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Objective: Previous studies showed that variants in mitochondrial DNA (mtDNA) are 
associated with type 2 diabetes mellitus (T2DM). However, the relationships between 
mitochondrial tRNA (mt-tRNA) variants and T2DM remain poorly understood.
Methods: In this study, we performed a mutational screening of 22 mt-tRNA genes in 
a cohort of 200 Han Chinese subjects with T2DM and 200 control subjects through PCR– 
Sanger sequencing. The identified mt-tRNA variants were assessed for their pathogenicity 
via the phylogenetic approach, structural and functional analysis. Furthermore, two Han 
Chinese pedigrees with maternally inherited diabetes and deafness (MIDD) were reported by 
clinical and genetic assessments.
Results: A total of 49 genetic variants in mt-tRNA genes were identified; among them, 31 
variants (17 pathogenic/likely pathogenic) were absent in controls, located at extremely 
conserved nucleotides, may have potential structural and functional significance, thereby 
considered to be T2DM-associated variants. In addition, sequence analysis of entire mito-
chondrial genomes of the matrilineal relatives from two MIDD pedigrees revealed the 
occurrence of tRNALeu(UUR) A3243G and T3290C mutations, as well as sets of polymorph-
isms belonging to mitochondrial haplogroups F2 and D4. However, the lack of any func-
tional variants in connexin 26 gene (GJB2) and tRNA 5-methylaminomethyl-2-thiouridylate 
(TRMU) suggested that nuclear genes may not play active roles in clinical expression of 
MIDD in these pedigrees.
Conclusion: Our data indicated that mt-tRNA variants were associated with T2DM, screen-
ing for mt-tRNA pathogenic mutations was recommended for early detection and prevention 
of mitochondrial diabetes.
Keywords: type 2 diabetes mellitus, mitochondrial tRNA, variants, Chinese population

Introduction
Diabetes is a very complex disease characterized by the presence of chronic 
hyperglycemia. Clinically, insulin-dependent type 1 and non-insulin-dependent 
type 2 are the main types of diabetes. Among them, type 2 diabetes mellitus 
(T2DM, [MIM125853]) is a common endocrine disorder affecting approximately 
10% of adult population.1 In most cases, T2DM exhibits high blood glucose in the 
context of insulin resistance (IR) and relative insulin deficiency. To date, the 
etiology of T2DM is still undetermined. Now it has been recognized that this 
disorder can be caused by some acquired factors, including inherited genetic factors 
or the interactions between genetic and environmental factors.2 In particular, 
maternally inheritance has been observed in some pedigrees, highlighting the 
contributions of mitochondrial DNA (mtDNA) mutations to T2DM.3 Since the 
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landmark discovery of the association between mitochon-
drial diabetes and 10.4-kb deletion in mtDNA,4 a growing 
number of T2DM-associated mtDNA mutations have been 
identified. Most of them are located at mitochondrial 
tRNA (mt-tRNA) genes. As adapter molecules to convert 
the genetic codes into amino acid sequences, mt-tRNAs 
play central roles in mitochondrial protein synthesis, as 
well as maintenance of respiratory chain functions.5 By 
molecular level, almost every mt-tRNA has a highly con-
served cloverleaf structure, consisting of Acceptor arm, 
DHU-Loop, anticodon stem, variable region, and TψC 
loop, with an average length of 73 nucleotides. Although 
mt-tRNAs comprise only around 10% of the total coding 
capacity of mtDNA genes, more than half of mtDNA 
mutations causing diseases are located in mt-tRNA 
genes, as indicated in Mitomap database (https://www. 
mitomap.org/MITOMAP),6 emphasizing the importance 
of mt-tRNAs for mitochondrial function.

Recent experimental studies have suggested that 
tRNALeu(UUR) A3243G and T3264C, tRNAGly T10003C, 
tRNAGlu T14709C, and tRNAThr G15897A are potential 
pathogenic mutations affecting T2DM predisposition.7–11 In 
particular, the well-known A3243G mutation affects the pro-
cessing of mitochondrial RNA precursors,12 and base mod-
ification of this tRNA.13 In cytoplasmic hybrids (cybrids) 
harboring the A3243G mutation, the level of aminoacylated 
tRNALeu(UUR) is reduced by approximately 70–75%,14 

thereby influencing the protein synthesis and mitochondrial 
respiratory chain function. Furthermore, the T3290C muta-
tion is localized at very conserved nucleotide of TψC loop in 
tRNALeu(UUR), and is important for the steady-state level of 
tRNALeu(UUR). Thus, these diabetes-related mtDNA muta-
tions or variants, which are often presented in homoplasmy, 
exhibit a variability of clinical phenotypes.15 However, the 
pathophysiology of mt-tRNA mutations/variants in phenoty-
pic manifestation of T2DM remains poorly understood.

In the current study, with the aim of exploring the 
T2DM-related mt-tRNA mutations/variants, 200 patients 
who have been diagnosed with T2DM, together with 200 
age- and gender-matched controls, underwent the muta-
tional screening of 22 mt-tRNA genes. As a result, 
a total of 49 genetic variants on 22 mt-tRNA genes are 
identified in this study. By the pathogenic evaluations 
including the phylogenetic analysis, potential structural 
and functional alternations, 17 T2DM-associated tRNA 
variants in 23 patients are identified. Furthermore, we 
perform clinical, genetic and molecular evaluations of 
two maternally inherited diabetes and deafness (MIDD) 

families carrying tRNALeu(UUR) A3243G and T3290C 
variants. To understand the contributions of mtDNA 
genetic background and nuclear genes to MIDD, we 
initiated the mutational screening of the entire mitochon-
drial genomes, as well as GJB2, TRMU from the matri-
lineal relatives in these pedigrees.

