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Elastography is developed as a quantitative approach to imaging linear elastic properties of tissues to detect suspicious tumors.
In this paper a nonlinear elastography method is introduced for reconstruction of complex breast tissue properties. The elastic
parameters are estimated by optimally minimizing the difference between the computed forces and experimental measures. A
nonlinear adjoint method is derived to calculate the gradient of the objective function, which significantly enhances the numerical
efficiency and stability. Simulations are conducted on a three-dimensional heterogeneous breast phantom extracting from real
imaging including fatty tissue, glandular tissue, and tumors. An exponential-form of nonlinear material model is applied. The
effect of noise is taken into account. Results demonstrate that the proposed nonlinear method opens the door toward nonlinear
elastography and provides guidelines for future development and clinical application in breast cancer study.
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1. Introduction

Breast cancer is one of the major threats to public health
all over the world. Currently, X-ray mammography is the
primary method for early detection and characterization
of breast tumors [1]. While more efficient in detecting
malignancies as age increases or the breast becomes fatty,
mammography fails to detect small cancers in dense breasts.
Further, mammography may not be specific in terms of
tumor benignity and malignancy [2–4].

To solve these problems associated with mammography,
a number of technologies have been explored. Detection and
characterization of breast tumors can be enhanced by rec-
ognizing the difference of elastic modulus (stiffness) among
normal soft tissues and malignant and benign tumors. Elastic
properties of breast tissues may become an indicator of
histological diagnosis [5]. An imaging technology called
elastography was developed as an approach to imaging tissue
elastic modulus in a quantitative manner for detection of
breast tumors in 1990s. The general basis of elastography is
to induce motion within tissues under investigation by either

an external or internal mechanical stimulation. Conventional
medical imaging modalities are then used to measure the
spatial deformation, from which the mechanical properties
can subsequently be reconstructed. Most simulations are
either ultrasound or magnetic resonance (MR) image-
based [6–10] that take the dynamic or quasistatic interior
displacement field, completely or partially, as input for
identification of the elasticity properties. Current elastogra-
phy reconstruction framework is based on the assumption
of linear elasticity theory. It is shown, however, that the
deformation of most biological soft tissues are not linearly
elastic [5, 11]. Consideration of nonlinear models is essential
for elastography in clinical applications.

The present work aims at developing a nonlinear elas-
tography model for breast tissues. We introduce a nonlinear
adjoint gradient method that significantly improves the
numerical efficiency and enhances the stability of elastogra-
phy reconstructions. In Section 2, we present an algorithm
based on nonlinear adjoint gradient method. We apply the
iterative Newton method to solve unknown displacements
and forces. In order to find elastic modulus distribution that
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minimizes the objective function based on measured and
calculated forces, the adjoint gradient method is employed
to provide user-supplied gradients in nonlinear elastography.
Numerical simulation is described in Section 3 including
establishing a three-dimensional (3D) heterogeneous FEM
breast phantom and applying exponential-form nonlinear
material model. Four types of compressive loadings are
applied in the forward problem. The iterative reconstruction
based on force measurements on surface is also detailed. In
Section 4, the result of the inverse problem is obtained and
the effect of noise is investigated. A user-defined penalty
function is introduced to reduce the impact of noise on
reconstruction.

2. Methodology

2.1. Finite-Strain Deformation Equations. We use continuum
description for the breast tissues. Let Ω0 be a biological
object. From the displacement tensor u(X) based on Lagra-
gian coordinate system X, the deformation gradient is F =
I + ∂u/∂X and the Green strain is E = (FT · F − I)/2
where “·” denotes the contraction operation between two
tensors. The breast tissues are assumed hyperelastic so that
the second Piola-Kirchhoff stress is S = ∂W(E; p)/∂E, where
W is the strain energy and p denotes material parameters
in the model. We use “;” to separate material parameters
from deformation variables. The governing equation and
boundary conditions for u are

∇ ·
(

S · FT
)

+ b(X, u(X)) = 0 X ∈ Ω0,

N(X) ·
(

S · FT
)
= t(X, u(X)) X ∈ Γ0

t ,

u(X) = u(X) X ∈ Γ0
u.

