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Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular
and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different in vitro human cell-based
stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells
(ASCs) on OGD-induced injury was studied. In the present study, SH-SY5Y human neuroblastoma cells and human induced
pluripotent stem cells (hiPSCs) were differentiated into neurons, cultured under OGD conditions (1% O2) for 24 h, and
subjected to a reperfusion period for 24 or 72 h. After OGD, ASCs were cocultured with neurons on inserts for 24 or 72 h to
study the neuroprotective potential of ASCs. The effect of OGD and ASC coculture on the viability, apoptosis, and proliferation
of and axonal damage to neuronal cells was studied. The results showed that OGD conditions induced cytotoxicity and
apoptosis of SH-SY5Y- and hiPSC-derived neurons, although more severe damage was detected in SH-SY5Y-derived neurons
than in hiPSC-derived neurons. Coculture with ASCs was protective for neurons, as the number of dead ASC-cocultured
neurons was lower than that of control cells, and coculture increased the proliferation of both cell types. To conclude, we
developed in vitro human cell-based stroke models in SH-SY5Y- and hiPSC-derived neurons. This was the first time hiPSCs
were used to model stroke in vitro. Since OGD had different effects on the studied cell types, this study highlights the
importance of using several cell types in in vitro studies to confirm the outcomes of the study. Here, ASCs exerted a
neuroprotective effect by increasing the proliferation and decreasing the death of SH-SY5Y- and hiPSC-derived neurons after OGD.

1. Introduction

Stroke is a devastating disease that is a leading cause of long-
term disability and death [1]. It is caused by compromised
blood supply to the brain, leading to oxygen and glucose defi-
ciencies in the central nervous system (CNS). A lack of
energy causes excitotoxicity, mitochondrial dysfunction, free
radical release, protein misfolding, and inflammatory
responses, eventually leading to neural injury. Consequently,
neuroinflammatory responses that lead to activation of
immune cells and upregulation of cytokines, chemokines,

and reactive oxygen species are triggered [2]. Currently, there
are two approved treatments for ischemic stroke: thrombo-
lytic therapy using tissue plasminogen activator [3, 4] and
mechanical thrombectomy [4]. Their use is limited to a short
therapeutic time window [4], and therefore, the majority of
stroke patients are not able to receive such treatments. Ther-
apies targeting later time windows are urgently needed [5].

Animal models of stroke have played a substantial role in
elucidating the pathogenetic mechanisms of stroke. How-
ever, novel therapeutic approaches for stroke have repeatedly
failed in clinical phase studies after having success in
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preclinical animal models [5, 6]. The high failure rate in clin-
ical trials may be due to the numerous macrostructural, cellu-
lar, and molecular discrepancies that exist between rodent
and human brains [7]. In vitro human cell-derived models
are considered to be advantageous for overcoming these
challenges, revealing the pathological mechanisms of stroke
and therefore developing new therapeutic drugs. Currently,
the oxygen-glucose deprivation- (OGD) induced model is
the most relevant and commonly used in vitro model mim-
icking stroke [7]; however, studies have shown wide variabil-
ity in the degree of injury [8]. The majority of OGD studies
have used either primary rodent neuronal cells or neuroblas-
toma cell lines, such as the SH-SY5Y cell lines [9]. The SH-
SY5Y cell line is a human-derived cell line that has been used
for research on various neurological disorders, such as Par-
kinson’s disease, Alzheimer’s disease, ischemia, and amyo-
trophic lateral sclerosis [8, 10–12]. Since SH-SY5Y cells are
of cancerous origin, they have several genetic aberrations;
therefore, their use in in vitro models has been criticized
[7]. Thus, in vitro nonneoplastic human cell-based models
need to be developed. Human induced pluripotent stem cell-
(hiPSC) derived neural cells show great promise for studying
neurological diseases because they are expendable cellular
sources of neuronal cells, which are naturally hard to access
[13, 14]. To our knowledge, there have been no reports on
using hiPSC-derived neurons to model stroke in vitro.

Transplantation of mesenchymal stem cells (MSCs) rep-
resents a new potential therapeutic strategy for stroke [15]. In
previous in vivo animal studies, transplantation of MSCs has
been shown to promote functional recovery and reduce
lesion size [16, 17], and these cells have already been utilized
in clinical phase studies with varying results [18]. The mech-
anisms of action of MSCs are not known, but their restorative
functions are suggested to be mediated by a paracrine effect.
MSCs secrete various neurotrophic, angiogenic, and immu-
noregulatory factors, thereby suppressing inflammation and
promoting angiogenesis, neurogenesis, remyelination, and
axonal plasticity [19]. It is also noteworthy that endogenous
neural stem cells can secrete multiple factors that are able
to beneficially regulate neurogenesis and modulate inflam-
matory responses after CNS damage [20].

