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Abstract: With the development of metal-based drugs, Ru(II) compounds present potential ap-
plications of PDT (photodynamic therapy) and anticancer reagents. We herein synthesized two
naphthyl-appended ruthenium complexes by the combination of the ligand with naphthyl and
bipyridyl. The DNA affinities, photocleavage abilities, and photocytotoxicity were studied by various
spectral methods, viscosity measurement, theoretical computation method, gel electrophoresis, and
MTT method. Two complexes exhibited strong interaction with calf thymus DNA by intercalation.
Production of singlet oxygen (1O2) led to obvious DNA photocleavage activities of two complexes
under 365 nm light. Furthermore, two complexes displayed obvious photocytotoxicity and low dark
cytotoxicity towards Hela, A549, and A375 cells.

Keywords: ruthenium complex; DNA interaction; photocleavage; molecular docking; photocytotoxicity

1. Introduction

The biological properties of ruthenium metal complexes are of immense interest to
many biochemists due to their importance in some biochemical events, such as luminescent
cellular imaging, luminescent probe, antibacterial activity, antitumor activity, and pho-
totherapeutic ability, etc. [1–8]. Many studies have shown that these potential biological
applications may be attributed to the excellent properties of ruthenium complexes, such as
binding to DNA or protein, good luminescent behaviors, and singlet oxygen generating
abilities [9]. Hence, the design of ruthenium complex containing new ligands with different
structures may create desirable biological activities.

Most PDT agents can generate ROS after light activation, leading to DNA damage and
killing target cells. Photofrin® is the first PDT clinical drug based on porphyrin compound,
which showed excellent photocytotoxicity against solid tumors [10]. Ruthenium-based
compounds usually exhibit high singlet oxygen quantum yields [11–17]. Most of them have
been reported as efficient photodynamic therapy (PDT) and photochemotherapy (PCT)
agents and display remarkable antitumor activities, which provokes interests of more and
more scientists [11–17].

Naphthyl moiety has shown its importance in developing chemosensors and drugs
with chemotherapeutic activities [12,13]. Naphthyl unit is a typical fluorophore, which
improves the emission properties of organic molecules and their biological activities, such
as DNA topoisomerase inhibition, antitumor agents, and antibacterial activities [10–19].
Naphthyl moiety is also introduced into the ligand on metal complexes, which exhibits
excellent biological properties [14–17]. Recently, several ruthenium complexes containing
naphthyl moiety were synthesized and their biological activities were tested [11,15–19].
For example, Sousa and Carvalho reported that two aryl-substituted ruthenium(II) com-
plexesexhibitedhigh quantum yields for singlet oxygen and strong DNA affinities by using
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a ligand containing naphthyl group as co-ligand and a typical intercalative ligand (dppz,
dipyridophenazine) as main ligand [18]. Howwever, these complexes have not been
utilized to investigate the PDT activities. Greer and McFarland synthesized ruthenium
complexes with a π-expansive imidazophen ligand by the link between a naphthyl group
and 1H-imidazo[4,5-f ][1,10]phenanthroline [16]. Ru(II) complex displayed high singlet
oxygen quantum yield and phototherapeutic index (PI). The introduction of the naphthyl
unit was found to enhance 1O2 quantum yields. They also found that the complexes
containing phenyl group exhibited larger PI value (558)compared to the introduction of
naphthyl group, though the complex containing naphthyl group displayed higher singlet
oxygen quantum yield than the complex containing phenyl group. Thus, singlet oxy-
gen quantum yield is not only factor that affects PDT activities of ruthenium complexes.
Combined with previous reports [11–17], DNA affinity is also an important factor for PDT
activity, since DNA is the target for PDT agents. [Ru(bpy)3]2+ displayed high singlet oxygen
quantum yield, but exhibited low PI, since it has weak DNA affinity [20]. Furthermore,
[Ru(bpy)2dppz]2+ (dppz = dipyrido[2,3-a:3′,2′-c]phenazine) binds to DNA strongly, but
has low singlet oxygen quantum yields, which leads to low photocytotoxicity [21]. Al-
though Greer and McFarland have not tested DNA affinity of the complex containing
naphthyl group and the complex containing phenyl group, an early report has shown that
introducing a large naphthyl group results in low DNA affinity due to the possible steric
hindrance [22]. This may be the cause for the lower PI value of the complex containing
naphthyl group in Greer and McFarland’s case. Therefore, introducing naphthyl units into
ruthenium complexes to keep high singlet oxygen yields and strong DNA affinities may
endow them with possible enhanced PDT activities.