(1)

The boundary of Ω0 consists of Γ0
t , with N the outer

normal, on which external force t is applied, and Γ0
u

where displacement u is prescribed. Here, we consider
general problems that the body force b and surface force t
are deformation dependent. Following the standard finite-
element (FE) method [12], the displacement u is discretized
as nodal displacement vector {u} = {u1, u2}T , where u2

corresponds to u prescribed on Γ0
u, and u1 is to be solved from

nonlinear equations:
⎧⎨
⎩
f in
1

(
u1,u2; p

)

f in
2

(
u1,u2; p

)
⎫⎬
⎭−

⎧⎨
⎩
f out
1 (u1,u2)

f out
2

⎫⎬
⎭ =

⎧⎨
⎩

0

0

⎫⎬
⎭. (2)

The internal nodal force f in corresponds to stress S; that
is, it changes with u1 and material parameters p, as u2 is
given. The external nodal force f out

1 is due to the prescribed
surface force t on Γ0

t and body force b in Ω0. It varies with
the displacement in large deformation. The nodal force f out

2

is the unknown constraint force on Γ0
u. A classic Quasi-

Newton method is employed to solve (2) for u1 as shown in
Appendix A.

2.2. Nonlinear Elastography Algorithm. Experimental mea-
surements for elastography include displacement and force.

We consider that the biological object Ω0 is discretized into
FE mesh, and the measurements are discretized consistently
into nodal displacement and nodal force. We catalog the
measurements as the following. (i) If the displacement at a
node is known (prescribed or measured after deformation),
it will be included into u2 which is considered “prescribed” in
FE (2). The corresponding nodal force (known or unknown)
will be in the constraint force, denoted as FM2 . Note that
FM2 corresponds to f out

2 in (2). (ii) All the other nodal
displacements will be in u1 and the corresponding nodal
force will be in f out

1 . For category (ii), f out
1 must be

considered “prescribed” to fulfill the requirement of the well-
postness of a solid-mechanics problem.

For elastography problem, the obtained u2 and f out
1 are

known in (2), and the constraint force FM2 is considered
as “measurement.” For given material parameters p, the
unknown displacement u1 and constraint force f out

2 (which
depends on p) will be solved from FE (2). Elastography
procedure thus searches for p so that the overall difference
between measured FM2 and computed f out

2 is minimum, that
is, minimize objective function

Φ(P) =
(
f out
2 − FM2

)T
Λ
(
f out
2 − FM2

)
, (3)

where the diagonal weight matrix Λ = diag(a1, a2, . . . ,
aj , . . .). The component aj = 1 when the jth component of
FM2 is measured or aj = 0 otherwise. The present algorithm is
mathematically equivalent to our previous work [10] where
the displacement is used as “measurement.” For breast tissue
whose tangent stiffness significantly increases with strain,
this “force version” shows better numerical efficiency.

Efficient and robust optimization-based elastography
schemes request user-supplied gradient ∂Φ/∂p. The previous
elastography studies used direct or approximate finite-
difference method [13, 14] for the gradient calculation.
The computational expense of these methods increases
proportionally with the number of material parameters, and
becomes unaffordable for problems involving finite-strain
deformation. Recently, an adjoint method was introduced
to compute the gradient analytically [10, 15–17]. The
corresponding nonlinear finite element formulas are shown
in Appendix B. After u1 is solved for given p, the gradient is
readily obtained as

∂Φ

∂p
=
⎧⎨
⎩
w1

w2

⎫⎬
⎭

T⎧⎨
⎩
∂ f in

1 /∂p

∂ f in
2 /∂p

⎫⎬
⎭, (4)

where the virtual adjoint displacements w1 and w2 are solved
from linear equations

w2 = 2Λ
(
f out
2 − FM2

)
,

(Keff)Tw1 = −
(
∂ f in

2

∂u1

)T
w2,

(5)

with the tangent stiffness matrix Keff defined in (A.2).
The most significant features of the adjoint method are its
analytical formulation, high accuracy, and computational
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Figure 1: Overall flowchart for nonlinear reconstruction of material parameters λ,μ, and γ of breast tissues.
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Figure 2: A 3D heterogeneous breast phantom extracted from real
CT images, containing fatty tissue, glandular tissue, and a tumor.

efficiency [18]. Since Keff and its LU factorization have been
calculated when solving the FE (2), as in (A.1), the additional
expense for w1 and w2 in (5) is minimal. Furthermore, it
only needs to solve one linear (5) regardless of the number
of unknown parameters in p.

