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Abstract

The accurate segmentation of retinal vessels images can not only be used to evaluate and

monitor various ophthalmic diseases, but also timely reflect systemic diseases such as dia-

betes and blood diseases. Therefore, the study on segmentation of retinal vessels images is

of great significance for the diagnosis of visually threatening diseases. In recent years,

especially the convolutional neural networks (CNN) based on UNet and its variant have

been widely used in various medical image tasks. However, although CNN has achieved

excellent performance, it cannot learn global and long-distance semantic information inter-

action well due to the local computing characteristics of convolution operation, which limits

the development of medical image segmentation tasks. Transformer, currently popular in

computer vision, has global computing features, but due to the lack of low-level details, local

feature information extraction is insufficient. In this paper, we propose Patches Convolution

Attention based Transformer UNet (PCAT-UNet), which is a U-shaped network based on

Transformer with a Convolution branch. We use skip connection to fuse the deep and shal-

low features of both sides. By taking advantage of the complementary advantages of both

sides, we can effectively capture the global dependence relationship and the details of the

underlying feature space, thus improving the current problems of insufficient extraction of

retinal micro vessels feature information and low sensitivity caused by easily predicting of

pixels as background. In addition, our method enables end-to-end training and rapid infer-

ence. Finally, three publicly available retinal vessels datasets (DRIVE, STARE and CHAS-

E_DB1) were used to evaluate PCAT-UNet. The experimental results show that the

proposed PCAT-UNET method achieves good retinal vessel segmentation performance on

these three datasets, and is superior to other architectures in terms of AUC, Accuracy and

Sensitivity performance indicators. AUC reached 0.9872, 0.9953 and 0.9925, Accuracy

reached 0.9622, 0.9796 and 0.9812, Sensitivity reached 0.8576, 0.8703 and 0.8493,

respectively. In addition, PCAT-UNET also achieved good results in two other F1-Score and

Specificity indicators.
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1 Introduction

Retinal examination can provide important clinical information for the diagnosis of various

retinal diseases such as diabetic retinopathy. However, artificial retinal examination requires

some clinicians or experts with strong expertise to screen a large number of retinal vessels

images. This process is time-consuming, tedious and difficult to implement batch processing,

and may lead to diagnostic errors due to subjective factors [1]. In order to alleviate the shortage

of medical resources and reduce the workload of doctors and specialists, retinal diseases

require a computer-assisted automatic, high-performance retinal vessels segmentation system

for pre-screening and other examinations. The automatic retinal vessels segmentation system

can quickly and accurately obtain the structural characteristics of retinal vessels, in which

branch points and curves can be used to aid the diagnosis and analysis of cardiovessels disease

and diabetic retinopathy. The change characteristics of retinal vessels width obtained after seg-

mentation can be used to detect and analyze hypertension [2]. Therefore, the current research

on automatic segmentation of retinal blood vessels is an important development direction in

this field, and is also of great significance to the study of related retinal diseases [3, 4].

In recent decades, automatic segmentation of retinal vessels has been developing rapidly,

and researchers have proposed a large number of retinal vessel segmentation methods. Some

traditional methods [5–10] have successfully performed automatic segmentation of retinal ves-

sels images and obtained good segmentation, but they cannot fully characterize the image fea-

tures, resulting in inadequate detection of retinal structural features and unsatisfactory

segmentation accuracy, which still cannot meet the needs of clinical diagnosis for auxiliary

ophthalmologists.

Compared with traditional methods, CNN method combines the advantages of medical

image segmentation method and semantic segmentation method, making them achieve

remarkable performance. Many previous excellent works [4, 11–15] have shown excellent seg-

mentation performance in retinal vessels segmentation, which proves that CNN has strong fea-

ture representation learning and recognition ability. But due to the local inherent convolution

operation, with the increase of the expansion of training data and the network layer, these

methods are hard to learn an explicit global and long-term semantic information interaction

[16], the algorithm segmentation results in small blood vessels loss bifurcation and complex

discrete curvature form, retinal vessels characteristics to distinguish between edge and back-

ground region is not obvious.

Recently, Transformer [17], as an efficient network structure that relies on self-attention to

capture global information over long distances, has made remarkable achievements in the field

of natural language processing. Many people consider that global information is also needed

in visual tasks, and proper Transformer applications can help overcome the limitations of

CNN. Therefore, researchers have devoted a great deal of effort to explore suitable Trans-

former for visual tasks. Early on, literature [18] tried to use CNN [19] to extract deep features,

which were then fed into Transformer for processing and regression. Dosovitskiy [20] and

Cao [21] both proposed a pure Transformer network to classify and segment images respec-

tively, and achieved great success. They split the image into multiple patches and use each

vectorized patch as a word/tag in the NLP so that Transformer can be adopted directly. Subse-

quently, building on the success of VIT, there has been a large literature of better Transformer

based architectures [22–27] that have achieved better performance than CNN. However, the

vision transformer still has the problem of a large amount of calculation and insufficient local

information extraction.

Aiming at the above problems, we proposed Patches Convolution Attention based Trans-

former UNet(PCAT-UNet) architecture, especially for 2D retinal vessels image segmentation.
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Its goal is to combine Transformer and CNN more effectively and perfectly, complementing

each other’s shortcomings. As shown in Fig 1, inspired by the success of [21, 28–30], we pro-

posed Patches Convolution Attention Transformer (PCAT) block. It can better combine the

advantages of local feature extraction in CNN with the advantages of global information

extraction in Transformer. In addition, Feature Grouping Attention Module(FGAM) is pro-

posed to obtain more detailed feature maps of multi-scale characteristic information to supple-

ment the detailed information of retinal vessels. The features obtained are input to encoders

and decoders built on both sides based on PCAT for feature fusion to further learn deep

feature representation. On this basis, we use PCAT block and FGAM to construct a new

U-shaped network architecture with skip connections named PCAT-UNet. A large number of

experiments on DRIVE, STARE and CHASE_DB1 datasets show that the proposed method

achieves good results, improves the classification sensitivity, and has good segmentation per-

formance. In conclusion, our contribution can be summarized as follows:

Fig 1. The proposed architecture of PCAT-UNet. Our PCAT-UNet is composed of encoder and decoder constructed by PCAT blocks, convolutional

branch constructed FGAM, skip connection and right output layer. In our network, the PCAT block is used as a structurally sensitive skip connection

to achieve better information fusion. Finally, the side output layer uses the fused enhanced feature map to predict the vessels segmentation map of each

layer along the decoder path.

https://doi.org/10.1371/journal.pone.0262689.g001
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• We designed two basic modules, PCAT and FGAM, which are both used to extract refined

feature maps with rich multi-scale feature information and to integrate feature information

extracted from them to achieve complementary functions.