Methods
Study Population
In this case-control study for mutational screening of T2DM- 
related mt-tRNA variants, a total of 200 genetically unrelated 
subjects who were diagnosed with T2DM, participating for 
this study; moreover, 200 control subjects who came from 
the Healthy Examination Center of our hospital were also 
recruited. This study was approved by the Ethics Committee 
of Yantai Affiliated Hospital of Binzhou Medical University, 
and each participant provided their written informed consent.

The diagnosis of T2DM was based on the criteria 
proposed by American Diabetes Association:16 (1) 
a fasting plasma glucose (FPG) level ≥7.0 mmol/L; (2) 
a 2h plasma glucose level after 75-g oral glucose tolerance 
test (OGTT) ≥11.1 mmol/L; (3) the level of Hemoglobin 
A1c (HbA1c) ≥6.5%.

Mutational Analysis of Mt-tRNA Genes
Genomic DNA of each subject was extracted from the 
peripheral blood by using QIAamp Blood Kit (QIAGEN, 
Hilden, Germany). To detect T2DM-related mt-tRNA var-
iants, polymerase chain reaction (PCR) was used to 
amplify fragments of all mt-tRNA genes in these subjects 
with appropriate primers, as described previously.17 For 
the subjects carrying the putative variants in mt-tRNA 
genes, fragments spanning the remaining regions of 
mtDNA genes were PCR amplified and sequenced to 
define the mtDNA haplogroups, according to a method 
described in a previous study.18 The PCR products were 
purified and sequenced by ABI 3730 DNA automatic 
sequencer (Applied Biosystems, Darmstadt, Germany).19 

The sequence data were compared with the revised 
Cambridge reference sequence (rCRS, GenBank 
Accessible Number: NC_012920.1) using DNA STAR 
software package version 5.01 (DNASTAR Inc., 
Madison, USA) to detect the nucleotides alternations.20

Analysis of Conservation Index (CI)
To further assess the pathogenic roles of mt-tRNA var-
iants, the phylogenetic analysis was performed. Briefly, 17 
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species were used for conservation analysis as described in 
a previous investigation.21 These species included Bos 
taurus, Cebus albifrons, Colobus guereza, Gorilla gorilla, 
Homo sapiens, Hylobates lar, Lemur catta, Macaca 
mulatta, Macaca sylvanus, Mus musculus, Nycticebus cou-
cang, Pan paniscus, Pan troglodytes, Pongo pygmaeus, 
Pongo abelii, Papio hamadryas, and Tarsius bancanus. 
The CI was then calculated by comparing the human 
mtDNA variants with other 16 species. Notably, CI≥75% 
was regarded as having functional potential.22

Structural Analysis
The published secondary structures for the mt-tRNAs were 
used to define the stem and loop structure.23,24

Characterization of Two Han Chinese 
Pedigrees Harboring Mt-tRNALeu(UUR) 

Variants
As shown in Figure 1, two Han Chinese families with 
MIDD were ascertained in Yantai Affiliated Hospital of 
Binzhou Medical University. To identify personal or 
family histories of T2DM and other clinical abnormal-
ities, all participants were interviewed and evaluated by 
physical examinations. For laboratory analysis, each 
participant’s blood sample was collected between 7:00 
AM and 10:00 AM after an overnight fast. The level of 
HbA1c was measured by using high-performance liquid 
chromatography (HPLC, Bio-Rad, CA, USA). In addi-
tion, the OGTT was performed by measuring the 0 and 
2h of plasma glucose concentrations after glucose 
administration.

Furthermore, the age-appropriate audiological exami-
nation of hearing loss was performed as described 
previously,25 including pure-tone audiometry (PTA), 

auditory brainstem response, acoustic immittance mea-
surement and distortion product otoacoustic emission. 
The PTA was calculated from the sum of the audiometric 
thresholds at 500, 1000, 2000, 4000 and 8000 Hz. The 
severity of hearing loss was classified into 5 grades: nor-
mal <26 Decibel (dB); mild = 26–40 dB; moderate = 41– 
70 dB; severe = 71–90 dB and profound >90 dB, as 
suggested previously.26 The blood pressure (BP) was mea-
sured by an electronic sphygmomanometer and repeated 
for 3 times. Hypertension was defined according to the 
guidelines of the Joint National Committee on Detection, 
Evaluation and Treatment of High Blood Pressure (JNC 
VI), as a systolic BP≥140 mmHg or the diastolic BP≥90 
mmHg.27

Screening for the Entire Mitochondrial 
Genome Variants
The complete mitochondrial genomes of the matrilineal 
individuals from two MIDD pedigrees (DM-101: II-3, II- 
6 and III-5; DM-102: II-5, II-8, II-10 and III-7) were PCR 
amplified by using 24 primers, as previously described.28 

The PCR products were purified and subsequently 
sequenced by ABI 3730 DNA automatic sequencer 
(Applied Biosystems, Darmstadt, Germany). The sequence 
data was then compared with the rCRS (GenBank 
Accessible Number: NC_012920.1) using DNA STAR 
software package version 5.01 (DNASTAR Inc., 
Madison, USA) to detect the nucleotides alternations.20