As shown in Figure 1, a well-tested L-BFGS subroutine
is applied for the present optimization-based nonlinear
elastography.

3. Numerical Simulations

This section presents phantom simulations to identify the
nonlinear elastic properties of the fatty, glandular, and
cancerous tissues in a breast. First of all, a 3D breast FEM
phantom attracting from the real data is introduced. Fung’s
model [19] is applied to describe the deformation of breast.
With the applied loading, the forward-problem computation
is performed. Furthermore, boundary forces are extracted
from the forward computation results and are used as input
for reconstruction for a breast phantom.

3.1. Breast Phantom. To perform numerical simulations,
a 3D numerical heterogeneous breast phantom extracting
from real CT images, containing fatty tissue, glandular tissue,
and a tumor is established (Figure 2). Boundaries of these

regions are described with sets of splines. The phantom is
discretized with standard 3D tetrahedral elements, consisting
of 7303 elements and 1583 nodes (Figure 3).

It is well known that the mechanical behavior of
biological soft tissue is nonlinear. Hyperelastic models have
commonly been used to represent the stress-strain relation of
biological soft tissue [20, 21]. Fung and coworkers developed
a set of hyperelastic models for bio-tissues [20]. In this work,
we employed a Fung-type isotropic strain-energy function
for the breast tissues, as W(E; p) = γ(exp(λ(E : I)2)/2 + μE :
E)− 1 , where E is the Green strain, p = {γ, λ,μ} denotes the
material parameters. The second Piola-Kirchhoff stress S is
thus

S = ∂W
(

E; p
)

∂E
, (6)

Specifically, in uniaxial tension/compression, the relation
between the axial strain E and axial stress S is

S = γ exp

(
EYoungE2

2

)
EYoungE, (7)

where EYoung = μ(3λ + 2μ)(λ + μ)−1 is the Young’s modulus.
Equation (7) is the exponentially nonlinear model that

can be applied for breast tissues. Two parameters γ and
EYoung can be determined by the experiment [22]. Wellman
[5] developed a technique to measure the nonlinear elastic
parameters of breast tissues using force-displacement data
of thin slice tissues undergoing indentation experiment.
The tissue samples tested were obtained during surgery and
were tested immediately after removal from the body. Six
breast tissues (fatty, gland, lobular carcinoma, fibroadenoma,
infiltrating ductal carcinoma, and ductal carcinoma in situ)
were tested with their nonlinear stress-train curves shown in
Figure 4. It is shown that the mechanical properties between
normal soft breast tissue and tumors are quite different.
Tumors are stiffer than the surrounding breast tissues and
malignant tumors are much stiffer than benign ones.
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Figure 3: The phantom is discretized with standard 3D tetrahedral
elements, consisting of 7303 elements and 1583 nodes.
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Figure 4: Nonlinear stress-strain curves for six breast tissues
(fatty tissue, glandular tissue, lobular carcinoma, fibroadenoma,
infiltrating ductal carcinoma, and ductal carcinoma in situ). (Figure
redrawn based on [5] and (7)).

In this study, exponential hyperelastic model is used and
material parameters are regressed from Wellman [5] exper-
iment. Three materials are selected: fatty tissue, glandular
tissue and ductal carcinoma in situ. Elastic parameters are
λ f = 35, μ f = 12.5, γ f = 0.4 for fatty tissue, λg = 50,
μg = 25, γg = 0.25 for glandular tissue and λd = 80,
μd = 35, γd = 1.5 for ductal carcinoma in situ. λ and μ are
dimensionless, γ is in kPa.

3.2. Forward Problem. After the breast phantom and material
model are established, a forward problem is solved in which
material parameters and external loading are given and
deformation is solved. Displacements u = 0 are prescribed
on the base of phantom. Tilted compression by paddles is
applied on upper surface (Figure 5). The paddle close to
tumor gives compression and another paddle is fixed during

Figure 5: Titled compression is given by two paddles. The one
close to tumor gives displacement loading on breast phantom and
another is fixed during loading.

loading. Four types of compression loading with different
angles are applied. As shown in Figure 6, blue lines represent
paddle locations before loadings, green lines represent those
after loadings. Figure 7 shows the comparison of paddle
locations in four loadings. Note that the right paddle is fixed
for all loadings.