In this context, we linked bipyridyl with the rigid naphthyl substituent by an imidazol
ring and obtained a new main ligand, mbin (2-(4′-methyl-bipyridine-4-yl)-1H-imidazo[4,5-
b]naphthalene), and two ruthenium complexes (Scheme 1, Figures S1 and S2). Synthesized
ruthenium complexes were used to study the DNA binding behaviors, DNA photocleavage,
and photocytotoxicity in vitro.
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2. Results and Discussion
2.1. Studies on DNA Interaction

In the PDT processes, DNA is one of the potential target molecules in cancer. The
affinity strength of the DNA bound by ruthenium complexes can affect DNA cleavage
and the PDT efficiency in cancer cells. Commonly used methods to measure DNA affinity
between small molecules and double-strand DNA include absorption titration, emission
titration, emission EB displacement experiment, viscosity measurement, and so on.

Herein, UV-vis spectra were measured by titrating CT-DNA (CT = calf thymus)
into the solution of ruthenium complexes. The spectra in UV-vis region were shown
in Figure 1. From Figure 1, the absorptivity decreased with increasing DNA concen-
trations for both complexes. The MLCT band localized at 474 or 473 nm for 1 and 2,
respectively. The change in absorption intensity at MLCT band was utilized to calcu-
late DNA binding constant, K, using McGhee–von Hippel Equation (1a,b) [23]. Previ-
ous studies reported that the value of K for typical intercalator, [Ru(bpy)2dppz]2+, was
(K = 4.9 × 106 M−1) [24,25]. [Ru(bpy)3]2+ binds to CT-DNA through electrostatic mode
with the value of K as 0.7 × 103 M−1 [26]. The values of K are 2.4 ± 0.4 × 105 M−1

(s = 1.25 ± 0.21) and 6.4± 0.3× 105 M−1 (s = 2.63 ± 0.24), for complex 1 and 2, respectively.
Here, for complex 2, the binding site size is about 2 base pairs. However, the value of s for
complex 1 is less than that of complex 2, which could indicate that the complex molecules
stacked each other on the DNA surface, according to previous reports [26]. The results
showed that our complexes displayed higher DNA affinities than that of [Ru(bpy)3]2+, but
lower DNA affinities than that of [Ru(bpy)2dppz]2+.
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Figure 1. Absorption spectra of 1 (A) and 2 (B) (20 µM) after titrating different amounts of CT-DNA.
Inset: plots of εa vs. [DNA].

Viscosity experiments were performed using an Ubbelohde viscometer to demonstrate
whether the complexes intercalate into base pairs. When small molecules intercalate into
base pairs of DNA, DNA length will increase, which leads to DNA viscosity increase. The
electrostatic binding compounds cannot change the length of DNA and display no obvious
change in DNA viscosity. Therefore, the change in DNA viscosity can distinguish different
binding modes against CT-DNA. Here, EB and [Ru(bpy)3]2+ were selected to be the controls
for intercalator and electrostatic binder [27–29], respectively. Obvious increase in DNA
viscosity was observed for EB (Figure 2), indicating EB intercalates into base pairs of CT-
DNA. Little change in DNA viscosity was consistent with the previous reported result
for [Ru(bpy)3]2+, and electrostatic binding mode was assigned to [Ru(bpy)3]2+ [27,28,30].
For synthesized Ru((II) compounds, the increase in DNA viscosity was observed as same
as that of EB, indicating that two complexes present a similar binding process to EB. The
results designated DNA intercalative binding mode for two complexes. Larger increase in
DNA viscosity indicated that interaction with 2 is larger than 1. Ruthenium polypyridyl
complexes containing auxiliary ligand with larger hydrophobicity usually displayed higher
DNA affinity. Here, complex 2 contains auxiliary ligand (phen) with larger hydrophobicity
compared to complex 1 (bpy), which results in larger DNA affinity [30].
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Emission titration experiments were also used to prove strong DNA interaction with
two complexes by adding DNA into complex solutions. The results were shown in Figure 3.
Upon excitation at 450 nm, obvious luminescence was observed for 1 and 2 at 636 and
648 nm, respectively. In the presence of CT-DNA (0–120 µM), the emission spectra showed
enhanced luminescence with the I/I0 ratio of 1.46 or 1.75 for 1 and 2, respectively. This
indicated that they bind to DNA strongly. The π-π stacking interactions between ruthe-
nium complexes and base pairs restrict the mobility of ruthenium complexes and lead to
luminescence enhancement [31].
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Figure 2. The viscosity of DNA (0.25 mM) after incubation with different concentrations of 1 (N),
2 (H), [Ru(bpy)3]2+ (•), and EB (�).
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Figure 3. Luminescence spectra of 1 (A) and 2 (B) (5 µM) after binding to CT-DNA.