Determining the Mitochondrial 
Haplogroups
The classification of the mitochondrial haplogroups was 
based on the phylogenetic tree by Kong et al.29

Figure 1 Two Han Chinese pedigrees with MIDD, affected individuals are indicated by filled symbols. Arrows indicate the probands.
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Mutational Screening for GJB2 Gene
To see the contributions of GJB2 variants to clinical 
expression of MIDD, we conducted a mutational screening 
by using PCR amplification of the exons of GJB2 gene in 
matrilineal individuals (DM-101: II-3, II-6 and III-5; DM- 
102: II-5, II-8, II-10 and III-7), the primer sequence for 
amplification of GJB2 gene were: forward-5ʹ-TATGACA 
CTCCCCAGCACAG-3ʹ, and reverse-5ʹ-GGGCAATGCT 
TAAACTGGC-3ʹ.30 After PCR amplification and direct 
Sanger sequence analysis, the data were compared with 
the wild-type versions of GJB2 sequence (GenBank 
Accessible Number: M86849) to identify mutations/ 
variants.30

Analysis of TRMU Variants
Previous study indicated that TRMU A10S variant may 
contribute to the phenotypic manifestation of deafness- 
associated 12S rRNA mutations.31 To understand the role 
of TRMU in hearing impairment, the TRMU A10S variant 
was screened in the matrilineal relatives (DM-101: II-3, II- 
6 and III-5; DM-102: II-5, II-8, II-10 and III-7) by using 
PCR amplification of exon 1 of this gene. The primer 
sequences for TRMU exon 1 were: forward-5ʹ-ACAGCGC 
AGAAGAAGAGCAGT-3ʹ, and reverse-5ʹ-ACAACGCCA 
CGACGGACG-3ʹ. After PCR amplification and direct 
Sanger sequence, the data were compared with the wild- 
type versions of TRMU (GenBank Accessible Number: 
AF448221) to detect the variants.31

Results
Clinical Characterization of 200 Patients 
with T2DM
A total of 200 T2DM patients (117 females and 83 males) 
were recruited in this study. The age of these patients 
ranged from 30 to 68 years, with a median age of 42 
years. The age at the onset of T2DM varied from 28 to 
66 years, with an average of 40 years. Furthermore, 200 
Han Chinese controls from the same region were healthy 
individuals and did not have any family history of T2DM, 
deafness, cardiovascular diseases or mitochondrial disor-
ders. The age of these controls varied from 25 to 53 years, 
with an average of 38 years.

Screening for Mt-tRNA Variants
By sequencing 22 mt-tRNA genes in T2DM subjects and 
controls, we were able to identify 49 nucleotide alternations, 
as shown in Table 1. Among these, 3 variants were 

identified in tRNAPhe, 2 variants in tRNAVal, 2 variants in 
tRNALeu(UUR), 2 variants in tRNAGln, 3 variants in 
tRNAMet, 1 variant in tRNATrp, 2 variants in tRNAAla, 3 
variants in tRNACys, 1 variant in tRNAAsp, 3 variants in 
tRNASer(UCN), 2 variants in tRNALys, 2 variants in tRNAGly, 
2 variants in tRNALeu(CUN), 2 variants in tRNAArg, 3 var-
iants in tRNAHis, 2 variants in tRNASer(AGY), 1 variant in 
tRNAGlu, 9 variants in tRNAThr and 2 variants in tRNAPro.

Assessment of the Pathogenicity
We used the following criteria to evaluate the potential 
pathogenicity of mt-tRNA variants: (1) occurred in <1% in 
the control subjects; (2) CI≥75%, consistent with the evo-
lutionary conservation at a given locus, as proposed by 
Ruiz-Pesini and Wallace;32 (3) the variants were predicted 
to alter the structure or function of tRNA molecules. As 
shown in Table 1, among them, the CIs of 22 variants were 
≥75%, the CIs of 15 variants were between 50% and 75%, 
and the CIs of the remaining variants were <50%. Next, 
we used the secondary structure of mt-tRNAs to localize 
each variant with either a stem or a loop, in order to test 
whether the base changes altered the classic Watson-Crick 
base-pairing. We noticed that there were 13 variants occur-
ring in the Acceptor arm, 12 variants in DHU-Loop, 5 
variants in variable region, 12 variants in TψC loop, 1 
variant in ACC Terminus. Notably, 12 variants disrupted 
the Watson-Crick base-pairings, whereas 6 variants created 
novel Watson-Crick base-pairings. This analysis suggested 
that 17 mt-tRNA variants, which were well conserved and 
not detected in control subjects, may be pathogenic/likely 
pathogenic mutations (Table 1). These variants were as 
follows: tRNALeu(UUR) A3243G and T3290C, tRNAMet 

A4435G and C4467A, tRNATrp A5514G, tRNAAla 

T5587C and A5655G, tRNASer(UCN) C7502T and 
T7505C, tRNALys G8313A, tRNAGly T10003C and 
A10055G, tRNALeu(CUN) A12308G and A12330G, 
tRNAThr G15897A, A15924G and G15927A. Whereas 
other 32 variants were classified as “neutral polymorph-
isms” that were not well conserved or presented >1% in 
control groups.