The reason that four sets of loadings are applied in for-
ward problem is to provide more information to reconstruct
material parameters. Most of inverse problem in elasticity
is nonuniqueness. Previous research [10] has demonstrated
that one set of measurements of displacements and forces
may not provide sufficient information of the reconstruction
of modulus distribution.

Given material parameters and loadings, the displace-
ments and forces can be calculated. The surface force will
be used as input to reconstruction material parameters
in the inverse problem. In fact, surface displacement and
force are equivalent as input to solve inverse problem.
Most of previously research applied displacement in linear
elastography. In this nonlinear elastography study, however,
it is found the reconstruction is more sensitive to force
than displacement. Therefore surface force is measured
and compared with calculated force to reconstruct material
parameters.

3.3. Inverse Problem. Reconstruction for nonlinear elastic
moduli in 3D breast phantom take input extracted from the
deformation in response to loading modes A∼D described
in Figure 6. In each loading, the forces on surface nodes
are measured as input. Then initial guesses for material
parameters are given. In this study, the same initial guesses
are applied to three materials: λ0 = 20, μ0 = 10, and
γ0 = 1. Therefore, the surface force can be calculated
based on initial guesses of material parameters. The error
between calculated and measured force is used to set up the
objective function (3). Following the iterative optimization
procedures (Figure 1), gradients of the objective function are
calculated and material parameters are updated to approach
the optimal values.
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Figure 6: Four types of compression loading by paddles. Blue lines
represent paddle locations before loadings, green lines represent
after loadings. Note that the right paddle is fixed for all loadings.

(a)

(b)

Figure 7: Comparison of paddle locations in four loadings. Note
that the right paddle is fixed for all loadings.

4. Results and Discussion

4.1. Ideal Input. For three materials, elastic parameters are:
λ f = 35, μ f = 12.5, and γ f = 0.4 for fatty tissue; λg =
50, μg = 25, and γg = 0.25 for glandular tissue, and
λd = 80, μd = 35, and γd = 1.5 for ductal carcinoma
in situ. Table 1 shows the initial estimate and reconstructed
results for nonlinear elastography. The results in the first
part are based on the ideal input. It is demonstrated that
the reconstructed results are very close to the real values.
The maximum error is 1.916% (λ for tumor) since the
effect of the tumor on surface force measurement is the
smallest. A similar situation occurs in linear elastography
reconstruction.

4.2. Adjoint Methods. Elastography includes forward and
inverse problem. In forward problem, material parameters
and loadings are given to calculate the deformation; while
in inverse problem, external loadings and deformation are
known to reconstruct material parameters. Most researchers
established certain objective function and minimized it
with a proposed iterative algorithm. The challenge is how
to calculate the gradient of objective function efficiently
and accurately. A straightforward calculation of gradients
requires solving stiffness matrix in each iteration, which takes
most of the time consumed in the finite element method.



6 International Journal of Biomedical Imaging

Table 1: Initial estimate and reconstructed results for nonlinear elastogrpahy. The results in the first part are based on ideal input (without
noise). The ones in the second part are based on input with 5% noise and regularization is not used. The third part is based on input with
5% noise and regularization is applied to reduce the impact of noise. (λ and μ are dimensionless, γ is in kPa.)