To further investigate the strong DNA affinity of two complexes, [Fe(CN)6]4− was
used to quench the luminescence of the complexes with or without DNA. [Fe(CN)6]4−

is a tetra-charged anion, which may bind to ruthenium complex cations via electrostatic
attraction [32]. Thiswill lead to the decrease in the luminescence of the complexes. Protec-
tion of ruthenium complex cation by DNA against [Fe(CN)6]4− will prevent luminescence
quenching, which depends on the degree of protection by DNA [32]. The emission spec-
tra of two complexes without or with DNA were collected in the range of 500 to 800 nm
(Figure 4). In the presence of 0–1 mM [Fe(CN)6]4−, the luminescence intensities of the
complex solutions decreased sharply. In the presence of DNA, the degree of lumines-
cence quenching obviously decreased, indicating that DNA efficiently protected ruthenium
complexes from [Fe(CN)6]4−, and strong interactions existed between the two complexes
and DNA.
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Figure 4. Luminescence quenching curves of 1 (•), 2 (�), 1-DNA (H), and 2-DNA (N) by [Fe(CN)6]4–.
[Ru] = 5 µM, [DNA]/[Ru] = 80.

Ethidium bromide (EB) competitive displacement assay was also used to confirm the
intercalative binding mode. EB is a commonly used DNA fluorescence dye that binds to
DNA through intercalation. EB cannot emit in water and DNA-bound EB can emit strong
fluorescence at 600 nm. The assay has been implemented by competitive displacing EB
from EB-DNA mixed system. The degree of decrease in fluorescence intensities may reflect
intercalative binding mode and DNA affinity compared to EB. As shown in Figure 5, EB-
DNA mixed solutions emitted strong fluorescence at 597 nm. The addition of the complex
solutions into EB-DNA mixed solution, caused the fluorescence of EB-DNA system to
be quenched, indicating that our compounds intercalated into base pairs and displaced
EB from DNA. Almost 91% and 92% quenching efficiencies for complexes 1 and 2 also
showed that two complexes displayed lower DNA affinities than that of EB and can
displace EB from DNA. The DNA affinities were also determined using emission data from
EB competitive displacement assay. The DNA binding constants (Kapp) were calculated
by LePecq equation [33]. Using KEB (1.4 × 106 M−1) as the control [34,35], the binding
constants calculated were 4.38 × 105 M−1 and 5.42 × 105 M−1 for 1 and 2, respectively. The
Kapp values were similar to those obtained from absorption titration results.
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Figure 5. Luminescence spectra of EB-DNA system after adding ruthenium complexes. (A) 1 and
(B) 2.

Molecular docking was performed to further explore the factors affecting the interac-
tion between two complexes and double-strand DNA (PDB: 4e7y) (Figure 6). The ground
state geometries optimized by Gaussian 09 (Figure S3) were docked into DNA. The docking
poses were ranked by the calculated binding energies. The best conformation of ligand-
DNA model was determined by choosing the docking pose with the minimum binding
energy. For complex 2 and 1, the minimum double-strand DNA binding energy were
observed as −5.8 and −1.9 kcal/mol, respectively. The smaller DNA binding energy of
complex 2 indicated that complex 2 may bind more strongly to DNA than complex 1. From
the docking results, we also found that two complexes intercalated into base pairs by using
the same main ligand (mbin). In addition, the π-π stack interactions were found between B,
C, D, and E ring and base pairs of DNA for two complexes (Figures 6 and S4), which was
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the main contribution in the DNA binding process. Although obvious π-π stack interactions
were observed from the docking results, the difference in the π-π stack interactions between
two complexes and DNA cannot be obtained by Autodock software. Further studies are
underway to explore the difference in the interactions with DNA.
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2.2. DNA Photocleavage Activities