Adult MSCs can be harvested from the bone marrow
(BM-MSCs) and adipose tissue, among other tissues of mes-
enchymal origin [21]. Adipose tissue-derived stem cells
(ASCs) present multiple advantages due to their higher yield
from donors and because they require less invasive harvest-
ing methods than BM-MSCs [21]. In addition, MSCs can
be expanded with human platelet lysate instead of fetal
bovine serum to avoid immunological reaction to xenogenic
substances [22, 23]. ASCs have been shown to have a benefi-
cial effect on stroke recovery in animal models [24–26]. We,
among others, have shown that ASCs improve behavioral
recovery [24, 26] and reduce the death of neural cells in
in vivo models [24]. However, ASC therapy has different
results, especially in animal models with induced comorbid-
ities such as hypertension [27, 28] and diabetes [27], in which
beneficial effects of ASCs are not observed.

In this study, we developed two in vitro human cell-based
models of ischemic stroke using neurons differentiated from

the neuroblastoma cell line SH-SY5Y and hiPSCs and opti-
mized an OGD protocol for use in cell models. In addition,
we studied the paracrine neuroprotective effect of human
ASCs against OGD-induced injury in these two in vitro
models.

2. Materials and Methods

2.1. Differentiation of SH-SY5Y Neuroblastoma Cells into
Neurons. The human neuroblastoma cells SH-SY5Y (ATCC)
were thawed and cultured in basic medium including Eagle’s
minimum essential medium (EMEM, Sigma-Aldrich) sup-
plemented with 15% heat-inactivated fetal bovine serum
(FBS, Thermo Fisher Scientific), 1% penicillin-streptomycin
(P/S, Lonza), and 1% HyClone L-glutamine (GE Healthcare
Bio-Sciences Austria GmbH). SH-SY5Y cells were differenti-
ated into neuronal cells by using the protocol described by
Shipley et al. [9] with moderate modifications. Briefly, SH-
SY5Y cells were detached from cell culture flasks with Try-
pLE Select (Thermo Fisher Scientific), suspended in basic
medium and plated into 6-well plates at a density of 10,000
cells/cm2 (Nunc). The next day, the medium was changed
to neuronal differentiation (ND) 1 medium supplemented
with 2.5% FBS and 10μM retinoic acid (RA, Sigma), and
the cells were cultured for 7 days. Thereafter, the cells were
cultured in ND2 medium supplemented with 1% FBS and
10μM RA for 3 days. After that, the SH-SY5Y cells were
detached with TrypLE Select and plated in 15μg/ml laminin
(LN521, Biolamina)-coated 24-well plates (Nunc) at a den-
sity of 25,000 cells/cm2. The next day, the medium was chan-
ged to ND3, which was composed of neurobasal medium
(Thermo Fisher Scientific) supplemented with 2% B-27
(Thermo Fisher Scientific), 20mM potassium chloride
(Merck), 1% P/S, 2mM GlutaMAX (Thermo Fisher Scien-
tific), 50 ng/ml brain-derived neurotrophic factor (BDNF,
R&D Systems), 2mM dibutyryl cyclic AMP (db-cAMP,
Sigma), and 10μM RA. SH-SY5Y cells were cultured under
these conditions for 11 days; thus, altogether, differentiation
was performed for 20 days prior to the start of OGD treat-
ment. Hereafter, differentiated SH-SY5Y cells are referred
to as SH-SY5Y-neurons.

2.2. Human Pluripotent Stem Cells and Differentiation of
Neurons. The hiPSC line 10212.EURCCs [29] was generated
with Sendai virus technology (Life Technologies) [30] at the
Faculty of Medicine and Health Technology (MET), Tam-
pere University, Finland. MET has received supportive state-
ments from the regional ethics committee of Pirkanmaa
Hospital District for the derivation, culture, and differentia-
tion of hiPSCs (R08070). Informed consent was obtained
from patients who provided cell samples. hiPSCs were
expanded in a feeder-free culture system as described previ-
ously [31]. Cortical neurons were differentiated as previously
described [32]. Briefly, the basal medium consisted of 1 : 1
DMEM/F12 with GlutaMAX, neurobasal medium, 0.5% N2,
1% B-27 with RA, 0.5mM GlutaMAX, 0.5% NEEA, 50μM
2-mercaptoethanol (all purchased from Thermo Fisher Sci-
entific), 2.5μg/ml insulin (Sigma), and 0.1% P/S (Thermo
Fisher Scientific). For neural induction, the basal medium
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was supplemented with 100nM LDN193189 (Sigma) and
10μM SB431542 (Sigma) for 12 days. Thereafter, the cells
were cultured in basal medium supplemented with 20 ng/ml
fibroblast growth factor-2 (FGF2, R&D Systems) for 13 days.
Then, the cells were cultured in maturation medium, which
consisted of basal medium supplemented with 20 ng/ml
BDNF, 10 ng/ml glial-derived neurotrophic factor (R&D Sys-
tems), 500μM db-cAMP, and 200μM ascorbic acid (Sigma)
for 7 days to promote the maturation of neurons. On day
32, the cells were plated in 24-well plates (Nunc) at a density
of 100,000 cells/cm2 and cultured for 7 days prior to OGD
treatment. Differentiated hiPSCs are hereafter referred to as
hiPSC-neurons.