• On the basis of [29], we improved the self-attention of the original Transformer and pro-

posed the attention between different patches in the feature map and the attention between

pixels in a patch. They are Cross Patches Convolution Self-Attention (CPCA) and Inner

Patches Convolution Self-Attention (IPCA). This not only reduces the amount of calculation

as the input resolution increases, but also effectively maintains the interaction of global

information.

• Based on the PCAT block, we constructed a U-shaped architecture composed of encoder

and decoder with Skip Connection. The encoder extracts spatial and semantic information

of feature images by down-sampling. The decoder up-samples the deep features after fusion

to the input resolution and predicts the corresponding pixel-level segmentation. Further-

more, we integrate the convolutional branch based on FGAM module into the middle of the

U-shaped structure, and input the feature information extracted from it into the encoder

and decoder on both sides to fuse depth and shallow features to improve the learning ability

of the network.

• In addition, we added the DropBlock layer after the convolutional layer in the convolutional

branch and side output, which can effectively suppress over-fitting phenomenon in training.

Experiments show that our model has some performance advantages over the CNN-based

retinal vessel segmentation model, which improves its classification sensitivity and has good

segmentation comprehensive performance.

2 Relate work

2.1 Early traditional methods

Among many effective traditional methods proposed, Chaudhuri et al. [3] first proposed a

feature extraction operator based on the optical and spatial characteristics of the object to be

recognized. Gaussian function was used to encode the vessels image, achieving good segmen-

tation effect, but the structural characteristics of retinal vessels were ignored, and the calcula-

tion time was long. Subsequently, Soares et al. [5] used two-dimensional Gabor filter to extract

retinal vessels image features, and then used Bayesian classifier to divide pixels into two catego-

ries, namely retinal vessels and background. Yan et al. [9] used mathematical morphology to

smooth vessels edge information, enhance retinal vessels images and suppress the influence of

background information, then applied fuzzy clustering algorithm to segment the enhanced ret-

inal vessels images, and finally purified the fuzzy segmentation results and extracted vessels

structures.

2.2 Network based on CNN

For the past ten years, convolutional neural network based retinal vessel segmentation

methods have been able to predict the pixel points of each vessel and non-vessel category in

retinal vessels images, and obtain structural information including the bifurcation pattern,

scale size and complex curvature of retinal vessels. Wang et al. [11] used CNN to extract the

features of retinal vessels, and then combined with random forest (RF) method to segment

the vessels, which improved the segmentation accuracy but required too long training time.

In addition, Ronneberger et al. [12] proposed u-NET based on FCN. It uses skip-connection
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to fuse shallow features extracted from encoder and deep features extracted from decoder,

so as to obtain more detailed features and improve the precision of edge segmentation of

micro vessels. Di Li et al. [31] adopted a new residual structure and applied attention

mechanism to improve segmentation performance in the process of jumping connection.

Oliveira et al. [15] proposed a patch-based full-convolutional network segmentation method

for retinal vessels. Compared with traditional methods, CNN method combines the advan-

tages of medical image segmentation method and semantic segmentation method, and

shows good segmentation performance in retinal vessels datasets, which proves that CNN

has strong feature learning and recognition ability. Based on the merits of CNN, we propose

a Feature Grouping Attention Module(FGAM), which can extract rich multi-scale feature

maps.

2.3 Network based on visual transformer

In reference [20, 23, 26, 28, 29, 32, 33], transformer is introduced into visual tasks as an image

extraction device. It is helpful to overcome the problem that CNN needs to stack more layers

to expand the receptive field by using the multi head self attention mechanism and properly

adjusting the transformer. In [20], ViT (Vision Transformer) takes the two-dimensional image

block embedded with location information as the input of image recognition task, and has

achieved the same performance as the network based on CNN on the large dataset. Literature

[23] extends the applicability of transformer and proposes a hierarchical network. Swin Trans-

former is taken as the backbone of the network structure, and each patch is used as a window

to extract the internal correlation of patches, and offset windows are used to capture more fea-

tures. However, the interaction between local information interaction and adjacent patches in

[23] lacks global information interaction. Literature [29] proposed a new attention mechanism

in transformer, which captures local information by alternating attention within image blocks

instead of the whole image, and applies attention to capture global information between image

blocks divided from single-channel feature maps. Performance achieved is comparable to cur-

rent CNN-based and Transformer-based networks. Therefore, inspired by this, we proposed a

PCAT block based on the improvement of CAB (Cross Attention Block) in [29]. It can effec-

tively maintain local and global information interaction while avoiding the huge increase of

computation with the increase of input resolution.

