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Huntington’s disease (HD) is caused by an expanded CAG tract in the Interesting transcript 15 (IT15) gene
encoding the 350 kDa huntingtin protein. Cellular stresses can trigger the release of huntingtin from the
endoplasmic reticulum, allowing huntingtin nuclear entry. Here, we show that endogenous, full-length hun-
tingtin localizes to nuclear cofilin–actin rods during stress and is required for the proper stress response
involving actin remodeling. Mutant huntingtin induces a dominant, persistent nuclear rod phenotype similar
to that described in Alzheimer’s disease for cytoplasmic cofilin–actin rods. Using live cell temporal studies,
we show that this stress response is similarly impaired when mutant huntingtin is present, or when normal
huntingtin levels are reduced. In clinical lymphocyte samples from HD patients, we have quantitatively
detected cross-linked complexes of actin and cofilin with complex formation varying in correlation with dis-
ease progression. By live cell fluorescence lifetime imaging measurement–Förster resonant energy transfer
studies and western blot assays, we quantitatively observed that stress-activated tissue transglutaminase 2
(TG2) is responsible for the actin–cofilin covalent cross-linking observed in HD. These data support a direct
role for huntingtin in nuclear actin re-organization, and describe a new pathogenic mechanism for aberrant
TG2 enzymatic hyperactivity in neurodegenerative diseases.

INTRODUCTION

In 1993, an expanded CAG tract in the interesting transcript 15
(IT15) gene encoding the polyglutamine-expanded huntingtin
protein was found to be the cause of Huntington’s disease
(HD): a progressive, neurodegenerative disorder with typical
late-age onset affecting as many as 1 in 4000 individuals
(1,2). This 350 kDa protein contains little homology to other
known proteins, but does share a repetitive peptide structure
termed HEAT-repeats, found in many large scaffolding pro-
teins (3). HEATs are seen to allosterically regulate the shape
of proteins and allow multiple conformations and protein–
protein interactions controlled by elastic and tensor forces,

mediated by tethers to cell structural components or organelles
(4). Normal huntingtin functions have been described in tran-
scriptional regulation (5), epigenetic control (6,7), vesicle traf-
ficking (8), endoplasmic reticulum (ER)–stress response (9)
and neurogenesis during development (10). Previously, we
defined the amino-terminal 17 amino acids of huntingtin as
a critical ER tether that mediates its release from the ER
upon stress (9). This 17-amino-acid signal in huntingtin, or
N17, is a modulator of mutant huntingtin toxicity in many
systems (9,11) and the target of post-translational modifi-
cations (12–14). This signal is also found in all mouse
models of HD, and is protective to the effects of polygluta-
mine expansion if phospho-mimicked at serines 13 and 16 in
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the bacterial artificial chromosome HD mouse model (13).
From this work, we focused our cell biological studies on
the effects of stress on the localization of the normal, full-
length, huntingtin protein that is endogenous to mouse striatal-
derived cells (15), without any over-expression of huntingtin
fragments. Our goal was to observe normal huntingtin cell
biology under transient stresses, similar to those types of stres-
ses associated with normal human aging.

Heat shock stress recapitulates a strong transient stress
event that causes a global unfolding of proteins, or proteotoxic
stress, a temporary drop in adenosine triphosphate (ATP)
levels and spike in calcium signaling via the ER without
having to use small molecules (16,17). The heat shock stress
response is well characterized, leading to the transient acti-
vation of several chaperones, transcription factors and com-
ponents of the unfolded protein response (UPR) at the ER
(18). Some of these responses involve classic transcriptional
activation, but other responses are at the post-translational
level only, to rapidly respond to a potentially toxic cell
stress event. The cell stress response has been of intense inter-
est to the neurodegeneration community. Neuronal cells have
a decreased ability to deal with oxidative and cellular stress
during the aging process which has been tightly linked to neu-
rodegeneration in HD, Alzheimer’s disease (AD) and Parkin-
son’s disease (PD) (19–21). Upon induction of heat shock
stress, we observed the nuclear localization of endogenous
huntingtin, similar to previous studies using cold shock or
UPR stresses with huntingtin fragments containing N17 (9).
However, we also observed the localization of huntingtin
within the nucleus to numerous straight rod-like structures of
3–5 mm, which disappeared upon the relief of stress. Similar
structures were reported as rods of cofilin and super-twisted
F-actin in neurites, observed in models of AD (22,23). In the
nucleus, during the heat shock response, cofilin, an actin
binding protein normally required for actin treadmilling, satu-
rates actin causing bundles of actin filaments. These bundles
are referred to as ‘cofilin rods’ (24). Cofilin rods can form in
the cytoplasm during certain cell stresses and stop a proportion
of actin from treadmilling. This liberates ATP normally
involved in this process so it can be used elsewhere in the
cell during stress (25). We observed a dominant loss of func-
tion in cells expressing full-length mutant huntingtin’s ability
to respond to and recover from stress through the cofilin–actin
pathway.