2.3. Adipose Stem Cells. To study the effect of ASCs on neuro-
nal cells, human ASCs (Master Cell Bank/Stock no.
1—Donor RESSTORE01, Batch no. 591133643763) were cul-
tured in Alpha MEM (Gibco) supplemented with 5% human
platelet lysate (Stemulate, Cook Medical) and 1% P/S. ASCs
were isolated and cultured as previously described [26, 27].
The ASC phenotype was analyzed by flow cytometry (FAC-
SAria Fusion Cell Sorter, BD Biosciences) and was found to
reflect a typical MSC immunophenotype featuring expres-
sion (>95%) of the surface markers CD73, CD90, and
CD105 and no expression (<2%) of CD11a, CD19, CD34,
CD45, and HLA-DR [26].

2.4. Oxygen-Glucose Deprivation and Reperfusion. To model
ischemic stroke in vitro, cells were first washed with
glucose-free medium. Thereafter, SH-SY5Y-neurons were
incubated in glucose-free ND3 medium, and hiPSC-
neurons were incubated in glucose-free DMEM in a humid-
ified oxygen control CO2 incubator (HeraCell, Thermo
Fisher Scientific) with 1% O2, 5% CO2, and 94% N2 for 24 h
at 37°C. Immediately after OGD, cells were reperfused by
removing the medium and replacing it with ND3 for SH-
SY5Y-neurons and maturation medium containing glucose
for hiPSC-neurons, and the cells were incubated for 24 or
72 h at 37°C in 95% air/5% CO2 (Figure 1). Control SH-
SY5Y-neurons and hiPSC-neurons were washed and incu-
bated in ND3 medium and maturation medium containing
glucose, respectively, under normoxic conditions for 24h in
95% air/5% CO2 (HeraCell).

2.5. Coculture of Neurons and ASCs. The effects of ASCs on
OGD-treated SH-SY5Y- and hiPSC-neurons during reperfu-
sion were assessed in cocultures. ASCs (10,000 cells/insert,
density of 30,000 cells/cm2) were plated on ThinCert™-TC
inserts (pore size 0.4μm, Greiner Bio-One) and incubated
with SH-SY5Y- or hiPSC-neurons for 24 or 72 h at 37°C
and 95% air/5% CO2 (HeraCell). The experimental design
is presented in Figure 1.

2.6. Immunocytochemical Staining. Immunocytochemical
staining was performed as previously described [33]. The pri-
mary antibodies included dendritic marker microtubule-
associated protein 2 (MAP2, chicken, 1 : 4000, NB300-213,
Novus), microtubulin marker β-tubulinIII (mouse, 1 : 1000,
T8660, Sigma), apoptosis marker cleaved caspase-3 (cl-
Casp3, rabbit, 1 : 400, 9664, Cell Signaling), and proliferation

marker Ki-67 (rabbit, 1 : 800, AB9260, Millipore). The sec-
ondary antibodies included Alexa Fluor 488-conjugated don-
key anti-rabbit (1 : 400), Alexa Fluor 568-conjugated donkey
anti-mouse (1 : 400), and Alexa Fluor 647-conjugated goat
anti-chicken (1 : 200, all from Thermo Fisher Scientific). Cell
samples were mounted with ProLong™ Gold Antifade
Mountant with DAPI (Thermo Fisher Scientific). Images
were acquired with an Olympus IX51 microscope equipped
with an Olympus DP30BW camera (Olympus Corporation).
CellProfiler [34] and CellProfiler Analyst [35] were used for
image analysis.

2.7. CyQuant Analysis. The number of cells was analyzed
based on the amount of DNA in the samples using a
CyQuant™ cell proliferation assay kit (Molecular Probes,
Invitrogen™) as previously described [36]. Briefly, the
medium was discarded, and the cells were rinsed with DPBS
and 0.1% Triton-X-100 (Sigma-Aldrich) and frozen at -80°C
until analysis. Fluorescence was measured with a microplate
reader (Victor 1429 Multilabel Counter, Wallac) at
480/520 nm.