As described above, PDT agents can produce ROS after photoactivation and damage
DNA. Here, we used a plasmid DNA as the probe to test the photobiological activity
of two complexes under 365 nm light. Generally, single strand or double strand breaks
can convert the plasmid DNA from supercoil DNA to other forms of DNA [36,37]. The
agarose gel electrophoresis results were showed in Figure 7. For DNA without complexes,
irradiation did not lead to DNA cleavage. In the presence of the complexes (10–80 µM),
two complexes cleaved pBR 322 DNA, and 20 µM complex 2 almost converted supercoil
DNA into nicked form (Form II). Compared to complex 1, complex 2 displayed higher
photocleavage efficiency against plasmid DNA due to its stronger DNA binding affinity.
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The possible reactive oxygen species (ROS) were determined by the mechanism exper-
iments using different scavengers, such as DMSO (DMSO = dimethyl sulfoxide), histidine,
sodium azide, mannitol, and SOD (SOD = superoxide dismutase) [37–39]. Incubation of
NaN3 or histidine with Ru(II) complex and DNA mixed solution under irradiation re-
sulted in the decrease in the amount of Form II, and the DNA photocleavage was inhibited
(Figure 8). However, other scavengers did not inhibit the DNA photocleavage. Combined
with previous results, the DNA photocleavage abilities may be attributed to the singlet
oxygen (1O2) quantum yield for complexes 1 and 2.
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Therefore, the singlet oxygen quantum yield experiments were also performed by test-
ing the fluorescence intensities of DPBF-Ru (DPBF = 1,3-Diphenylisobenzofuran) methanol
solutions under 450 nm light. DPBF displays strong fluorescence in methanol. Incubation
of DPBF with the sensitizers which produce 1O2 could result in fluorescence quenching of
DPBF. The results were given in Figure 9. The obvious decrease in fluorescence intensities
of DPBF-Ru system indicated two complexes produced singlet oxygen under irradiation.
The plot of I0/I against irradiation time also showed that a higher singlet oxygen yield was
observed for 2 compared to 1, which is beneficial proof for higher photocleavage ability
of complex 2. Using [Ru(bpy)3]2+ as the control (=0.81) [40], the 1O2 generation quantum
yields (Φ∆) werecalculated according to literature method. The values of Φ∆ for complexes
1 and 2 were 0.66 and 0.78, respectively. Two complexes were demonstrated to yield singlet
oxygen, which resulted in DNA photocleavage.
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2.3. Photocytotoxic Activity In Vitro

As mentioned above, the excellent photochemistry properties, strong DNA affini-
ties and high singlet oxygen quantum yields of Ru(II) complexes have attracted many
researchers to treat several types of tumors through the photodynamic method. Here, we
checked the photocytotoxicities of two complexes and cisplatin by MTT method. HeLa,
A549, and A375 cells were used in the experiments. For comparison, dark cytotoxicities
in vitro were also measured. Table 1 showed the IC50 values of complex 1, 2, and cisplatin
under irradiation or in the dark. The well-known metal-based anti-tumor drug, cisplatin,
was used as the control. It usually displays dark cytotoxicities for many tumors, according
to previous reports [4,41]. Here, we also found that cisplatin had no obvious enhanced
cytotoxicities under 450 nm irradiation compared to its dark cytotoxicities, which indicated
this drug did not produce enough ROS. For the two complexes, obvious photocytotoxicities
were observed after 10 min irradiation at 450 nm and 36 h incubation. Interestingly, the
two complexes displayed low dark cytotoxicities. Generally, an excellent PDT reagent usu-
ally possesses a large PI (photocytotoxicity index) value, meaning high photocytotoxicity
and low dark cytotoxicity. The results indicated that two complexes showed potential
application for PDT drugs.

Table 1. The IC50 and PI values for two complexes against tumor cells.