2.4 Self-attention/transformer combined with CNN

In recent years, [32–36] has been committed to combining CNN and transformer more effec-

tively, trying to introduce self-attention mechanism into CNN, and even using self-attention

layer to replace part or all of the popular spatial convolutional layer, so as to break the domi-

nant position of CNN in medical image segmentation. In [37], skip connection with additional

attention gate is integrated into U-shaped structure for medical image segmentation, but it is

still based on CNN method. In [33, 35, 36], the author combines transformer with CNN to

design a powerful encoder for medical image segmentation. At present, most combinations of

Transformer and CNN are applied to medical image segmentation such as heart segmentation

[32] and multi-modal brain tumor segmentation [38]. Different from the above methods, we

propose to integrate the convolutional branch based on CNN into the U-shaped structure

based on Transformer to explore the application potential of our model in retinal vessels seg-

mentation to improve the segmentation ability of the model by utilizing the complementarity

of Transformer and CNN, and try to explore the application potential of our model in retinal

vessels segmentation.
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3 Method

In this section, we will detail general framework which we proposed for a fusion convolution

and transformer like UNet network for retinal vessels segmentation. Specifically, section 3.1

mainly describes the overall network framework proposed by us, as shown in Fig 1. Then, in

Sections 3.2 and 3.3, we detail the two main base modules: Patches Convolution Attention

Based Transformer(PCAT) block and Feature Grouping Attention Module (FGAM). Finally,

in Section 3.4, we describe other important modules of the network model.

3.1 Architecture overview

The overall architecture we propose of PCAT-UNet as shown in Fig 1. PCAT -UNet consists

of encoder, decoder, convolution branch, skip connection and side output layer. Its basic units

are PCAT block and FGAM. Patch embedding module is adopted according to to [23, 29], and

4 × 4 convolution with stride 4 is used to divide it into H
4
� W

4
patch tokens without overlap to

transform 2D input image into one-dimensional sequence embedding. Each patch was flat-

tened to 48 (4 × 4 × 3) elements, and the feature channel of each token was extended from 48

to C with a linear embedding layer. Then we superimposed several PCAT blocks and patch

merging layers for feature extraction at different scales to obtain layered element representa-

tions. The patch merging layer implements down-sampling and adding channel dimensions,

and the PCAT block completes the learning process of feature representation.

Due to the redundancy of image information in middle convolutional branch, we con-

volved the input image first and preliminarily extracted the shallow features, which can reduce

the memory usage. Then, the convoluted feature map is input into the convolutional branch

stacked by five FGAM to extracte local feature information. Because the local feature of convo-

lution can better extract the detailed features of the retinal microvessels, we input them to the

encoder and decoder, which can integrate the local feature information of the image with the

global feature information learned by transformer module to supplement the detailed features

well.

Inspired by U-Net [12], which has a good symmetric structure, we designed a symmetric

decoder based on PCAT. The decoder is composed of PCAT blocks and patch restoring layer

stacked. Unlike the patch merging layer, the patch restoring layer is specifically designed for

up-sampling. In order to reduce the loss of spatial information caused by down-sampling, we

propose a skip connection, which fuses the output of the previous module of each patch restor-

ing layer with the output of the middle convolutional branch, and the fusion result is the input

of each patch restoring layer. Each patch restoring layer reshapes the input feature maps into

large feature maps with a resolution of 2 times. Then, after deep features produced by each lay-

er’s PCAT block are fused with spatial local features from the convolutional branch, up-sam-

pling is performed at the corresponding multiples to restore the resolution of the feature map

to the input resolution. Finally, DropBlock, Batch Normalization, and ReLu are performed on

the features sampled at each layer. And then through 1 × 1 convolution to output the pixel

level segmentation prediction graph. We describe each module in detail below.

3.2 Patch convolution attention based transformer block

In Fig 2(a), There are two continuous PCAT(Patch Convolution Attention-based Trans-

former) blocks, in which feature channels and resolution remain unchanged. The traditional

transformer is built on the basis of multi-head self-attention (MHSA) [20], which concatenates

the results of multiple heads and transforms them using a FeedForward network. Similarly,

each PCAT block consists of a LayerNorm (LN) layer, multi-head attention modules, residual
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links, and MLPs. However, the multi-head Attention modules we have continuously used are

Cross Patches Convolution Self-Attention (CPCA) Module and Inner Patches Convolution

Self-Attention (IPCA) module. The CPCA module is used to extract the attention between

patches in a feature map, while the IPCA module is used to extract and integrate the global fea-

ture information between pixels in one patch. Based on such patches partitioning mechanism,

continuous PCAT blocks can be expressed as:

Yn ¼ CPCAðLNðYn� 1ÞÞ þ Yn� 1
ð1Þ

Yn ¼ MLPðLNðYnÞÞ þ Yn ð2Þ

Ynþ1 ¼ IPCAðLNðYnÞÞ þ Yn ð3Þ

Ynþ1 ¼ MLPðLNðYnþ1ÞÞ þ Ynþ1
ð4Þ

where Yn−1 and Yn+1 are the input and output of the PCAT block respectively. Yn and Yn+1 are

the output of the CPCA module and IPCA module respectively. The size of image patches on

the CPCA module and IPCA module is 8×8, and the number of heads is 1 and 8 respectively.

3.2.1 Cross Patches Convolution Self-Attention. The size of the receptive field has a

great influence on the segmentation effect for retinal vessel segmentation. Convolutional ker-

nels are often stacked to enlarge the receptive field in models based on convolutional neural

networks. In practice, we expect the final receptive field to extend over the entire frame. Trans-

former [20, 26] is naturally able to capture global information, but not enough local details. As

each single-channel feature map naturally has global spatial information, we proposed the

Cross Patches Convolution Self-attention (CPCA) module inspired by this. The single-channel

feature map is divided into patches, which are stacked and reshaped into original shapes by

Fig 2. Structure diagram of PCAT block and PCA. (a) two consecutive PCAT blocks.CPCA and IPCA are multi-

head self-attention modules with cross and inner patching configurations, respectively. (b)The detailed structure of the

PCA, a MHSA based on convolution.

https://doi.org/10.1371/journal.pone.0262689.g002
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CPSA module. Patch Convolution self-attention (PCA) in the CPCA module can extract

semantic information between patches in each single-channel feature map, and the informa-

tion exchange between these patches is very important for obtaining global information in the

whole feature map. This operation is similar to the depth-separable convolution used in [39,

40], which can reduce the number of parameters and operation cost.

