAR (a key anti-apoptosis
regulator [41]) in NOR (REV = 102.93) may explain the adaptability of the apoptosis pathway to a large
spectrum of environmental conditions. The CFLAR REV dramatic reduction in PTC (REV = 29.41)
shows the need for tighter control of resisting apoptosis in cancer. Moreover, its reduction in expression
level (in PTC by −1.64x) was associated with delayed apoptosis [41].

The observed down-regulation of FOS in PTC (Figure 2) confirms the findings of some
groups [42,43] but contradicts its frequent (however not 100%) up-regulation reported by another
group in 40 patients with thyroid cancer and 20 with benign thyroid diseases [44]. Let us analyze what
measure of regulation is the most informative and use the examples of FOS and KIT (another gene
down-regulated in thyroid cancer [45]). Although both genes account as units for the percentage of
the down-regulated genes, they contribute −2.06x and −8.15x as expression ratios and −46.28 and
−3.76 as WIRs. Since WIR is a more comprehensive measure, FOS regulation appears to be the most
important factor in the alteration of this group of genes. Indeed, FOS protein is an important player in
cell proliferation, differentiation, transformation and apoptotic cell death.

Among the significantly regulated genes from the KEGG-derived THS pathway (Figure 3),
only PAX8 (−1.94x) was previously related to the thyroid cancer, albeit to the follicular form.
Moreover, we found that peroxisome proliferator-activated receptor γ (PPARG) whose fusion with
PAX8 is considered an important trigger of the FTC [46], was likewise significantly down-regulated
(−4.99x). Interestingly, in Figure 3, the two glutathione peroxidases, GPX1 (1.60x) and GPX3 (−1.84x),
were oppositely regulated. Since the down-regulation of GPX1 was reported to augment the
pro-inflammatory cytokine-induced redox signaling and endothelial cell activation [47], one may assume
that up-regulation of GPX1 will do the opposite, i.e., diminish the pro-inflammatory cytokine-induced
redox signaling. As such, the PTC cells will become more resistant to the inflammatory response.
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According to the KEGG map hsa04110, some of the regulated cell-cycle genes (Figure 4) were
associated with a wide diversity of cancers. Thus, up-regulation of CDKN1A was associated with
cervical cancer [48] and down-regulation of CDKN1C with gastric cancer [49]. As stated in [3],
up-regulation/mutation of CDKN2A was detected in numerous cancer forms: neoplasms (squamous
cell, ductal, lobular, cystic, mucinous, serous, mesothelial, lipomathous, myomathous, thymic epithelial,
complex, mixed), adenomas, adenocarcionmas, gliomas, nevi and melanomas, transitional cell
papillomas and carcinomas, mature B-cell lymphomas, soft tissue tumors and sarcomas. CDKN2B was
associated with malignant pleural mesothelioma, osteosarcoma and meningioma. However, we found
no report associating these genes with thyroid cancer. Unfortunately, one of the most cancer-related
genes, TP53 [50], was not quantified in this experiment due to the corrupted probing spot in one of the
microarrays, which can be seen as a major limitation of the study.

As illustrated in Figure 5 for interlinks between the five complexes of the oxidative phosphorylation,
cancer remodels the gene networks, profoundly perturbing the mitochondrial function [51]. Among
others, 10 synergistically expressed gene pairs in NOR are switched into antagonistically expressed
pairs in PTC: NDUFA10-SDHD, CYC1-COX1, COX10-ATP6V0B, COX10-ATP6V0C, COX5B-LHPP,
COX6A1-ATV1B2, COX6A1-LHPP, COX6A2-ATP6V0B, COX6A2-ATP6V1A, COX7C-ATP6V1G2. These
switches, the cancellation of all significant antagonisms and the added synergisms increase the
expression synchrony of the pathway genes [17] and remove the controlling bottlenecks. In a
synergistic pair, the up-regulation of one gene triggers the up-regulation of the other. Although in
this experiment we did not detect significantly altered expressions of NDUFA10 and SDHD, their
significant synergism in PTC may explain why they are both up-regulated in oral cancer [52].