Complex

IC50 (µM)

HeLa A549 A375

Dark Light PI Dark Light PI Dark Light PI

1 >100 0.95 ± 0.21 105 >100 0.85 ± 0.26 117 >100 0.48 ± 0.16 208

2 >100 0.67 ± 0.15 149 92.67 ± 3.28 0.58 ± 0.06 160 90.34 ± 4.87 0.12 ± 0.01 753

[Ru(bpy)3]2+ [20] >300 161 ± 5.62 1.86 >300 152 ± 4.34 1.97

[Ru(bpy)2dppn]2+

[42] 110 ± 28 0.39 ± 0.06 282

Cisplatin 45.75 ± 3.31 43.61 ± 5.52 1.05 38.27 ± 2.46 33.81 ± 5.17 1.13 33.86 ± 3.82 30.63 ± 5.47 1.11
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The PI values for the two complexes are listed in Table 1. The largest PI value was
found for complex 2 after treatment with A375 cell. Figure 10 showed the cell viabili-
ties of A375 cells after incubation with complex 1 and 2. Furthermore, compared with
1, complex 2 displayed larger PI values against all cancer cells. Generally, two factors
contribute to the PDT efficiencies for Ru(II)-based compounds, ROS quantum yields and
DNA affinity. Strong DNA affinity usually leads to high DNA cleavage efficacy. Here,
2 displayed stronger DNA affinity and higher 1O2 quantum yields compared to 1. The
previous reports also demonstrated that the rigidity and planarity of ancillary ligand could
favor enhancement of DNA affinity and ROS yields of ruthenium complexes. Complex
2 possesses larger co-ligand (phen) compared to bpy of complex 1. In previous reported
ruthenium complexes, photocytotoxicity of [Ru(bpy)3]2+ was also used to compare with
that of our complexes [20]. This complex displayed high 1O2 quantum yield, but weak
DNA affinity, which has been regarded as a classical DNA electrostatic binding reagent.
Therefore, the low photocytotoxicity can be believed to come mainly from its low DNA
affinity. After improving the planar area of main ligand by introducing pyrenyl group,
[Ru(bpy)2(ippy)]2+ displayed high 1O2 quantum yields and strong DNA binding affinity,
which resulted in large PI value (413) towards HL-60 cells [20]. Similarly, [Ru(bpy)2dppn]2+

also exhibited large PI value against HeLa cells [42].
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Figure 10. Photocytotoxic effects of 1 and 2 on A375 cells after 12 h incubation and 10 min irradiation.

3. Materials and Methods
3.1. Instrumentation

1H NMR and 13C NMR signals were determined on a Brucker Advance 400 MHz
spectrometer. The luminescence was measured on F-7000 FL spectrophotometer (Hitachi,
Tokyo, Japan). UV-visible (UV-vis) spectra were determined via UV2600 spectrometer
(Shimadzu, Kyoto, Japan).

3.2. UV-Visible Titrations

DNA affinities of synthesized compounds were determined by UV-vis titrations.
Generally, a constant volume of CT-DNA solution was added into 3 mL solutions of
complexes 1 or 2 (20 µM) in tris buffer (pH = 7.2, 50 mM NaCl, 5 mM Tris) until the
absorption intensity in MLCT (metal-ligand charge transfer) band did not decrease. The
concentration of CT-DNA in base pairs was measured using the absorbance of DNA
solution at 260 nm using molar extinction coefficient (ε = 13,200 M−1·cm−1) [43]. The
binding constants of two complexes (K) were calculated by McGhee-Hippel Equation
(1a,b) [23].

(εa − ε f )/(εb − ε f ) = (b− (b2 − 2K2Ct[DNA]/s)
1/2

)/2KCt (1a)

b = 1 + KCt + K[DNA]/2s (1b)

where εf, εa, and εb are the molar absorptivity for the free complex, DNA-bound complex,
and DNA-saturated complex, respectively. Ct is concentration of complex. s is the binding
site size.
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3.3. Viscosity Measurement

DNA viscosities were obtained by measuring the flow time of buffer, DNA, and DNA-
bound solutions of ruthenium complexes with an Ubbelohde viscometer. Every sample
was tested three times at 30.0 ± 0.1 ◦C. The values of viscosity werecalculated by using
the equation ηi = (ti − t0)/t0, where ηi is the viscosity of the sample, and ti and t0 are the
flow time of the sample and buffer solution. The change in viscosity was presented by the
plot of (η/η0)1/3 against binding ratio, where η is the viscosity of the sample for DNA-Ru
solution, and η0 is the viscosity for DNA solution without complex [24–26].