We improved and proposed the CPCA Module based on [29], and expected that the final

receptive field in the experiment could include the whole feature map. Specifically, the CPCA

Module divides each single-channel feature map into patches of H
N �

W
N in size, and then uses

PCA in the CPCA module to obtain different features among patches in each single-channel

feature map. Since the number of heads is set to be the same as the patches size, which is not

useful for performance, and each head self-attention could have noticed different semantic

information among image patches, the number of heads is set to 1 in our experiment.

The multi-head self-attention adopted by CPCA Module is PCA. A little different from the

previous work [23, 29, 41], PCA is the MHSA based on convolution, and its detailed structure

is shown in Fig 2(b). Specifically, the divided patches X 2 RM2�d are projected into query

matrix Q 2 RM2�d key matrix K 2 RM2�d and value matrix V 2 RM2�d through three 1 × 1 linear

convolutions, where M2 and d represent the number of patches and dimension of query or key

respectively. In the next step, we reshape K and V into 2D space, conduct a 3 × 3 convolution

operation and Sigmoid operation successively for the reshaped K, and then expand the result

into a one-dimensional sequence to obtain K. Similarly, after 3 × 3 convolution operation, the

reshaped V is also expanded into a 1-dimensional sequence to obtain V. Transformer has a

global receptive field and can better obtain long-distance dependence, but it lacks in obtaining

local detail information. However, we apply a two-dimensional convolution operation on K

and V to better supplement local detail feature information. So, the proposed formula for self-

attention is now:

AttentionðQ;K;VÞ ¼ Softmax
Q� ðsðdðKÞÞÞT

ffiffiffi
d
p

 !

dðVÞ þ V ð5Þ

AttentionðQ;K;VÞ ¼ Softmax
Q� ðsðdðKÞÞÞT

ffiffiffi
d
p þ B

 !

dðVÞ þ V ð6Þ

where Q;K;V 2 RM2�d are query, key and value matrices, M2 and d are patch number and

query or key dimension respectively. B 2 RM2�M2

whose value is taken from the deviation

matrix 2 R(2M−1)×(2M+1), δ represents a 3 × 3 convolution operation on the input, σ represents

the sigmoid function, and then expands the result into a one-dimensional sequence, so

K = σ(δ(K)), V = (δ(V). The acquired attention is added with a residual connection V to sup-

plement the information lost by convolution, and the final self-attention is obtained.

3.2.2 Inner Patches Convolution Self-Attention. Our PCAT block is designed to com-

bine attention between patches with attention within patches. Different semantic information

between patches can be obtained through CPCA to realize the information exchange of the

whole feature map. But the interrelationship between pixels within patches is also crucial. The

proposed Inner Patches Convolution self-attention (IPCA) module considers the relationship

between pixels within Patches and can obtain the Attention between pixels within each patch.

Inspired by the local feature extraction characteristics of CNN, we introduce the locality of

convolution method in CNN into Transformer. IPCA Module divides multiple-channel fea-

ture images into patches with a size of H
N �

W
N , regards each patch divided as an independent

attention range, and uses multi-head self-attention for self-attention of all pixels in each patch
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instead of the whole feature map. Multi-head self-attention used in IPCA module is also PCA.

However, CPCA module extracts self-attention from a complete single-channel feature map,

while IPCA Module is self-attentional from pixels in each patch of multi-channel feature

maps. In addition, PCA of the two are slightly different. The self-attention in IPCA Module

adopts relative position encoding, so its self-attention calculation is shown in Eq (6).

3.3 Feature Grouping Attention Module

In [30], a new pyramid segmentation attention (EPSA) module is used to build an efficient

backbone network. The structure of EPSA module is shown in Fig 3(a), which has strong

multi-scale representation ability and can adaptively re-calibrate the weight of cross-dimen-

sional channels. However, for the images of retinal blood vessels processed by us, the large-

scale convolution adopted by PSA in EPSA module is easy to cause the loss of features of tiny

blood vessels, thus failing to obtain good segmentation results of marginal blood vessels. On

this basis, we propose an effective Feature Grouping Attention Module(FGAM), as shown in

Fig 3(b). Different from EPSA module, FGAM only adopts a 1×1 convolution, replacing the

original final convolution layer with a 2×2 pooling layer to realize the function of sampling

under the convolution branch, and adding a DropBlock [42] after convolution and FGA.

DropBlock combined with Batch Normalization layer (BN) and ReLu activation unit, can

effectively prevent network overfitting and speed up network convergence.

In addition, in order to reduce the loss of vessel edge features, FGA(feature grouping atten-

tion) in FGAM does not employ the original pyramid structure (e.g. group convolution kernels

are 3, 5, 7, 9), but small scale grouping convolution is used (group convolution kernels are 1, 1,

3, 3), and different multi-group convolution kernels are used for parallel processing to obtain

channel feature maps with different spatial resolutions. Specifically, our FGA divides the chan-

nels of input feature map X into part S(default is 4) on average, and applies multiple groups of

convolution (default group size of each part is 2,4,8,8 respectively) to the corresponding part

to extract small-scale features, so as to obtain different feature maps on the channel. Then,

SEWeight module [43] was used to extract the attention of feature images in different

Fig 3. Structure comparison of EPSA module and FGAM. (a) EPSA module; (b) FGAM.

https://doi.org/10.1371/journal.pone.0262689.g003
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proportions, and Softmax was used to calibrate the channel attention vector. Finally, the re-cal-

ibrated weight and corresponding feature maps were used for element-level product operation.

Therefore, using FGA, we can integrate multi-scale spatial information and cross-channel

attention into each feature grouping block, obtain better information fusion between local and

global channel attention, and obtain feature maps with richer details. This process follows the

method of [30] and will not be described in this paper.