As shown in Figure 2, among 17 pathogenic/likely 
pathogenic variants, 5 of them occurred at Acceptor arm 
including A4467C in tRNAMet, A5514G in tRNATrp, 
A5655G in tRNAAla, A10055G in tRNAGly and 
A12330G in tRNALeu(CUN), abolished the classic Watson- 
Crick base-pairings of corresponding tRNAs. In addition, 
variants T7505C and C7502T in tRNASer(UCN), G8313A in 
tRNALys, T10003C in tRNAGly and G15897A in tRNAThr 
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resided at DHU-loop, affected the conserved Watson-Crick 
base-pairings. Furthermore, variants A4435G in tRNAMet, 
A15924G and G15927A in tRNAThr occurred at anticodon 
stem may affect the steady-state level of mt-tRNAs. While 
variant A3290G in tRNALeu(UUR) occurred at TψC loop, 
variant T5587C in tRNAAla occurred at ACC Terminus, 
variant A12330G in tRNALeu(CUN) located at variable 
region may also affect the structure and function of mt- 
tRNAs.

Whole Mitochondrial Genome Analysis 
of the 23 Subjects Carrying Putative 
Pathogenic Mt-tRNA Variants
As shown in Table 2, 23 patients with T2DM carried the 
pathogenic/likely pathogenic mt-tRNA variants, account-
ing for 11.5% of the cases in our cohort. The age at onset 
of T2DM in these subjects ranged from 30 to 71 years. 
Moreover, a comprehensive medical history showed that 2 
of 17 probands carrying putative pathogenic mt-tRNA 
variants had an obvious family history of T2DM, in parti-
cular, the family members of DM-101 and DM-102 carry-
ing tRNALeu(UUR) A3243G and T3290C variants suffered 
both hearing loss and diabetes. There were variable clin-
ical phenotypes of diabetes among these probands, with 
different levels of HbA1c, as well as FPG. In addition, 
analysis of entire mitochondrial genomes in 23 probands 
revealed 3 possible functional mtDNA variants: NADH 
dehydrogenase 1 (ND1) T3394C and T3398C, ND5 
T12338C, which co-existed with tRNALeu(UUR) T3290C, 
tRNATrp A5514G and tRNAGly T10003C, respectively. 
Interestingly, the T3394C (Tyr to His) and T3398C (Met 
to Thr) variants occurred at very conserved nucleotides of 
ND1 polypeptide.33,34 While the ND5 T12338C (Met to 
Thr) variant resulted in replacement of the first amino acid, 
translation-initiating methionine with a threonine, which 
may alter the respiratory function, as well as the proces-
sing of RNA precursors.35

The entire mtDNA sequences of 23 probands carrying 
these putative mt-tRNA variants were performed and then 
assigned to East Asian mitochondrial haplogroups based 
on the Phylotree database (http://www.phylotree.org/).36 

As shown in Table 2, according to their distinct sets of 
polymorphisms, the mtDNA of 23 probands belonged to 
East Asian haplogroups F2, D4, G2b, N1a, N9a, G2a1, F1, 
D5b1b, C4c, A4, M11b, M11, D5a, U, D4b1, D4b2b, B5b 
and B5b1, respectively.29tR
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Clinical and Biochemical Characterization 
of Two MIDD Pedigrees Carrying 
tRNALeu(UUR) Variants
As shown in Figure 1, two Han Chinese families (DM-101 
and DM-102) with MIDD were ascertained in Yantai 
Affiliated Hospital of Binzhou Medical University. 
A comprehensive history and physical examinations were 
performed to identify any clinical abnormalities, genetic 
factors related to diabetes in members of these two 
families. In DM-101 pedigree, the proband (III-5) was 
a 32-year-old woman who came from Yantai city of 
Shandong province. She began to suffer from T2DM 
when she was 30 (Table 3), she also developed bilateral 
hearing loss (55 dB at right ear and 70 dB at left ear). 
Moreover, the family history suggested that other matrili-
neal relatives (II-3 and II-6) suffered from T2DM at dif-
ferent ages at onset. In particular, subject II-3 had 
profound hearing loss (90 dB at right ear and 95 dB at 
left ear) and hypertension (145/80 mmHg). Subject II-6 
had moderate hearing impairment (55 dB at right ear and 
35 dB at left ear) and hypertension (150/100 mmHg), 
whereas other members of this family were normal.

In DM-102 pedigree, the proband (II-10) was a 68-year 
-old woman who also lived in Yantai city of Shandong 
province. She suffered from T2DM when she was 55. 
Comprehensive physical examinations indicated that she 

had very high BP (140/95 mmHg) for 3 years, she also 
exhibited mild hearing impairment (38 dB at right ear and 
40 dB at left ear). Genetic counseling revealed that matri-
lineal relatives (II-5, II-8, III-7 and III-3) were also T2DM 
carriers. Besides, other members in DM-102 were normal 
subjects. The clinical and biochemical data of these sub-
jects are listed in Table 3.