2.8. qRT-PCR. Quantitative real-time PCR (qRT-PCR) anal-
ysis of tubulin β-III (TUBB3) and growth-associated protein
43 (GAP43) and for the endogenous control human acidic
ribosomal phosphoprotein P0 (RPLP0) was performed as pre-
viously described [37]. Briefly, total RNA was isolated by
using the NucleoSpin RNA® II kit (Macherey-Nagel) accord-
ing to the manufacturer’s instructions, and RNA samples
were reverse transcribed into cDNA using the High-
Capacity cDNA Reverse Transcriptase Kit (Applied Biosys-
tems). Gene expression was analyzed with Power SYBR
Green PCR Master Mix (Applied Biosystems) on an ABI
Prism 7300 real-time PCR system (Thermo Fisher Scientific).
The primers used for expression analysis were as follows:
TUBB3 forward 5′-GCCTTCCTGCACTGGTACAC-3′,
reverse 5′-TACATCTCGCCCTCTTCCTC-3′; GAP43 for-
ward 5′-AGAGCAGCCAAGCTGAAGAG-3′, reverse 5′
-TCTTGGTCAGCCTCAGGTTC-3′; and RPLP0 forward
5′-AATCTCCAGGGGCACCATT-3′, reverse 5′-CGCTGG
CTCCCACTTTGT-3′ (Oligomer Oy). The expression levels
of TUBB3 and GAP43 were normalized to the expression
level of RPLP0, and the relative expression of the studied

Differentiation OGD Reperfusion

SH-SY5Y cells
hiPSCs ASCs

24 h 72 h–24 h 0 h

Figure 1: Timeline of the study. SH-SY5Y neuroblastoma cells and
human induced pluripotent stem cells (hiPSCs) were differentiated
into neuronal cells. The cells were subjected to oxygen-glucose
deprivation (OGD) in 1% O2 without glucose for 24 h. Then, the
cells were transferred back to normoxic (19% O2) conditions with
medium containing glucose for 24 or 72 h (reperfusion). To study
the effect of human adipose stem cells (ASCs), ASCs and neurons
were cocultured after OGD for 24 or 72 h. ASCs were cultured on
inserts on the top of neurons.
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genes was calculated using a mathematical model as previ-
ously described [38].

2.9. Viability Staining. A LIVE/DEAD Cell Viability/Cyto-
toxicity kit for mammalian cells (Thermo Fisher Scientific)
was used to evaluate the viability of neuronal cells. The cells
were incubated for 30min at 37°C with 0.1μM green fluores-
cent calcein-AM to detect live cells and with 0.5μM red fluo-
rescent ethidium homodimer-1 (EthD-1) to detect dead cells.
The samples were imaged immediately with an Olympus
IX51 microscope equipped with an Olympus DP30BW cam-
era. For all staining experiments, four images per well were
taken and used for image analysis. CellProfiler [34] software
was used to perform image analysis as previously described
[39], where the areas of calcein-AM- and EthD-1-positive
cells in the images were determined from.

2.10. Statistics. An independent t-test was used for normally
distributed data. A p value less than 0.05 was considered sig-
nificant. If Bonferroni correction was applied, a p value less
than 0.025 was considered significant. All data are presented
as the mean ± standard error of themean ðSEMÞ. Statistical
analysis was performed using IBM SPSS Statistics 25 (IBM),
and graphs were generated using GraphPad Prism 5.02
(GraphPad Software, Inc.).

3. Results

3.1. ASC Treatment Reduced OGD-Induced Cytotoxicity in
SH-SY5Y- and hiPSC-Neurons. To model stroke in vitro,
SH-SY5Y- and hiPSC-neurons were exposed to OGD for
24 h followed by reperfusion for 24h or 72h. Additionally,
the paracrine effect of ASCs on injured neurons and control
cells was studied. First, differentiated SH-SY5Y-neurons
and hiPSC-neurons were characterized by staining for the
neuronal marker β-tubulinIII and the dendritic marker
MAP2, which were both expressed at high levels after neuro-
nal differentiation in both cell types. After differentiation,
SH-SY5Y cells and hiPSCs adopted a more neuronal cell-
like morphology with long and branched neurites (Figure 2).

Then, the viability and cytotoxicity were studied with
live/dead staining, and the percentages of areas with live cells
and with dead cells were quantified. Overall, live/dead stain-
ing showed that SH-SY5Y-neurons were viable after OGD
treatment (Figure 3(a)). However, there was a significant
decrease in the percentage of live cells in the OGD group
compared to the control group (p = 0:002) (Figure 3(b)).
Similarly, after OGD (p = 0:001) and 24h (p < 0:001) and
72 h (p = 0:012) after reperfusion, an increase in the number
of dead cells compared to that in the respective control group
was observed (Figure 3(c)). ASC treatment significantly
increased the percentage of live SH-SY5Y-neurons after
72 h of culturing (p = 0:015) in control conditions
(Figures 3(a) and 3(b)) but not after OGD at any of the time-
points. Instead, upon coculture with ASCs, a decrease in the
number of dead cells was observed in both control and
OGD conditions at 24 (CTRL: p < 0:001; OGD: p = 0:002)
and 72 h (CTRL: p < 0:001; OGD: p = 0:008) after reperfu-
sion (Figures 3(a) and 3(c)). CyQuant analysis showed that

fewer SH-SY5Y-neurons were detected at all timepoints in
OGD conditions than in control conditions (0 h: p = 0:036;
24 h: p < 0:001; 72 h: p < 0:001). Coculture with ASCs signif-
icantly increased the number of SH-SY5Y-neurons after 24 h
of reperfusion (p < 0:001) in OGD conditions, while ASCs
did not have an effect on the number of cells in control con-
ditions (Figure 3(d)). Next, apoptosis was studied by cl-
Casp3 staining. More cl-Casp3-positive SH-SY5Y-neurons
were detected in OGD conditions than in control conditions,
while fewer were detected after ASC coculture, especially
after 72 h of reperfusion (Figure 4).