In order to verify the segmentation performance of FGAM in the proposed model on reti-

nal vessels, we replaced FGAM in the proposed method PCAT-UNet with EPSA module in

Sections 4.2.2 ablation experiment to obtain the PCAT-UNet (EPSA) model. Then, its segmen-

tation performance on DRIVE, STARE and CHASE_DB datasets was compared with that of

the proposed method in this paper, as shown in Table 9. Finally, we will analyze the compari-

son results in Sections 4.4.2 below.

3.4 Other important modules

3.4.1 Patch embedding layer. Our patch embedding layer consists of an up-sampling and

linear projection layer (which is a 4 × 4 convolution with stride 4.). For retinal vessels images,

the larger the pixel, the better the segmentation effect. Therefore, the 512 × 512 input image

was up-sampling twice, and the image was enlarged to 1024 × 1024 pixels. Then it is divided

into non-overlapping H
N �

W
N (H = 1024, W = 1024) patches of tokens, and each fragment is flat-

tened into 48 elements. Finally, the feature dimension of each token is extended from 48 to C

with a linear embedding layer.

3.4.2 Patch merging layer. In the encoder based on PCAT module, the patch merging

layer is used to reduce the number of tokens and increase the feature dimension. Specifically,

patches are divided into four parts, which can reduce the resolution of features by a factor of 2

and increase the dimension of features by a factor of 4 by splicing. Feature information is easily

lost during down-sampling, so we consider using FGAM to obtain better information fusion

between local and global channel attention to supplement detail features. FGAM here main-

tains the feature dimension and resolution unchanged. Finally, a linear layer is applied to the

fusion feature, turning the feature dimension into twice the input dimension. This process is

repeated three times in the encoder.

3.4.3 Patch restoring layer. Corresponding to the encoder is a symmetric decoder based

on the PCAT module. Patch restoring layer is used in the decoder to up-sample deep features

and reduce their feature dimensions. Like the patch merging layer, patch restoring layer also

uses FGAM to obtain better information fusion between local and global channel attention,

and then adopts deconvolution operation to reshape the input into a feature map with higher

resolution (2× up-sampling), and then reduces its feature dimension to 1

2
of the input dimen-

sion. This process is repeated four times in the decoder.

3.4.4 DropBlock. DropBlock [42] is a structured form of dropout that can effectively pre-

vent network overfitting problems. In the feature map, it discards contiguous regions rather

than individual random units. In this way, part of redundant semantic information can be

effectively discarded and more effective information can be encouraged to be learned on the

network. We use a DropBlock, a Batch Normalization (BN) layer, and a ReLu activation unit

to construct a structured module. This module is used in both the side output layer in our net-

work and in FGAM. See Figs 1 and 3(b).

4 Experiment

In this chapter, we describe model experiments to evaluate our architecture for retinal vessel

segmentation tasks in detail. We describe the datasets and implementation details for the
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experiment in Sections 4.1 and Sections 4.2, respectively. Then, the evaluation criteria are

introduced in Sections 4.3. Finally, Sections 4.4 introduces experimental results and analysis,

including comparison with existing advanced methods and ablation experiments to prove the

effectiveness of our network.

4.1 Datasets

We used three publicly available datasets: DRIVE [44], STARE [45] and CHASE_DB1 [46] to

conduct retinal vessels segmentation experiments to evaluate the performance of our

approach. Detailed information about these three datasets is shown in Table 1.

All three datasets have different image formats, sizes and numbers. The DRIVE dataset con-

tains 40 color retinal vessels images in tif format (565 × 584). The dataset consists of 20 train-

ing images and 20 test images. The STARE dataset consisted of 10 with and 10 without lesions

color retinal vessels images in a PPM (605 × 700) format. The CHASE_DB1 dataset contains

28 images in JPG (999 × 960) format. Unlike the DRIVE dataset, the STARE and CHASE_DB1

datasets do not have a formal classification of training and test datasets. To better compare

with other methods, we follow the same protocol for data segmentation as [47]. For the

STARE dataset, 16 images were selected as the training set and the remaining 4 images as the

test set. In the CHASE_DB1 dataset, 20 images were selected as the training set and the

remaining 8 images as the test set. In addition, the DRIVE dataset comes with a FoV mask,

while the other two datasets do not provide FoV masks. For fair evaluation, we use FoV masks

for the two datasets provided by [47]. Finally, each dataset test set contains two sets of com-

ments, and in keeping with the other methods, we used the comments from the first group as

ground truth to evaluate our model.

In Table 1, we noticed that the original size of the three datasets was not suitable for the

input image size of our network, so we adjusted the image size of the datasets and unified it

into 512×512 image as the input. In addition, to increase the number of training samples, we

adopted the histogram stretching data enhancement method for all three datasets, doubling

the training sets of the three original datasets to 40, 32 and 40 images respectively. In Fig 4, ret-

inal vessels images of these three datasets, corresponding retinal vessels images generated by

histogram stretching enhancement method and corresponding FOV mask can be seen.

4.2 Implementation details

4.2.1 Settings. In the experiment of retinal vessel segmentation, we train the network for

250 epochs. The initial learning rate is 0.001 and decays 10 times every 50 epochs. And we set

the batch size to 4. Adam optimizer and binary cross entropy loss function were used to train

the PCAT-UNet network. The entire network trains from scratch, with no additional training

data. We trained the network on DRIVE, STARE and CHASE_DB1 training sets and evaluated

it on the respective validation sets for each dataset. Our experiment was conducted on an NVI-

DIA Tesla V100 32GB GPU.

4.2.2 Implementation. The DropBlock module is used in both FGAM and the side output

layer in our network. DropBlock takes two main parameters: block_size, which specifies the

Table 1. The specific information of DRIVE, STARE and CHASE_DB1 datasets.

Datasets Quantity Resolution Train-Test split

DRIVE 40 565 × 584 Official train-test split

STARE 20 605 × 700 First 16 for train, last 4 for test

CHASE_DB1 28 999 × 960 First 20 for train, last 8 for test

https://doi.org/10.1371/journal.pone.0262689.t001
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size of the block to be discarded, and γ, which specifies the number of features to be discarded.