Analysis of mtDNA Variants
The maternally inherited pattern of these two pedigrees 
indicated that mitochondrial dysfunctions may be 
involved in the pathogenesis of MIDD. In order to inves-
tigate the contributions of mtDNA variants to MIDD, the 
complete mitochondrial genomes of matrilineal relatives 
from these families (DM-101: II-3, II-6 and III-5; DM- 
102: II-5, II-8, II-10 and III-7) were PCR amplified and 
sequenced by ABI 3730 automated DNA instrument, 
subsequently the data was compared with the rCRS and 
the mtDNA variants were screened. As can be seen in 
Table 4, matrilineal relatives of these pedigrees harbored 
76 mtDNA variants, of these, 21 variants occurred at 
D-loop, 3 variants in 12S rRNA, 3 variants in 16S 
rRNA, 2 variants in tRNALeu(UUR), as well as the com-
mon COII/tRNALys intergenic 9-bp deletion occurred at 
position between 8271 and 8279. Other variants were 
localized at oxidative phosphorylation (OXPHOS)- 
related genes. In addition, 12 missense variants were 

Figure 2 Summary of 17 pathogenic/likely pathogenic mt-tRNA variants at the cloverleaf structures of canonical tRNAs. Arrows indicate the positions of the variants in the 
mt-tRNA.
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identified, including ND1 T3394C (Tyr to His), ND2 
T5442C (Phe to Leu), CO2 G7598A (Ala to Thr), ATP6 
(A6) A8701G (Thr to Ala) and A8860G (Thr to Ala), 
ND3 A10398G (Thr to Ala), ND4L T10609C (Met 
to Thr) and A10750G (Asn to Ser), ND5 G12406A (Val 
to Ile) and G13928C (Ser to Thr), CytB C14766T (Thr to 
Ile) and A15326G (Thr to Ala). To further assess their 
pathogenicity, phylogenetic approach was carried out to 
see the evolutionary conservation of each variant, espe-
cially in mouse,37 bovine38 and Xenopus laevis.39 We 
found that except for the A3243G and T3290C in 

tRNALeu(UUR), the T3394C in ND1, other variants 
showed lower levels of CIs (Figure 3 and 4). Moreover, 
the A3243G and T3290C variants were not detected in 
200 controls, suggesting that they may be involved in the 
pathogenesis of MIDD.

Mutational Analysis of GJB2 Gene
Mutations in GJB2 were the important causes for hearing 
loss,40 to examine the contributions of GJB2 to deafness 
expression, we conducted a mutational screening for GJB2 
gene in matrilineal relatives of these MIDD pedigrees 

Table 2 Mitochondrial Genetic Background and Clinical Features of 23 Probands Carrying One of the Pathogenic/Likely Pathogenic 
T2DM-Associated tRNA Variants

Genes Variants Probands Gender Age 
at 
Test 
(Year)

Age at 
Onset 
(Year)

HbA1c 
(%)

Glucose 
(0h)

Family 
History

Other 
Functional 
mtDNA 
Variants

Haplogroup

tRNALeu(UUR) A3243G DM-101 M 32 30 7.1 9.1 Yes / F2

DM-210 F 44 38 6.5 10.8 No / F2

DM-225 F 51 42 7.0 11.1 No / F2

T3290C DM-102 M 68 55 6.9 5.6 Yes ND1 T3394C D4

tRNAMet A4435G DM-132 M 70 65 7.1 9.1 No / G2b

C4467A DM-126 M 52 41 7.2 4.8 No / N1a

tRNATrp A5514G DM-108 F 46 39 7.9 8.7 No ND1 T3398C N9a

tRNAAla T5587C DM-213 F 66 61 8.3 5.2 No / G2a1

DM-259 M 59 52 8.0 5.6 No / F1

A5655G DM-277 M 41 38 7.7 7.0 No / D5b1b

tRNASer(UCN) C7502T DM-239 M 39 33 7.4 4.9 No / C4c

T7505C DM-184 F 57 53 7.0 13.0 No / F1

tRNALys G8313A DM-199 F 65 50 6.6 11.6 No / A4

tRNAGly T10003C DM-217 F 71 70 6.8 8.0 No ND5 T12338C M11b

DM-290 M 66 61 6.9 7.9 No / M11

A10055G DM-255 M 49 41 7.2 5.5 No / D5a

tRNALeu(CUN) A12308G DM-230 M 46 39 7.9 5.8 No / U

A12330G DM-222 M 55 51 8.0 6.0 No / F2

tRNAThr G15897A DM-266 M 57 53 7.4 5.1 No / D4b1

A15924G DM-277 F 79 71 7.3 6.8 No / M11

DM-281 F 60 58 7.1 6.6 No / D4b2b

G15927A DM-155 M 59 52 6.8 6.8 No / B5b

DM-260 F 61 60 6.6 7.0 No / B5b1

Abbreviations: T2DM, type 2 diabetes mellitus; mtDNA, mitochondrial DNA; M, male; F, female.
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(DM-101: II-3, II-6 and III-5; DM-102: II-5, II-8, II-10 
and III-7). However, we failed to detect any variants in 
GJB2 gene, suggesting that GJB2 may not play an active 
role in the phenotypic manifestation of MIDD in these 
families.

Mutational Screening of TRMU Gene
Previous study showed that variants in TRMU may mod-
ulate the clinical manifestation of deafness-associated 
mitochondrial A1555G or C1494T mutation.41 To examine 
whether TRMU played an important role in MIDD expres-
sion, we screened the TRMU A10S variant in matrilineal 
relatives of these families. But we did not detect the 
presence of A10S variant suggested that TRMU may not 
be involved in the pathogenesis of MIDD in these families.