Similarly, as for SH-SY5Y-neurons, the viability, cytotox-
icity, and apoptosis of hiPSC-neurons were studied after
OGD and coculture with ASCs. Quantification of the area
(Figures 3(e) and 3(f)) showed that the percentage of live cells
was significantly decreased in the 24 h reperfusion group
compared to the control group (p = 0:015), while no differ-
ences were found in the percentage of dead cells between
OGD and control conditions (Figures 3(e) and 3(g)). ASC
coculture significantly increased the percentage of live cells
at the 72 h timepoint in OGD (p = 0:017) and control
(p = 0:002) conditions and decreased the percentage of dead
cells at the 72 h timepoint in control conditions (p < 0:001).
CyQuant analysis of hiPSC-neurons illustrated that the num-
ber of these cells was decreased immediately after OGD
(p = 0:016) and 24h after reperfusion (p = 0:003) compared
to after culture in control conditions, but no differences were
noticed between the OGD group and the control group after
72 h of reperfusion (p < 0:05). Compared to control culture,
coculture with ASCs increased the number of cells 72 h after
reperfusion (p = 0:008; Figure 3(h)). However, under OGD
conditions, ASC coculture decreased the number of hiPSC-
neurons 24 h after reperfusion (p = 0:019; Figure 3(h)). In
hiPSC-neurons, a higher number of cl-Casp3-positive cells
were detected after OGD than after ASC treatment
(Figure 4).

3.2. ASC Coculture Enhanced the Proliferation of SH-SY5Y-
and hiPSC-Neurons in Both OGD and Control Conditions.
To investigate the effect of OGD and ASC coculture on
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Figure 2: SH-SY5Y- and hiPSC-neurons after neuronal
differentiation. Representative staining for β-tubulinIII and MAP2
confirming the presence of neuronal populations in the cultures.
Scale bar, 100μm.
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proliferation, cells were stained with the cell cycle marker Ki-
67 and quantified. The number of Ki-67-positive SH-SY5Y-
neurons was decreased after OGD (p = 0:011) and 24 h after
reperfusion (p = 0:017) compared to that after culture in con-
trol conditions. Coculture with ASC significantly increased
the percentage of Ki-67-positive cells in both control and
OGD conditions after 24 (CTRL: p < 0:001; OGD: p < 0:001
) and 72 h (CTRL: p < 0:001; OGD: p < 0:001) of reperfusion
(Figures 5(a) and 5(b)). A decreased number of Ki-67-
positive hiPSC-neurons were detected after OGD (p = 0:013
) compared to that after control culture, whereas after 24
and 72 h of reperfusion, the number of Ki-67-positive cells
was the same as that in the control group. Coculture with
ASC increased the percentage of Ki-67-positive cells in both
the control and OGD groups after 24 (CTRL: p = 0:002;
OGD: p = 0:001) and 72h (CTRL: p = 0:012; OGD: p =
0:014) of reperfusion (Figures 5(a) and 5(c)).