Fatty Glandular Tumor

λ f μ f γ f λg μg γg λd μd γd

Real 35 12.5 0.4 50 25 0.25 80 35 1.5

Guess 20 10 1 20 10 1 20 10 1

Ideal input

Recon 34.9988 12.5004 0.3999 50.0512 24.9998 0.2498 81.5331 34.9423 1.5003

5% Noise, without regularization

Recon 22.2753 8.4147 1.5038 56.1970 21.5414 0.2509 0.0001 41.5562 2.0010

5% Noise, with exponential form regularization

Recon 37.56290 12.48318 0.4592 50.0014 25.0042 0.2444 80.0002 39.1539 1.5020

In this study an adjoint method is employed to ana-
lytically calculate the gradients. Oberai et al. [16] adopted
an adjoint method and proposed a numerical scheme for
reconstructing the nonuniform shear modulus field for
incompressible isotropic materials using one component of
displacement field. Liu et al. [10] applied this method for
anisotropic materials. In this study, the adjoint method is
applied for nonlinear elastography. The advantage of adjoint
method is to solve two adjoint displacements during each
iteration (w1 and w2 at (B.2) in Appendix B), instead of
the whole stiffness matrix, that increases the numerical
efficiency significantly. In [18] Oberai et al. compared three
different iterative methods: (1) a gradient-based method
where the adjoint approach is used to calculate the gradient;
(2) a gradient-based method where the straightforward
approach is used to calculate the gradient, and (3) the Gauss-
Newton method. The results show that “leading-order costs
for the gradient-based method with the adjoint approach
are smaller than the other two methods.” In fact, without
the adjoint method, nonlinear elastography can only be
discussed in concepts [23] or applied on simple objects using
supercomputing power [24]. While in this study, material
parameters in a real breast FEM phantom are reconstructed
accurately by adopting this adjoint method. The results are
encouraging for further clinical applications.

4.3. Multiple Sets of Measurements. Above results are based
on four sets of force measurements on surface. For 2D
isotropic elastography, Barbone and Bamber [25] has shown
that one set of measurements for the displacements and
forces, especially those taken only on the boundaries, may
not provide sufficient information to the reconstruction
of modulus distribution, because of the nonuniqueness
nature of most inverse problems in elasticity. Barbone and
Gokhale [26] further demonstrated the feasibility of using
multiple displacement fields to reduce the likelihood of
nonuniqueness for 2D isotropic elastography. Liu et al.
[10] discussed the multiple sets of measurements in 3D
anisotropic media. However research effort for 3D nonlinear
elastography has not been found in literatures. In this study
four independent tilted compression loadings are designed
and surface force is measured to reconstruct internal material

parameters. Due to different initial guesses, stable material
parameter can be reconstructed, showing that the multiple
sets of measurements are feasible to obtain the unique
solution of inverse problem in nonlinear elastography.

The key points for using multiple sets of measurements
are to bring more deformation modes simultaneously into
consideration. The loadings should be close to tumors
in order to make tumors have larger deformation. In
Figures 5–7, four sets of loadings close to tumors are
designed to obtain more deformation for reconstruction.
This explanation serves as a guideline for design of loadings
in clinical applications. Reduction of the number of required
loadings will increase the clinical efficiency and benefit the
patients. In other words, loadings with the richest stress-
strain information are most desired. The design of feasible
loadings is important for success in clinical application of
nonlinear elastography.

4.4. Input with Noise. The above results are based on ideal
input. However, noise cannot be avoidable in experiments.
Its impact on reconstruction is therefore investigated with
5% of noise applied on surface measurements. The results
are shown in the second part of Table 1. It is obvious that
the reconstructed parameters are away from the real values.
A possible reason is that, while the goal is to find real material
parameters that minimize the objective function, a global
minimum is not well defined with noise. In another words,
real material parameters may not give a global minimum of
the objective function with noise. Several similar parameters
around real ones may give some local minimums. Our
algorithm may reach one of them but fails to find real one
because they all give local minimums. A typical way to
solve this problem is to add a penalty term which provides
additional constraint on the solution space. The penalty term
may push the solution into the right area of the solution
space and minimize the resulting objective. A new objective
function is therefore proposed as

F = Φ + χΠ, (8)

where Φ is the original objective function (3) which repre-
sents the difference between measured and calculated values.
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In addition, χ is the regularization factor andΠ is the penalty
term.

Specific forms of penalty term have been designed for
different problems [27]. In this study, an exponential form
of penalty term is applied as

Π =
K∑

k=1

(
1− exp

(
−(ξk − ak)2

))
, (9)

where K = 9 is the total number of material parameters, and
ξk and ak are the reconstructed and true elastic parameters,
respectively. If the true material parameters are unknown,
ak can be estimated as close as possible. This is reasonable
since several experiments have provided the nonlinear elastic
parameter for breast tissues.

The results are shown in the third part of Table 1,
demonstrating that the regularization method significantly
improves the reconstruction data. Most of parameters are
close enough to the true values. The largest error occurs
for χ in fatty tissue with approximately 15%. By adding the
penalty term, the reconstructed values are pulled from local
minimum into the range close to true values. It is noted
that the regularization factor χ varies in different scenarios.
For example, χ can be smaller for higher confidence of
experiment-data accuracy. On the contrary, if ak is closer
to the true value, χ should be larger. For this study, the
elastic parameters in fatty and glandular tissues are stable,
comparing with the ones in tumor (Figure 4). Therefore,
larger regularization factors are used for fatty and glandular
tissues while smaller χ can be applied for tumors.