Discussion
In the present case-control study, we analyzed the frequen-
cies of mt-tRNA variants in 200 patients with T2DM and 
200 controls. Through PCR and direct sequence analysis, 
a total of 49 genetic variants in mt-tRNA genes were 
identified. By focusing only on variants that were evolu-
tionary conserved, presented <1% in controls and predicted 
to induce functional or structural changes in mt-tRNA 
molecules, we were able to identify 17 pathogenic/likely 
pathogenic mt-tRNA variants in 23 probands with T2DM. 
Among them, the heteroplasmic A3243G in tRNALeu(UUR) 

was one of the most common T2DM-associated pathogenic 
mutations.42 This mutation also led to mitochondrial ence-
phalomyopathy, lactic acidosis and stroke-like symptoms 
(MELAS).43 Molecular analysis revealed that this mutation 
reduced the steady-state level, aminoacylation, as well as 

codon recognition of tRNALeu(UUR).44 As a result, the 
A3243G mutation caused the pre-termination of transcrip-
tion and expression impeding of normal rRNA, thus com-
promising mitochondrial protein synthesis, ATP synthesis 
and organic metabolism.45 While the homoplasmic T3290C 
variant occurred at position 59 in the TψC loop of 
tRNALeu(UUR), which had been regarded as a risk factor 
for hypertension.46 In addition, the A4435G variant was 
localized at immediately 3ʹ end to the anticodon, corre-
sponding to the conventional position 37 of tRNAMet.47 

The adenine (A37) at this position of tRNAMet was extre-
mely conserved from bacteria to human mitochondria.48 

Furthermore, the A4435G variant introduced an m1G37 
modification of tRNAMet, altered its structure and function. 
Functional analysis of cybrid cells harboring this variant 
revealed a markedly diminished ATP levels and mitochon-
drial membrane potential (MMP), and increased reactive 
oxygen species (ROS) production.48 While the C4467A 
variant occurred at 3ʹ end of tRNAMet, which was the 
processing site for the tRNAMet 3ʹ end precursors of the 
light strand and was predicted to alter A-U base pairing 
(A1-U72) at the aminoacyl acceptor stem of tRNAMet.49 

The C4467A variant may impair the cleavage of polycis-
tronic mtRNA transcripts into mature mt-tRNA species at 
the tRNAase Z cleavage site.50 Thus, the point variant 
located at the 3ʹ end was important for both mt-tRNA 
synthesis and function.51 Moreover, the homoplasmic 
A5514G variant disrupted an A-U base-pair within the 
acceptor stem of tRNATrp, had been reported to be asso-
ciated with mitochondria encephalomyopathy.52 

Interestingly, two variants (A5655G and T5587C) were 
identified in tRNAAla gene, in fact, A5655G variant was 

Table 3 Summary of Clinical and Biochemical Data for Several Members in These Two Families with Maternally Inherited Diabetes and 
Deafness

Subjects Gender Age at 
Test 
(Years)

Age at 
Onset 
(Years)

HbA1c 
(%)

Glucose 
(oh) 
(mmol/L)

Glucose 
(2h) 
(mmol/L)

BP 
(mmHg)

PTA (dB) 
Right/Left 
Ear

Level of 
Hearing 
Loss

DM-101 (II-3) Male 55 50 6.6 7.7 14.2 145/80 90/95 Profound
DM-101 (II-6) Female 58 45 7.0 8.0 12.6 150/100 55/35 Moderate

DM-101 (III-5) Female 32 30 7.1 9.1 14.8 130/75 55/70 Severe

DM-102 (II-5) Male 65 50 6.8 5.1 7.8 145/95 20/20 Normal
DM-102 (II-8) Female 60 49 7.3 8.2 14.6 135/80 23/17 Normal

DM-102 (II-10) Female 68 55 6.9 5.6 8.0 140/95 38/40 Mild
DM-102 (III-7) Female 40 38 6.5 5.2 7.1 130/85 52/45 Moderate

DM-102 (III-3) Female 36 / 5.6 4.8 6.9 125/75 20/15 Normal

Abbreviations: HbA1c, glycosylated hemoglobin; BP, blood pressure; PTA, pure-tone audiometry; dB, decibel.
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Table 4 mtDNA Sequence Variants in Two Chinese Families with Maternally Inherited Diabetes and Deafness