Given the never-repeatable set of risk factors, each patient is unique and therefore their gene
hierarchy is unique. Although the chance of finding the same GMR in two persons is about 1/20,000
and that of the first two genes is 1/400 million, from the first three genes up, the number of possibilities
(7.9988 × 1012) exceeds by far the Earth human population. Therefore, the top three genes are enough
to uniquely represent the cancer of each person at a given time. In our studied PTC, the top three genes
were: SPINT2, RPAP3 and BZW,1 with none of them significantly regulated with respect to NOR.

SPINT2, the identified GMR of the profiled PTC (Figure 6), was previously reported by several
groups to be involved in the development and progression of a wide diversity of forms of cancer [53].
Among others, SPINT2 was associated with metastatic osteosarcoma [54], ovarian cancer [55],
glioma/glioblastoma [56,57], prostate cancer [58] and non-small lung cancer [59], leukemia [60]
and cervical carcinoma [61]. RPAP3, essential for assembling chaperone complexes [62], was linked to
hypoxia-adapted cancer cells [63] and BZW,1 was associated with ovarian [64], lung [65] and salivary
gland [66] cancers. However, we found no mention in the literature about the role of these first three
genes in any form of thyroid cancer.

In Figure 7 and Table 1, we tested whether expression synergism with apoptosis genes may be one
of the mechanisms by which manipulation of SPINT2 expression is lethal to the PTC cells but not to the
NOR cells. First, we determined the significant coordination of SPINT2 with apoptosis genes in both
NOR and PTC and found a substantial increase in the expression synergism in PTC. Then, we tested the
predictive value of the expression coordination by profiling two standard human TC cell lines before
and after stable transfection with four genes selected, only to have substantially different GCHs in
the two cell lines. Although DDX19B and PANK2 (but not NEMP1 and UBALD1) were synergistically
expressed with SPINT2 in PTC, there are no reports relating these genes with SPINT2 in any form of
cancer. As mentioned in [8], NEMP1 and PANK2 had higher GCHs and induced larger transcriptomic
alterations in the BCPAP than in the 8505C cells. In contrast, DDX19B and UBALD1 had higher
GCHs and induced larger transcriptomic alterations in the 8505C than in the BCPAP cells. Figure 7a,b
confirms our previous findings that expression correlation with one gene predicts what genes are
regulated when the expression of that gene is manipulated. A similar conclusion was drawn in [67],
where we had shown that most genes are synergistically/antagonistically expressed with Gja (encoding
the gap junction protein Cx43) in the brain and hearts of wildtype mice are down-/up-regulated in
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the brain and hearts of Cx43KO mice. Therefore, as illustrated in Figure 7c, we expect that, due to
the synergism, the overexpression of SPINT2 will force the PTC cells into programmed death by
up-regulating numerous apoptosis genes.

5. Conclusions

Owing to the matchless set of conditioning factors, each human is unique and, despite all
similarities, the transcriptomes of one person’s cell phenotypes can never be identical with those of
another person. In a profiled metastatic clear cell renal cell carcinoma [34], we found that even the
transcriptomes of two cancer nodules isolated from the same kidney and categorized with the same
Fuhrman grade 3 were largely different from each other. Moreover, some of the gene expression
conditioning factors (environment, exposure to stress and toxins, medical treatment, diet, ageing etc.)
are not constant, forcing the transcriptomes of cancer cells to continuously adapt. By consequence,
the gene hierarchy is not only unique for each person and in each of his/her cancer nodules, but it
changes over time. As such, this study provides strong reasons in favor of a really personalized and
time-sensitive cancer gene therapy based on the manipulation of the gene master regulators.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/1030/s1,
Figure S1: GCH scores of the genes included in FoundationOne®CDx assay. The assay explores genes with full
coding exonic regions for the detection of substitutions, insertion-deletions (indels), and copy-number alterations
(CNAs), genes with select intronic regions for the detection of gene rearrangements, one gene with a promoter
region and one non-coding RNA gene. Several genes (BRAF, BRCA1, EGFR, FGFR1/3, KMT2A, MSH2, MYC.
NOTCH2, RAF1, RARA) have both exonic and intronic regions used for detection.
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