3.4. Emission Measurements

Emission titrations were performed by adding DNA solution into 1 mL complex
solution (5 µM) in tris buffer. For emission quenching experiments, [Fe(CN)6]4− was titrated
into Ru(II) complex solutions with or without DNA. After 5 min-incubation, luminescence
data from 500 to 800 nm were obtained with the excitation wavelength at 450 nm. The slit
for excitation or emission was 5 nm.

Ethidium bromide (EB) displacement experiments were measured by emission spectra
with the excitation wavelength at 515 nm. The solution of Ru(II) complex was added into
EB-DNA mixed solution. The data were recorded from 530 to 750 nm.

Singlet oxygen yield of the two complexes was determined by the fluorescence mea-
surements for the mixed solutions of ruthenium complexes (20 µM) and DPBF (20 µM)
(1,3-Diphenylisobenzofuran) in methanol under irradiation at 450 nm. The spectra were
recorded with excitation at 405 nm.

3.5. DNA Photocleavage Experiments

DNA cleavages under irradiation were checked using agarose electrophoresis in
TBE buffer. Firstly, pBR322 DNA (30 mM) was mixed with various concentrations of
complexes. Then the mixed solutions were irradiated under 365 nm for 1.5 h. After agarose
electrophoresis, the gel was stained by EB solution. The photograph was obtained using
Tanon 2500R gel imaging systems.

3.6. Molecular Docking

Optimized geometry of complex in ground state was obtained using G09 package of
program. DFT-B3LYP method and the mixed basis set (6-31G* for C, N, O, H, and SDD
for Ru) were used in the theoretical calculation. AutoDock 4.2 package was used to obtain
the DNA docking conformation of the complex. The structure of DNA (PDB: 4e7y) was
obtained from a protein data bank.

3.7. Photocytotoxicity

Cytotoxicity experiments were carried out in in a 96 wells plate. The selected cells
included Hela, A549, and A375 cells. Ruthenium complexes or cisplatin were added into
the cells and incubated for 12 h in the dark. The culture medium was then replaced with
fresh medium. After 10 min irradiation for the cells (LED system 450 nm, 6 mW/cm2), PBS
was replaced with DMEM/10% FCS, followed by an additional 36 h of incubation. IC50
values were determined by using standard MTT method.

3.8. Synthesis
3.8.1. 2-(4′-Methyl-bipyridine-4-yl)-1H-imidazo[4,5-b]Naphthalene (Mbin)

4′-Methyl-2,2′-bipyridine-4-carboxaldehyde [44] (0.198 g) and 2, 3-diaminonaphthalene
(0.158 g) were dissolved in 15 mL dimethylacetamide. Then, NaHSO3 (0.208 g) was added
into the solution. After reflux for 4 h, the addition of 200 mL water into the cooled solution
gave a dark brown precipitate. After filtration and water wash, the product was obtained.
Further purification was performed by recrystallization in ethanol. Yield: 0.158 mg, 39.3%.
Anal (%): (Found: N, 16.52; C, 78.67; H, 4.81%. Calcd for C22H16N4: N, 16.66; C, 78.55;
H, 4.79%). ESI-MS: m/z = 336.2 ([M+1]+). 1H NMR (400 MHz, ppm, DMSO-d6): 13.52 (s,
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1H), 9.26 (s, 1H), 8.92 (d, 1H, J = 4.0 Hz), 8.66 (d, 1H, J = 4.0 Hz), 8.34 (s, 2H), 8.28 (d, 2H,
J = 4.0 Hz), 8.06 (m, 2H), 7.43 (m, 2H), 7.38 (d, 1H, J = 4.0 Hz), and 2.47 (s, 3H).

3.8.2. Synthesis of Ruthenium Complexes

The suspension of [Ru(L)2Cl2]·2H2O (L = phen or bpy) (0.4 mmol) and mbin (0.4
mmol, 0.156 g) in ethylene glycol (10 mL) was refluxed for 4 h under argon. After the
reaction was completed, 100 mL water and solid KPF6 were added to give the dark red
precipitate. After filtration and dryness in vacuo, the product was obtained by neutral
aluminum oxide column with 20% toluene in acetonitrile.