Gene Position Alternation Conservation (H/B/M/ 
X)a

rCRSb DM- 
101

DM- 
102

Previously 
Reportedc

D-loop 73 A to G A G G Yes

143 G to A G A Yes

146 T to C T C Yes
150 C to T C T Yes

195 T to C T C Yes

207 G to A G A Yes
263 A to G A G Yes

310 T to TC/CTC T TC CTC Yes
374 A to G A G Yes

489 T to C T C C Yes

514 DelC C DelC Yes
515 DelA A DelA Yes

523 Del A A Del A Yes

16,051 A to G A G G Yes
16,093 T to C T C Yes

16,129 G to A G A A Yes

16,175 A to T A T Yes
16,189 T to C T C C Yes

16,223 C to T C T T Yes

16,311 T to C T C C Yes
16,526 G to A G A Yes

12S rRNA 750 A to G A/G/G/- A G G Yes
1041 A to G A/T/T/T A G Yes

1438 A to G A/A/A/G A G G Yes

16S rRNA 2706 A to G A/G/A/A A G G Yes

3010 G to A G/G/A/A G A Yes

3107 Del N N Del N Del N Yes

tRNALeu(UUR) 3243 A to G A/A/A/A A G Yes

3290 T to C T/T/T/T T C Yes

ND1 3394 T to C (Tyr to His) Y/Y/Y/Y T C Yes

3483 G to A G A Yes
3970 C to T C T Yes

4071 C to T C T Yes

ND2 4769 A to G A G G Yes

4850 C to T C T Yes

5442 T to C (Phe to Leu) F/F/M/L T C Yes

CO1 6392 T to C T C C Yes

6455 C to T C T Yes
6599 A to G A G Yes

6962 G to A G A Yes

7028 C to T C T Yes
7250 A to G A G G Yes

7337 G to A G A A Yes

CO2 7598 G to A (Ala to Thr) A/M/F/S G A Yes

7805 G to A G A Yes

NC7 8281–8289 Del 9-bp CCCCCTCTA Del 9-bp Yes

(Continued)
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located at processing site for the tRNA 5ʹ end precursors, 
catalyzed by RNase P.53 Furthermore, A5655G variant 
changed the highly conserved base pairing (A1-U72) at 
the Acceptor arm of tRNAAla. Functional analysis revealed 
that this variant caused an improperly aminoacylated 
tRNAAla and slower electrophoretic mobility of mutated 
tRNA.54 While the homoplasmic T5587C variant occurred 
at position 73 near the end of tRNAAla, which was very 
important for tRNA identity.55 Notably, the T to C transition 
at that position was extremely conserved from various 
species, recent experimental studies indicated that the 

T5587C variant may be associated with Leber’s 
Hereditary Optic Neuropathy (LHON) and essential hyper-
tension (EH).56,57 Furthermore, the C7502T and T7505C 
variants were identified in DHU-loop of tRNASer(UCN) 

gene, the C7502T variant occurred at A14-U8 interaction 
site, which is important for cognate aminoacyl tRNA 
synthetase recognition.58 While the T7505C variant was 
located at a highly conserved base-pairing (A10-U20) of 
tRNASer(UCN). The abolishment of A10-U20 Watson-Crick 
base-pairing likely altered the tRNASer(UCN) metabolism. 
Functional significant of this variant was supported by 

Table 4 (Continued). 

Gene Position Alternation Conservation (H/B/M/ 
X)a

rCRSb DM- 
101

DM- 
102

Previously 
Reportedc

A8 8440 A to G A G Yes

A6 8701 A to G (Thr to Ala) T/S/L/Q A G Yes

8860 A to G (Thr to Ala) T/A/A/T A G G Yes

CO3 9540 T to C T C C Yes

9824 T to C T C Yes

9896 A to G A G Yes

ND3 10,310 G to A G A Yes

10,398 A to G (Thr to Ala) T/T/T/A A G Yes
10,400 C to T C T Yes

ND4L 10609 T to C (Met to Thr) M/T/T/T T C Yes
10,750 A to G (Asn to Ser) N/N/N/N A G Yes

ND4 10,683 G to A G A Yes
10,873 T to C T C Yes

11,719 G to A G A Yes

11,926 A to C A C Yes

ND5 12,360 A to G A G Yes

12,406 G to A (Val to Ile) V/F/S/F G A Yes
12,705 C to G C G G Yes

12,882 C to T C T T Yes
13,152 A to G A G Yes

13,708 G to A G A Yes

13,759 G to A G A Yes
13,928 G to C (Ser to Thr) S/T/S/T G C Yes

ND6 14,311 T to C T C Yes

CytB 14766 C to T (Thr to Ile) T/S/I/S C T T Yes

14,783 T to C T C Yes
15,040 C to T C T Yes

15,043 G to A G A Yes

15,301 G to A G A A Yes
15,326 A to G (Thr to Ala) T/M/I/I A G G Yes

Notes: aConservation of amino acids in polypeptides or nucleotides in RNA in Human (H), cows (B), mice (M) and Xenopus laevis (X). brCRS: revised Cambridge reference 
sequence. cPlease visit Mitomap database (www.mitomap.org) or mtDB (www.genpat.uu.se/mtDB).
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approximately 65% reductions in the level of tRNASer(UCN) 

observed in the lymphoblastoid cell lines carrying the 
T7505C variant, as compared with the wild-type cell 
lines.59 In addition, the heteroplasmic G8313A variant had 
been found in patients with various clinical phenotypes 
including encephaloneuropathy, short stature, myopathy, 
peripheral neuropathy, and osteoporosis.60 Functional ana-
lysis of cybrid cells containing this variant showed 
a marked decreased in tRNALys steady-state level and ami-
noacylation ability, suggesting that these molecular abnorm-
alities may underlie the pathogenesis of the G8313A 
variant.61 Moreover, the T10003C and A10055G variants 
were identified in tRNAGly gene, in fact, the T10003C 
variant created a novel Watson-Crick base-pairing (C13- 
G19), whereas the A10055G variant disrupted the 

conserved Watson-Crick base-pairing (U3-A70), therefore, 
the alteration of mt-tRNA structure caused by A10055G 
variant may affect mt-tRNA function, and subsequently led 
to a failure in mt-tRNA metabolism.62 Moreover, the 
A12308G variant created a novel Watson-Crick base- 
pairing (A25-U43) in the variable region of tRNALeu(CUN), 
by contrast, the A12330G variant abolished the conserved 
base-pairing (U6-A68) in the Acceptor arm of 
tRNALeu(CUN). In fact, the A12308G variant had been 
implicated to be associated with pigmentary retinal degen-
eration, short stature, dysphasia-dysarthria and cardiac con-
duction defects,63,64 and increased the risk of developing 
stroke.65 While the homoplasmic A12330G variant was 
found in patients with maternally inherited EH.66 

Furthermore, 3 variants were found in tRNAThr gene: 

Figure 3 Identification of tRNALeu(UUR) A3243G and T3290C variants by direct sequence.