3.3. Axonal Damage to SH-SY5Y- and hiPSC-Neurons Was
Increased in OGD Conditions. To examine whether OGD dis-

rupts the integration of microtubules in axons, the expression
of β-tubulinIII was studied at the gene and protein levels. Fur-
thermore, gene expression of the neuronal growth cone
marker GAP43 was used to detect regenerative responses
after OGD. In SH-SY5Y-neurons, the relative expression of
TUBB3 was decreased after OGD and 24h of reperfusion
compared to after control culture and then returned to the
control level. Coculture with ASC did not influence the
expression of TUBB3 (Figure 6(b)). β-TubulinIII was
expressed along the cytoskeleton of the neurons under con-
trol conditions. After OGD, β-tubulinIII staining became
fragmented, showing disintegration in axons. Upon cocul-
ture with ASCs, less axonal disintegration of β-tubulinIII
SH-SY5Y-neurons was observed in OGD conditions com-
pared to control conditions (Figure 6(a)). The relative
expression of GAP43 was decreased after OGD and 24h of
reperfusion compared to after control culture, whereas no
effect of ASCs on its expression levels was detected
(Figure 6(c)). In hiPSC-neurons, the relative gene expression
of TUBB3 was not different between the OGD group and the
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Figure 3: Cell viability and cytotoxicity of SH-SY5Y- and hiPSC-neurons after OGD and ASC coculture. (a, e) Representative images of
live/dead staining after 72 h of reperfusion in SH-SY5Y-neurons (a) and hiPSC-neurons (e). Green = live cells/calcein-AM; red = dead
cells/EthD-1. Scale bar, 100μm. (b) Area of live SH-SY5Y-neurons and (f) hiPSC-neurons. (c–g) Area of dead SH-SY5Y-neurons (c) and
(g) hiPSC-neurons. For quantification of live and dead cells, images were analyzed from two to three wells/group, and four images were
taken from each well (one experiment for SH-SY5Y-neurons and representative data of two separate experiments for hiPSC-neurons). (d)
Analysis (CyQuant) of the number of SH-SY5Y-neurons (n = 3/group, data from four independent experiments) and (h) hiPSC-neurons
(n = 3/group, representative data of two separate experiments). All statistical analyses were performed using an independent t-test,
statistical significance: ∗∗∗p < 0:001, ∗∗p < 0:01, and ∗p < 0:05. All quantitative data are presented as the mean ± SEM.
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control group (Figure 6(e)), while β-tubulinIII was expressed
at a lower level around the cell body and along the axons
(Figure 6(d)) in OGD conditions compared to control condi-
tions. Axons were denser in ASC and hiPSC-neuron cocul-
tures than in OGD conditions. The relative gene expression
of GAP43 was similar between the control and OGD groups,
whereas its expression increased upon ASC coculture in
OGD conditions (Figure 6(f)) compared to that in OGD con-
ditions alone.

4. Discussion

Stroke has been modeled in vitro by removing oxygen and
glucose from the cells or by chemical or enzymatic inhibition
of cellular metabolism [7]. Most frequently, ischemia-like
conditions are produced with OGD conditions, which
involve replacing O2/CO2 equilibrated medium with
N2/CO2 equilibrated glucose-free medium and maintaining
cells in a hypoxic atmosphere [7, 40]. Since neurons have
high glucose and oxygen demands [41], the removal of glu-
cose and oxygen leads to impairment in maintaining normal
ionic gradients followed by excitotoxicity, oxidative stress,
and eventually apoptosis, autophagocytosis, and necrotic cell
death [42, 43]. Commonly, OGD is followed by a reperfusion
period, in which the restoration of glucose and oxygen to the
cells causes the production of reactive oxygen species, which
further induce cellular damage [44] and neuronal degenera-
tion [45]. There is no standardized OGD protocol to mimic
stroke in vitro, and in previous studies, the duration of
OGD has ranged from 1 to 24 h [46] with or without a subse-
quent reperfusion period. The O2 concentration in hypoxic
environments varies from 0% [47–53] to 8% [54]. In our
in vitro stroke model, 24 h of OGD with 1% O2 and 24 or
72 h of reperfusion period was used.

Cellular platforms that have been used to model stroke
in vitro include brain slices, organotypic cell cultures, pri-

mary neuronal cells, immortalized cell lines, and stem cells
of human and rodent origin [7]. Human brain slices and pri-
mary cells are highly physiologically relevant; however, they
are extremely limited in availability [7]; therefore, most
OGD studies are performed with primary rodent neuronal
cells or human neuroblastoma cell lines such as the SH-
SY5Y cell line [9]. Prior studies in SH-SY5Y cells have used
either undifferentiated cells or cells differentiated into neuro-
nal cells to more precisely mimic a mature neuronal pheno-
type [9, 11]. However, high passage numbers and
oncogenes limit the physiological relevance of neuroblas-
toma cell lines [7]. Human stem cells have a high potential
to be utilized for in vitro stroke models because they are
unlimited and have the potential for efficient neuronal differ-
entiation [55]. hiPSC-derived neuronal networks have shown
similar patterns of functionality as primary rat cells [32].
Currently, no studies have used hiPSC-derived neurons to
model stroke in vitro. Here, two different cell types of human
origin, SH-SY5Y cells and hiPSCs, were differentiated into
neurons and used to model stroke in vitro. SH-SY5Y cells
were differentiated into neurons using gradual serum starva-
tion and the addition of extracellular matrix proteins and
neurotrophic factors to yield more homogenous and mature
neuronal cultures [9], while hiPSCs were differentiated into
cortical cultures with small molecules to yield mature, func-
tionally active neurons [32].