The DropBlock parameters in FGAM are set to block_size = 7, γ = 0.9, and the DropBlock

parameters in the side output layer are set to block_size = 5, γ = 0.75. The input and output

sizes of the network are 512 x 512.

4.2.3 Data augmentation. The input of our network is the image of the entire retinal

blood vessels, and the output is consistent with the input size. And we observe that data aug-

mentation can overcome the problem of network overfitting, so we use some data augmenta-

tion methods to improve the network performance. The augmentation methods used in the

Fig 4. Retinal vessels images of the dataset (line 1), corresponding retinal vessels images generated by histogram stretching enhancement

(line 2) and corresponding FOV mask (line 3); (a) DRIVE (b) STARE (c) CHASE_DB1.

https://doi.org/10.1371/journal.pone.0262689.g004
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network include gaussian transform with probability 0.5, where Sigma = (0, 0.5), random rota-

tion in the range [0,20˚], random horizontal flip with probability 0.5, and gamma contrast

enhancement in the range [0.5, 2]. These methods can enhance the training image and avoid

network overfitting, which can greatly improve the performance of the model.

4.3 Evaluation criteria

The process of retinal blood vessel segmentation is the classification of pixels. All pixels are

classified as vessel pixels or background pixels. To evaluate the performance of our model, we

compared the segmentation results with the corresponding ground truth and divided the com-

parison results of each pixel into true positive (TP), false positive (FP), false negative (FN) and

true negative (TN). Then, we adopted specificity (Sp), sensitivity (Se), accuracy (ACC),

F1-Score (F1) and AUC: area under the receiver operating characteristic (ROC) as the mea-

surement indexes:

Sp ¼
TN

TN þ FP
ð7Þ

Se ¼ Recall ¼
TP

TPþ FN
ð8Þ

Acc ¼
TP þ TN

TP þ FN þ TN þ FP
ð9Þ

Precision ¼
TP

TP þ FP
ð10Þ

F1 ¼ 2�
Precision� Recall
Precisionþ Recall

¼
2TP

2TPþ FPþ FN
ð11Þ

where, TP represents positive truth value when a vessel pixel in ground truth is correctly classi-

fied in the predicted image, TN represents negative truth value when a non-vessel pixel in

ground truth is correctly classified in the predicted image, FN misclassifies the vessel pixels in

ground truth as non-vessel pixels in the predicted image, and FP means that the non-vessel

pixels in the ground truth are wrongly marked as the vessel pixels in the predicted image. Pre-

cision and Recall mean Precision Ratio and Recall Ratio respectively, while the ROC curve rep-

resents the proportion of vessels correctly classified as vessel pixels versus misclassified as non-

vessel pixels. AUC refers to the area under the ROC curve, which can be used to measure the

segmentation performance. The closer the AUC value is to 1, the closer the system perfor-

mance is to perfection.

4.4 Experimental results and analysis

4.4.1 Compare with existing methods. We compared PCAT-UNet architecture with the

best existing retinal vessel segmentation methods on DRIVE, STARE and CHASE_DB1 data-

sets, including UNet [12], DFUNet [1], LadderNet [48], Denseblock-UNet [49], DEUNet [50],

IterNet [24], DGUNet [51] and Pyramid U-Net [52], etc. We summarize the release years of

these methods and the performance comparisons across the three datasets in Tables 2–4. All

three tables report traditional measures such as F1-score, Sensitivity, Specificity, Accuracy and

AUC-ROC. For these three datasets, we only count pixels in the FOV.
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As shown in Tables 2–4, our model achieves the best performance on DRIVE, STARE, and

CHASE_DB1 datasets, significantly outperforming UNet-derived network architectures.

Among them, the sensitivity, accuracy and AUC-ROC values (three main indicators of this

task) obtained by method we proposed were the highest in the three datasets, which were

0.8576/0.8703/0.8483, 0.9622/0.9796/0.9812, 0.9872/0.9953/0.9925 respectively. In addition,

our model achieved the highest F1-score on STARE and CHASE_DB1 datasets (0.8836 and

0.8273, respectively), and the highest specificity on DRIVE and CHASE_DB1 datasets (0.9932

Table 2. Performance comparison of different segmentation methods on the DRIVE dataset.

Methods Year F1-score SE SP ACC AUC

Human Observer - N.A 0.7760 0.9724 0.9472 0.8742

U-Net [12] 2015 0.8142 0.7537 0.9820 0.9531 0.9755

Residual UNet [53] 2018 0.8149 0.7726 0.9820 0.9553 0.9779

R2UNet [53] 2018 0.8171 0.7792 0.9813 0.9556 0.9784

DFUNet [1] 2019 0.8190 0.7863 0.9805 0.9558 0.9778

LadderNet [48] 2019 0.8202 0.7856 0.9810 0.9561 0.9793

DEUNet [50] 2019 0.8270 0.7940 0.9816 0.9567 0.9772

IterNet [47] 2020 0.8205 0.7735 0.9838 0.9573 0.9816

DGUNet [51] 2020 N.A 0.7614 0.9837 0.9604 0.9846

Nest U-Net [54] 2021 0.7863 0.8060 0.9869 0.9512 0.9748

Pyramid U-Net [52] 2021 N.A 0.8213 0.9807 0.9615 0.9815

PCAT-UNet(Ours) 2021 0.8160 0.8576 0.9932 0.9622 0.9872

https://doi.org/10.1371/journal.pone.0262689.t002

Table 3. Performance comparison of different segmentation methods on the STARE dataset.