Figure 4 Sequence alignment of tRNALeu(UUR) from various species, arrows indicate the positions of 14 and 59, corresponding to the A3243G and T3290C variants.
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G15897A, A15924G and G15927A, among these, the 
G15897A variant occurred at highly conserved nucleotide 
of tRNAThr, which was important for the stability and 
identity of mt-tRNA. This variant was found to decrease 
the steady-state level, as well as aminoacylation ability of 
tRNAThr, and subsequently led to the defects in energetic 
processes.11 Notably, the A15924G and G15927A variants 
were located at anticodon stem of tRNAThr, which were 
extremely conserved from different species.67 Previous stu-
dies showed that the A15924G variant was associated with 
fatal infantile respiratory enzyme deficiency,68 while the 
G15927A was regarded as pathogenic mutation associated 
with coronary heart disease (CHD)69 and implicated to 
modulate the clinical expression of deafness-associated 
12S rRNA A1555G mutation.70 The G15927A mutation 
caused significantly decreased efficiency in aminoacylation 
and steady-state levels of tRNAThr.71 Thus, the failure in 
tRNA metabolism led to the mitochondrial dysfunction that 
was responsible for T2DM.

Among these patients carrying putative pathogenic mt- 
tRNA variants, only 2 of them had an obvious family 
history of T2DM (Figure 1). In DM-101 pedigree, 
among 6 matrilineal relatives, 3 individuals suffered from 
both diabetes and deafness, while in DM-102 pedigree, 
there were 8 matrilineal relatives, notably, 4 of them 
suffered from T2DM (2 subjects with diabetes only, 2 
subjects with both diabetes and hearing impairment). 
Interestingly, matrilineal relatives in these two families 
had earlier age onset of diabetes, indicating that mtDNA 
variants may be acted as risk factors for molecular diag-
nosis and detection of this disease.

Sequence analysis of the entire mitochondrial genomes 
of the matrilineal relatives from two families revealed the 
presence of tRNALeu(UUR) A3243G and T3290C variants, 
together with sets of genetic polymorphisms belonging to 
East Asian haplogroups F2 and D4, respectively.29 In fact, 
the heteroplasmic A3243G mutation accounted for approxi-
mately 0.5–3% of all cases of diabetes in general 
population.72,73 Patients who carried this mutation demon-
strated an impaired OXPHOS,74 and decreased OXPHOS in 
glucose-stimulated insulin secretion from β-cells.75 On the 
other hand, the homoplasmic T3290C variant occurred at 
position 59 in the TψC loop of tRNALeu(UUR), which was 
very conserved from different species (Figure 4). Thus, it 
was hypothesized that T3290C variant likely altered the 
tRNALeu(UUR) metabolism, in fact, previous study suggested 
that this variant was found to be associated with EH.46 

Moreover, a variable severity of T2DM, as well as 

audiometric configuration of hearing impairment were 
observed among the matrilineal relatives in these two 
families indicated the involvement of other modified factors 
such as nuclear genes, mitochondrial haplogroups, epige-
netic or environmental factors. However, the absence of 
TRMU A10S and GJB2 variants indicated that these nuclear 
modified genes may not play active roles in MIDD in these 
families. Furthermore, sequence analysis of the entire 
mtDNA genes of matrilineal relatives in these families 
suggested the presence of 74 variants, in addition to the 
A3243G and T3290C variants, which belonged to mito-
chondrial haplogroups F2 and D4, respectively.29 Of these, 
the ND1 T3394C variant displayed very highly evolutionary 
conservation, and was not detected in 200 Chinese control 
subjects. Notably, this variant disrupted the specific electro-
static interactions between Y30 of ND1 with the sidechain 
of E4 and backbone carbonyl group of M1 of NADH 
dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 
(NDUFA1) of Complex I, thereby altering the structure and 
function of OXPHOS.76 Importantly, the T3394C variant 
altered the stability of ND1 and Complex I assembly, 
decreased the activities of Complex I and increased the 
production of ROS in cybrid cells.77 Therefore, the mito-
chondrial dysfunctions caused by the tRNALeu(UUR) 

T3290C variant may be worsened by the ND1 T3394C 
variant in DM-102 pedigree.

Conclusions
In summary, our study indicated that mt-tRNA variants 
may be associated with T2DM in Han Chinese population, 
in particular, tRNALeu(UUR) A3243G and T3290C, 
tRNAMet A4435G and C4467A, tRNATrp A5514G, 
tRNAAla T5587C and A5655G, tRNASer(UCN) C7502T 
and T7505C, tRNALys G8313A, tRNAGly T10003C and 
A10055G, tRNALeu(CUN) A12308G and A12330G, 
tRNAThr G15897A, A15924G and G15927A altered the 
structure and function of their tRNAs, thereby causing 
mitochondrial dysfunctions and long-standing increase of 
ROS in pancreatic β-cells. These variants may be the 
inherited risk factors for T2DM. Future studies with larger 
sample size comprising different ethnicities should be 
performed to confirm our conclusion.
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