[Ru(bpy)2(mbin)](PF6)2(1)

Yield: 36.4%. (Found: N, 10.69; C, 48.46; H, 3.06%. Calcd for C42H32N8F12P2Ru: N,
10.78; C, 48.52; H, 3.10%). ESI-MS (CH3CN): m/z = 374.6 ([M-2PF6

−]2+). 1H NMR (400 MHz,
ppm, DMSO-d6): 13.47 (s, 1H), 9.49 (s, 1H), 8.86 (t, 5H, J1 = 9.2 Hz, J2 = 7.6 Hz), 8.36 (d,
1H, J = 4.0 Hz), 8.20 (m, 6H), 8.07 (d, 2H, J = 8.0 Hz), 7.98 (d, 1H, J = 5.6 Hz), 7.90 (d, 1H,
J = 5.6 Hz), 7.76 (m, 3H), 7.62 (d, 1H, J = 6.0 Hz),7.57 (m, 4H), 7.35 (d, 3H, J = 6.4 Hz), and 2.62
(s, 3H). 13C NMR (101 MHz, ppm, DMSO-d6): 158.02, 157.06, 156.92, 156.13, 152.66, 151.92,
151.76, 151.56, 150.94, 150.50, 144.30, 138.46, 137.98, 135.89, 131.57, 130.60, 129.50, 128.78,
128.41, 128.01, 125.92, 124.98, 124.61, 124.10, 121.44, 117.00, 107.95, and 21.28.

[Ru(phen)2(mbin)](PF6)2 (2)

Yield: 33.6%. Anal (%): (Found: N, 10.24; C, 50.64; H, 3.02%, Calcd for C46H32N8F12P2Ru:
N, 10.30; C, 50.79; H, 2.97%). ESI-MS (CH3CN): m/z = 398.8 ([M-2PF6

−]2+). 1H NMR
(400 MHz, ppm, DMSO-d6): 13.46 (s, 1H), 9.52 (s, 1H), 8.85 (t, 5H, J1 = 9.2 Hz, J2 = 7.6 Hz),
8.41 (m, 6H), 8.31 (d, 1H, J = 1.2 Hz), 8.17 (s, 1H), 8.07 (m, 3H), 7.96 (m, 5H), 7.74 (dd, 2H, J1
= 1.2 Hz, J2 = 1.2 Hz), 7.59 (d, 1H, J = 0.8 Hz), 7.45 (t, 2H, J1 = 0.8 Hz, J2 = 0.8 Hz), 7.34 (d,
1H, J = 0.4 Hz), and 2.61 (s, 3H).13C NMR (101 MHz, ppm, DMSO-d6): 158.39, 156.48, 153.17,
153.02, 152.81, 151.94, 151.45, 150.44, 147.68, 147.57, 147.43, 147.23, 144.28, 137.94, 137.34, 135.88,
131.56, 131.01, 130.95, 130.89, 130.59, 129.36, 128.78, 128.56, 128.01, 126.89, 125.80, 125.09, 124.44,
124.10, 121.33, 116.98, 107.94, and 21.26.

4. Conclusions

Two naphthyl-appended ruthenium complexes were synthesized and evaluated for
DNA binding properties, DNA photocleavage abilities, and photocytotoxicity. DNA bind-
ing investigations revealed that two complexes displayed intercalation with calf thymus
DNA. They can produce singlet oxygen under 365 nm light, which led to photo-reduced
DNA cleavage. Furthermore, two complexes displayed obvious photocytotoxicity and
large PI values against selected cell lines, which indicated that two complexes presented
the potential PDT activities. In addition, complex 2 displayed larger PI values against all
cell lines than complex 1, which was attributedto its higher singlet oxygen quantum yields
and stronger DNA binding affinity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27123676/s1; Figures S1 and S2. 1H NMR and 13C NMR of the ligand and its
ruthenium complexes in (CD3)2SO; Figure S3. The optimized geometry of complex 2; Figure S4. The
ds-DNA (PDB: 4E7Y) binding conformation of complex 1 by docking.
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