Methods Year F1-score SE SP ACC AUC

Human Observer - N.A 0.8952 0.9384 0.9349 0.9898

U-Net [12] 2015 0.8373 0.8270 0.9842 0.9690 0.9830

DenseBlock-UNet [49] 2018 0.7691 0.6807 0.9916 0.9651 0.9755

DFUNet [1] 2019 0.7629 0.6810 0.9903 0.9639 0.9758

IterNet [47] 2020 0.8146 0.7715 0.9886 0.9701 0.9881

Nest U-Net [54] 2021 0.8230 0.8230 0.9945 0.9641 0.9620

PCAT-UNet(Ours) 2021 0.8836 0.8703 0.9937 0.9796 0.9953

https://doi.org/10.1371/journal.pone.0262689.t003

Table 4. Performance comparison of different segmentation methods on the CHASE_DB1 dataset.

Methods Year F1-score SE SP ACC AUC

Human Observer - N.A 0.7686 0.9779 0.9560 0.8733

U-Net [12] 2015 0.7783 0.8288 0.9701 0.9578 0.9772

DenseBlock-UNet [49] 2018 0.8006 0.8178 0.9775 0.9631 0.9826

DFUNet [1] 2019 0.8001 0.7859 0.9822 0.9644 0.9834

LadderNet [48] 2019 0.8031 0.7978 0.9818 0.9656 0.9839

DEUNet [50] 2019 0.8037 0.8074 0.9821 0.9661 0.9812

IterNet [47] 2020 0.8073 0.7970 0.9823 0.9655 0.9851

DGUNet [51] 2020 N.A 0.7993 0.9868 0.9783 0.9869

Pyramid U-Net [52] 2021 N.A 0.8035 0.9787 0.9639 0.9832

PCAT-UNet(Ours) 2021 0.8273 0.8493 0.9966 0.9812 0.9925

https://doi.org/10.1371/journal.pone.0262689.t004

PLOS ONE PCAT-UNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0262689 January 24, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0262689.t002
https://doi.org/10.1371/journal.pone.0262689.t003
https://doi.org/10.1371/journal.pone.0262689.t004
https://doi.org/10.1371/journal.pone.0262689


and 0.9966, respectively). Excellent sensitivity indicated a higher True Positive Rate of our

method compared to other methods including second-person observers, and excellent speci-

ficity indicated a lower False Positive Rate of our method than other methods. This further

indicates that, compared with other methods, our proposed method can identify more True

Positive and True Negative retinal vessel pixels. In Fig 5, we can see ROC Curves for the three

datasets and the high and low True Positive Rates (TPR) and False Positive Rates shown in the

figures. Therefore, according to the above analysis results, PCAT-UNet architecture we pro-

posed achieves the most advanced performance in the retinal vessel segmentation challenge.

Table 2 shows that compared with the maximum value of each indicator in the existing

method on the DRIVE dataset, the PCAT-UNet proposed by us achieved higher performance,

in which SE increased by 3.63%, SP by 0.63%, ACC by 0.07% and AUC by 0.26%. F1-score

also scored well, with a difference of just 1.1%. We compared the prediction results of the

method we proposed with UNet method on DRIVE dataset, as shown in Fig 6. The enlarged

details of some specific blood vessels are given in the figure. Some unsegmented microvessels

and important cross blood vessels in the segmentation map of UNet can be seen in the seg-

mentation map of the method in this paper. Therefore, the segmentation figure of the method

in this paper is more accurate and closer to ground truths than that of the method in UNet.

As can be seen from Table 3, compared with the maximum values of each indicator of exist-

ing methods, the method in this paper achieved higher performance in STARE dataset, in

which F1-Score, SE, ACC and AUC increased by 4.63%, 4.33%, 0.95% and 0.72% respectively.

Moreover, the results of SP are very competitive, with a difference of only 0.08%. In addition,

Fig 7 also demonstrates that our approach is more efficient. We can see Fig 7 showing the seg-

mentation results of original retinal images, ground truths, UNet method, and our method on

the STARE dataset. It can be observed from the enlarged image that the proposed method has

a stronger ability to detect the pixels of cross vessels and can effectively identify the pixels of

retinal vessels. The segmentation result is more accurate than that of UNet method.

As can be seen from Table 4, our proposed PCAT-UNet method is superior to the most

advanced method in all indicators of the CHASE_DB1 dataset. Among them, compared with

the maximum value of each indicator in the existing methods in the table, our experimental

results increased F1-Score by 2%, SE by 2.05%, SP by 0.98%, ACC by 0.29% and AUC by

0.56%. Fig 8 also provides a comparison of the segmentation results of original Retinal images,

ground truths, UNet method and this method on the CHASE_DB1 dataset. From the enlarged

Fig 5. ROC Curves on (a) DRIVE (b) STARE (c) CHASE_DB1.

https://doi.org/10.1371/journal.pone.0262689.g005
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picture of details, we can see that the segmentation effect of the proposed method is better

than that of UNet method in the segmentation of micro-vessels, blood vessel intersection and

blood vessel edge, which further proves the superiority of our method.

4.4.2 Ablation study. To investigate the effects of different factors on model performance,

we conducted extensive ablation studies on DRIVE, STARE and CHASE_DB1 datasets. Specif-

ically, we explore the influence of the backbone, FGAM, convolutional branch and Dropblock

on our model. The research results are shown in Tables 5–7. Backbone. In the ablation experi-

ment of this paper, we will build a backbone with the pure Transformer module. Specifically,

backbone is a U-shaped network composed of encoder constructed by PCAT Block and Patch

Embedding Layer and decoder constructed by PCAT Block and Patch Restoring Layer.

In these three tables, the first line is the experimental result of backbone built with pure

transformer, and the second line is the backbone with FGAM (in Patch Embedding Layer and

Patch Restoring Layer). The third line is the backbone with FGAM (in Patch Embedding

Layer and Patch Restoring Layer) and convolution branch. The last line results in backbone

with FGAM (in Patch Embedding Layer and Patch Restoring Layer), convolution branch and

DropBlock, that is, PCAT-UNet proposed by us. As can be seen from the three tables, the net-

work constructed by pure Transformer segmented retinal vessels and achieved good results,

Fig 6. Comparison of example vessel segmentation results on DRIVE dataset: (a) original retinal images; (b) ground truths; (c) segmentation

results for UNet; (d) segmentation results for PCAT-UNet. The first row of the image is the whole image, and the second row is the zoomed in

area of the marked red border and blue border in the image.

https://doi.org/10.1371/journal.pone.0262689.g006
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but the network combined with Transformer and convolution achieved better segmentation

performance. In addition, the introduction of DropBlock also plays an important role in the

segmentation results. This proves the effectiveness of these modules for our network.