In our study, cytotoxicity and apoptosis of SH-SY5Y-
neurons were increased, and viability SH-SY5Y-neurons
was decreased after OGD followed by 24 or 72 h of reperfu-
sion. This is in line with previous studies in nondifferentiated
SH-SY5Y cells showing decreased cell viability and activation
of apoptosis after OGD [53, 56]. Gao et al. showed that cell
viability decreases, and the apoptosis rate increases after
16 h of OGD and 9h of reperfusion. Lee et al. showed that cell
viability decreases after 20 h of OGD and 24h of reperfusion
in SH-SY5Y cells. Similar to SH-SY5Y-neurons, hiPSC-
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Figure 4: Apoptosis of SH-SY5Y- and hiPSC-neurons after OGD and ASC coculture, as determined by cleaved caspase-3 (cl-Casp3) staining.
Representative images of cl-Casp3 staining after 72 h of reperfusion in SH-SY5Y-neurons (n = 1/group/experiment, representative image of
two to four separate experiments; two to four images were taken of each well) and hiPSC-neurons (n = 1/group/experiment, representative
images of two separate experiments; 4 images were taken of each well). Blue = nuclei; green = cl-Casp3. Scale bar, 50μm.
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neurons showed increased cytotoxicity and apoptosis after
OGD and 24h of reperfusion, although the magnitude of
damage was not as robust as in SH-SY5Y-neurons. In
hiPSC-neurons, the cytotoxic effect of OGD was detected
by determining the number of cells with CyQuant analysis
but not with live/dead staining; however, OGD-induced
damage was detected by both methods in SH-SY5Y-
neurons. Altogether, our results show that both cell models
respond to the same OGD parameters rather similarly, sug-
gesting that the OGD paradigm can be standardized between
different cell types used to model stroke in vitro.

Ischemic stroke causes rapid and significant loss of axons
in the brain [57]. Thus, we explored in vitro axonal damage
after OGD in both cell models. SH-SY5Y-neurons showed
more disintegrated axons than hiPSC-neurons, although
the morphology of hiPSC-neurons was changed after OGD

compared to after control culture. Consistent with our stud-
ies, others have reported severe axonal damage in primary
rodent neurons after OGD [50, 52]. Liu et al. showed degra-
dation and disappearance of axons, a decrease in the length of
the axons, and a change in the morphology of primary rat
neurons after 90min of OGD [52]. A similar effect was also
shown in primary hamster neuronal hippocampal cells after
2 h of OGD and 48h of reperfusion; neurons were severely
injured, and axonal processes disappeared [50]. It seems that
in primary neurons compared to SH-SY5Y- or hiPSC-neu-
rons, OGD-induced cell damage is more rapid and more
destructive to axons. We also studied the effects of OGD-
induced axonal damage on the gene expression of the micro-
tubule protein TUBB3 and the neuronal growth cone marker
GAP43, which is considered an essential player in regenera-
tive responses in the CNS [58]. In our study, SH-SY5Y-
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Figure 5: Proliferation of SH-SY5Y- and hiPSC-neurons after OGD and ASC coculture. (a) Representative images of Ki-67 staining after
OGD and 72 h after reperfusion in SH-SY5Y- and hiPSC-neurons. Blue = nuclei; green =Ki-67. Scale bar, 50 μm. (b) Quantification (%) of
Ki-67-positive SH-SY5Y- and (c) hiPSC-neurons. Two to four representative images (two to four independent experiments) of SH-SY5Y-
neurons and 4 representative images (two independent experiments) of hiPSC-neurons were analyzed. All statistical analyses were
performed using an independent t-test, statistical significance: ∗∗∗p < 0:001, ∗∗p < 0:01, and ∗p < 0:05. All quantitative data are presented
as the mean ± SEM.
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Figure 6: Axonal damage to SH-SY5Y- and hiPSC-neurons. (a, d) Representative images of β-tubulinIII staining after 72 h of reperfusion in
(a) SH-SY5Y- and (d) hiPSC-neurons (blue = nuclei, red =β-tubulinIII), scale bar, 50 μm (representative images of two to four separate
experiments for SH-SY5Y-neurons and two separate experiments for hiPSC-neurons). (b, c) Relative expression of TUBB3 and GAP43 in
SH-SY5Y-neurons (n = 1 from one experiment). (e, f) Relative expression of TUBB3 and GAP43 in hiPSC-neurons after OGD and 24 h or
72 h of reperfusion (n = 2 from two experiments).
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neurons showed decreased expression of GAP43 and TUBB3
after OGD and 24h of reperfusion. Similar effects were also
reported for GAP43 protein expression in rat cortical neu-
rons after OGD [52]. However, in hiPSC-neurons, a similar
effect was not observed, as OGD did not influence the expres-
sion of GAP43 or TUBB3. Overall, SH-SY5Y-neurons were
more prone to OGD-induced damage, while injury was less
severe in hiPSC-neurons. The limited responsiveness of
hiPSC-neurons to OGD might be due to the plasticity of
hiPSCs. Most hiPSC-derived cells mimic the embryonic or
fetal stage of development and therefore have a more robust
ability to overcome damage [14]. Moreover, culture condi-
tions, such as cell density and the composition of the medium
used, may also influence the severity of damage.