5. Conclusions

This paper presents a study on nonlinear elastography of
biomedical imaging, in which a 3D model is developed
for heterogeneous breast tissues extracting from real images
including fatty tissue, glandular tissue, and tumors. Based on
the large-deformation constitutive law, discretized nonlinear
equations are solved for displacement, strain, and stress fields
in breast tissues with given tumors under external compres-
sion at breast boundaries. A 3D inverse-problem algorithm
is developed to reconstruct the material parameters for
nonlinear elastic constitutive relation of breast phantoms
with tumors. The adjoint gradient method is introduced to
improve the numerical efficiency and enhance the stability
of elastography reconstruction. Results demonstrate that this
work opens the door toward nonlinear elastography, and
provides guidelines for future developments and clinical
applications in breast cancer study.

Appendices

A.

A classic quasi-Newton iterative method [28] is employed to
solve (2) for u1. Let u1

(n) be the trial solution of the unknown
u1 at the nth iterative step. An improved solution u1

(n+1) =

u1
(n) + δu1 can be obtained at the next step, in which δu1 is

the solution of linear equations:

K (n)
eff δu1 = f out

1

(
u1

(n),u2

)
− f in

1

(
u1

(n),u2; p
)

, (A.1)

where

K (n)
eff =

∂
(
f in
1 − f out

1

)

∂u1

∣∣∣∣∣∣
u1=u1

(n)

. (A.2)

The iteration is put into effect until the residue ‖ f out
1 − f in

1 ‖
is smaller than the preset criterion.

B.

It is difficult to calculate gradient ∂Φ/∂p because u1 is an
implicated function of P. Here we will derive an adjoint
method for the gradient ∂Φ/∂p in (4). We introduce the
constraint (2) into the objective function (3), and obtain a
Lagrangian:

L
(
u1, p

) =
(
f out
2 − FM2

)T
Λ
(
f out
2 − FM2

)

+

⎧⎨
⎩
w1

w2

⎫⎬
⎭

T⎧⎨
⎩
δ f in

1 − δ f out
1

δ f in
2 − δ f out

2

⎫⎬
⎭,

(B.1)

where w1 and w2 are arbitrary virtual displacements. It is
noted that variables u1 and p are no longer coupled. It is
also noted that Φ = L and δΦ = δL under the constraint
(2). Since the equality constraint (2) is satisfied with u1, the
variation δL can be expressed as

δL =
(

2
(
f out
2 − FM2

)T
Λ−wT

2

)(
δ f out

2

)

+wT
1

(
δ f in

1 − δ f out
1

)
+wT

2 δ f
in

2 .

(B.2)

It can be simplified by setting the arbitrary virtual displace-
ment w2 as

w2 = 2Λ
(
f out
2 − FM2

)
, (B.3)

so that

δL = wT
1

(
δ f in

1 − δ f out
1

)
+wT

2 δ f
in

2 . (B.4)

Consider that u1 and p are independent in L and that the
external force term f out

1 should not explicitly depend on the
material parameter p and Δu2 = 0, (B.4) becomes

δL =
⎛
⎝wT

1

∂
(
f in
1 − f out

1

)

∂u1
+wT

2
∂ f in

2

∂u1

⎞
⎠δu1

+

(
wT

1
∂ f in

1

∂p
+wT

2
∂ f in

2

∂p

)
δp.

(B.5)

If we choose w1 as the solution of

wT
1

∂
(
f in
1 − f out

1

)

∂u1
+wT

2
∂ f in

2

∂u1
= 0, (B.6)
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only one term remain, that is,

δL =
(
wT

1
∂ f in

1

∂p
+wT

2
∂ f in

2

∂p

)
δp, (B.7)

which yields (4) since δΦ = δL. Equations (B.3) and (B.6)
give (5) in the text.

By introducing the adjoint method, it seems that more
equations and variables (w1 and w2) need to be solved. But
the solution of (B.6) is straightforward and computational
cost is minimized because Keff = ∂( f in

1 − f out
1 )/∂u1 has been

computed and factorized when solving for the displacement
u1 as in Appendix A. For nonlinear problem, it is very
expensive to calculate ∂u1/∂P, while the adjoint method
avoid to solved ∂u1/∂P by introducing variables, w1 and w2,
which could be solve in simple linear equations.
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