In terms of time consumption, we compare PCAT-UNET with the Backbone, Backbone

+FGAM and Backbone+FGAM+Conv-Branch methods of the proposed model. In the experi-

ment of this paper, all the above algorithms are implemented with Pytorch, and 250 iterations

of DRIVE dataset (including 20 original training graphs and 20 data-enhanced graphs) are

tested on NVIDIA Tesla V100 32GB GPU. The number of parameters and running time are

shown in Table 8.

As can be seen from Table 9, PCAT-UNet (EPSA) method (using EPSA module to replace

FGAM in PCAT-UNet method proposed in this paper) also achieved good results in retinal

vessel segmentation. Its accuracy, specificity and AUC value were close to PCAT-UNET

(FGAM) method, but its sensitivity was lower. It indicates that this method has information

loss in vessel feature extraction and needs further improvement. However, the PCAT-UNet

(FGAM) method proposed in this paper significantly improved the sensitivity index, indicat-

ing that the small-scale grouping convolution in FGAM can fully extract and completely

recover the vessel edge information. FGA also focuses on the blood vessels, reducing the

Fig 7. Comparison of example vessel segmentation results on STARE dataset: (a) original retinal images; (b) ground truths; (c) segmentation

results for UNet; (d) segmentation results for PCAT-UNet. The first row of the image is the whole image, and the second row is the zoomed in area of

the marked red border and blue border in the image.

https://doi.org/10.1371/journal.pone.0262689.g007
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Fig 8. Comparison of example vessel segmentation results on CHASE_DB1 dataset: (a) original retinal images; (b) ground truths; (c)

segmentation results for UNet; (d) segmentation results for PCAT-UNet. The first row of the image is the whole image, and the second row is the

zoomed in area of the marked red border and blue border in the image.

https://doi.org/10.1371/journal.pone.0262689.g008

Table 5. Ablation study results on DRIVE dataset.

Network F1-score SE SP ACC AUC

Backbone 0.8043 0.7719 0.9885 0.9606 0.9854

Backbone+FGAM 0.8092 0.7791 0.9909 0.9612 0.9862

Backbone+FGAM+Conv-Branch 0.8118 0.7763 0.9899 0.9615 0.9865

PCAT-UNet 0.8160 0.8576 0.9932 0.9622 0.9872

https://doi.org/10.1371/journal.pone.0262689.t005

Table 6. Ablation study results on STARE dataset.

Network F1-score SE SP ACC AUC

Backbone 0.8497 0.8518 0.9878 0.9750 0.9936

Backbone+FGAM 0.8578 0.8750 0.9911 0.9766 0.9944

Backbone+FGAM+Conv-Branch 0.8597 0.8650 0.9901 0.9770 0.9948

PCAT-UNet 0.8836 0.8703 0.9937 0.9796 0.9953

https://doi.org/10.1371/journal.pone.0262689.t006
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influence of background noise region on the segmentation results. It has certain rationality

and validity on algorithm level.

5 Conclusion

In this paper, we propose a U-shaped network with convolution branching based on Trans-

former. In this network, the multi-scale feature information obtained in the convolutional

branch is transmitted to the encoder and decoder on both sides, which can supplement the

spatial information loss caused by the down-sampling operation. In this way, local features

obtained in CNN can be better integrated with global information obtained in Transformer,

so as to obtain more detailed feature information of vessels. Our method achieves the most

advanced segmentation performance on DRIVE, STARE and CHASE_DB1 datasets, and

greatly improves the extraction of small blood vessels, providing a powerful help for clinical

diagnosis. Our long-term goal is to take the best of both Transformer and CNN and combine

them more effectively and perfectly, and our proposed PCAT-UNET approach is a meaningful

step toward achieving this goal.
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Table 7. Ablation study results on CHASE_DB1 dataset.

Network F1-score SE SP ACC AUC

Backbone 0.8104 0.8149 0.9932 0.9797 0.9906

Backbone+FGAM 0.8188 0.8269 0.9966 0.9806 0.9919

Backbone+FGAM+Conv-Branch 0.8193 0.8174 0.9979 0.9809 0.9922

PCAT-UNet 0.8273 0.8493 0.9967 0.9812 0.9925

https://doi.org/10.1371/journal.pone.0262689.t007

Table 8. Quantitative comparison of parameter and time consumption.

Network Params(G) Train time(s) Test time(s/image)

Backbone 40.1 4875 0.1103

Backbone+FGAM 55.9 9700 0.1302

Backbone+FGAM+Conv-Branch 57.4 12800 0.1584

PCAT-UNet 57.4 12550 0.1547

https://doi.org/10.1371/journal.pone.0262689.t008

Table 9. Performance comparison of EPSA module and FGAM on three datasets.

Datasets Method F1-score SE SP ACC AUC

DRIVE PCAT-UNet(EPSA) 0.8146 0.7990 0.9872 0.9617 0.9867

PCAT-UNet(FGAM) 0.8160 0.8576 0.9932 0.9622 0.9872

STARE PCAT-UNet(EPSA) 0.8578 0.8610 0.9924 0.9770 0.9945

PCAT-UNet(FGAM) 0.8836 0.8703 0.9937 0.9796 0.9953

CHASE_DB1 PCAT-UNet(EPSA) 0.8270 0.8375 0.9966 0.9809 0.9927

PCAT-UNet(FGAM) 0.8273 0.8493 0.9967 0.9812 0.9925

https://doi.org/10.1371/journal.pone.0262689.t009
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