After setting up the in vitro OGD-induced models in SH-
SY5Y- and hiPSC-neurons, they were used to study the
potential neuroprotective effect of ASCs. Studies in animal
models of stroke have shown that MSC treatment has bene-
ficial effects on stroke recovery; however, contradictory
results have also been reported [16]. The majority of
in vitro and in vivo studies have been performed on rodent
and human BM-MSCs, while human-derived ASCs are less
studied [15]. Here, ASCs were cocultured on inserts with
SH-SY5Y- and hiPSC-neurons after OGD for 24 or 72h.
The results showed that ASC coculture increased cell viability
and decreased cytotoxicity and cell death in both cell models.
Similar findings have been reported for BM-MSCs [47, 48,
51, 54] and ASCs [59, 60] in various cell types, suggesting
the overall beneficial effects of ASCs after OGD.

MSCs have been shown to provide neuroprotection by
inhibiting apoptosis after OGD [47, 48, 50, 51, 54]. This anti-
apoptotic effect has been observed in neurons treated either
with human or mouse BM-MSCs or their conditioned
medium prior to OGD [50, 51] or during reperfusion [47,
48]. In our study, apoptosis was evaluated with cl-Casp3
staining, which showed that ASC coculture decreased the
number of cl-Casp3-positive SH-SY5Y- and hiPSC-neurons
after OGD. Similar findings have been reported in rat pri-
mary neurons after treatment with ASC conditioned medium
or coculture with BM-MSCs for 24-48 h after OGD [48, 60].

MSCs secrete multiple soluble factors, such as cytokines,
chemokines, and growth factors [19], which have an impact
on the proliferation of neurons. Interestingly, in our study,
ASC coculture increased the proliferation of SH-SY5Y- and
hiPSC-neurons 24 and 72h after OGD. Similar to our find-
ings, increased proliferation of BM-MSC-treated human
neuroblastoma M17 cells was observed after 24 and 48 h of
reperfusion but not after 72 h of reperfusion [47]. Addition-
ally, BM-MSCs have been shown to promote the prolifera-
tion of endogenous neural stem cells in a rat stroke model
[61]. Here, increased proliferation after ASC coculture may
also have been related to the presence of mitogenic factors
in the ASC medium. Thus, the proliferative response of SH-
SY5Y- and hiPSC-neurons seen here might have been due
to the combined effect of mitogenic factors and secreted fac-
tors from ASCs.

Treatment with human BM-MSCs has been shown to
promote axonal outgrowth, increase the length of axons
[52], and diminish axonal disintegration [50] in primary

rodent neurons after OGD-induced injury. In the present
study, axons seemed less disintegrated after ASC coculture
than after OGD, as demonstrated by β-tubulinIII staining.
In SH-SY5Y-neurons, the gene expression of TUBB3 and
GAP43 was not changed after ASC coculture, while GAP43
levels were increased 72 h after reperfusion in hiPSC-neu-
rons, indicating ongoing regenerative processes. Similarly,
increased GAP43 protein expression was observed by Liu
et al. in rat cortical neurons after 48 h of exposure to both
human BM-MSCs and their conditioned medium during
reperfusion [52].

Overall, SH-SY5Y-neurons responded more strongly to
OGD-induced injury and were more affected by subsequent
ASC coculture than hiPSC-neurons. Surprisingly, ASC
coculture appeared to be somewhat harmful to OGD-
challenged hiPSC-neurons when cell numbers were com-
pared using CyQuant analysis. In contrast, under control
conditions, ASCs increased the number and viability of
hiPSC-neurons. The harmful effect of ASCs after OGD injury
might have been due to factors secreted by ASCs or because
hiPSC-neurons were unable to adapt to the ASC microenvi-
ronment after OGD insult. This further suggests that OGD-
treated hiPSC-neurons are more vulnerable to microenviron-
mental changes than control hiPSC-neurons. ASCs were
grown on inserts that allowed trophic factors to diffuse
between the cultures. Sheibe et al. reported that high concen-
trations (over 10%) of conditioned medium from mouse and
human BM-MSCs and coculture with a high number of BM-
MSCs have toxic effects on mouse primary neuronal cells
[51]. In the present study, 10,000 ASCs were used for both
neuronal cell types, which was twice the cell number that
Sheibe et al. reported to be toxic. ASCs might also use the
nutrients in the medium that are required by the neurons
or secrete trophic factors that are harmful to OGD-treated
hiPSC-neurons.

5. Conclusions

In conclusion, our data suggest that both cell types, SH-
SY5Y- and hiPSC-neurons, are suitable for modeling stroke
in vitro. Both cell types responded to OGD treatment; how-
ever, OGD had a stronger effect on SH-SY5Y-neurons than
on hiPSC-neurons with immature phenotype. Our data also
suggest that ASCs have neuroprotective effects after OGD
injury in SH-SY5Y-neurons and hiPSC-neurons in vitro.
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