In order to determine the relevance of these observations to
HD, we performed western blot analysis of cofilin on the lym-
phocytes of HD patient blood samples. Patients ranged from
premanifest through the four clinically defined Shoulson–
Fahn stages of disease. From this cohort, we detected the pres-
ence of a cross-linked cofilin–actin band by western blot in
which higher degrees of cross-linking quantifiably correlated
to disease stage. These correlations were apparent both
across the population of each disease stage and also longitud-
inally within individuals.

Tissue transglutaminase 2 (TG2) is a calcium sensitive multi-
functional enzyme. TG2 has guanosine triphosphate signaling
activity as well as transamidating activity. TG2 can catalyze
the formation of a covalent bond between polyamine, or the
1-amino group of polypeptide-bound lysine, and the
g-carboxamide group of polypeptide bound glutamine to form

polyamine or isopeptide bonds, respectively (26). TG2 activity
is known to be elevated in HD brains, and in HD lymphocytes
(27,28). Others have shown that transglutaminase can cross-link
cofilin and actin in vitro (29). We therefore hypothesized that
the higher order cross-link of cofilin and actin observed in the
lymphocyte samples may be due to elevated TG2 activity.
Using western blot assays, we show that cofilin–actin cross-
linking, similar to what is observed in HD lymphocytes, was
dependent not only on TG2 protein levels, but also stress, con-
sistent with the requirement for activated TG2.

At the single cell level, we used biophotonic fluorescence
lifetime imaging measurement (FLIM) technology (30) to
measure Förster resonant energy transfer (FRET) between
enhanced yellow fluorescent protein (eYFP)-TG2 and mCeru-
lean–cofilin, at rods in live cells undergoing stress, to deter-
mine whether the proteins directly (,8 nm) interact in vivo.
We show that TG2 interacts in a stress-dependent manner
with both nuclear and cytoplasmic cofilin rods, potentially med-
iating the cofilin–actin cross-link and the rod persistent pheno-
type observed in AD and HD. Thus, our data lead us to
hypothesize a new model for TG2 hyperactivity in HD. This
model describes defective actin turnover during stress due to
the polyglutamine expansion in huntingtin causing ER disrup-
tion, increased calcium levels and activation of TG2, resulting
in aberrant cofilin–actin covalent cross-links. This model pre-
dicts that actin turnover may be universally affected in all
cell types in HD, but would be most critical to highly dendritic
neurons (31), such as the medium-sized spiny neurons (MSNs)
which are predominantly affected in HD. Our data also show
that there may be quantifiable HD phenotypes in peripheral
cells that may be developed into biomarkers for HD.

RESULTS

We have previously shown that huntingtin localizes to the ER
under steady state growth conditions, and that it can be
released from the ER and enter the nucleus under conditions
of temperature or UPR stress (9). In order to determine
whether the huntingtin protein had any direct role in cellular
stress response, we observed a mouse striatal neuron-derived
cell line (STHdh) (32) expressing full-length endogenous
levels of either wild-type (STHdhQ7/Q7), or mutant
(STHdhQ111/Q111) huntingtin, under typical heat shock con-
ditions of 428C for 60 min. Huntingtin was then visualized
by a fully validated huntingtin monoclonal antibody,
MAb2166 (33), by immunofluorescence (Fig. 1). Within the
nucleus, we could visualize huntingtin localized to numerous
3–5 mm rod structures in STHdhQ7/Q7 (Fig. 1Aa–c, m–o),
and to phenotypically different, fewer and longer rod struc-
tures in STHdhQ111/Q111 (Fig. 1Ad–l). These nuclear rods
could be visualized with the amino-terminal epitope antibody
MAb2166, as well as the carboxy-terminal epitope antibody
C20 (Fig. 1Ad–f), suggesting that full-length huntingtin loca-
lizes to these structures. Nuclear cofilin–actin rods have been
observed by others in the past in response to various cell stress
agents, including heat shock (33–35). To test if these
huntingtin-positive nuclear structures may be cofilin–actin
rods, we performed co-immunofluorescence with antibodies
against huntingtin and cofilin (Fig. 1Ad–f), huntingtin and
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actin (Fig. 1Ag–i) and cofilin and actin (Fig. 1Aj–l). From
these data, we concluded that the huntingtin-positive nuclear
rods induced by heat shock are cofilin–actin rods. This was

confirmed directly by co-imaging and co-localization of the
mCerulean–cofilin fusion protein over-expressed in STHdh
cells and immunofluorescence to visualize endogenous

Figure 1. Full-length, endogenous huntingtin protein is a component of nuclear cofilin–actin stress rods. (A) Immunofluorescence in mouse STHdhQ7/Q7 or
STHdh Q111/Q111 striatal-derived cell lines, in cells heat-shocked at 428C for 60 min. Secondary antibodies were either Alexa 488 (green) or Alexa 595
(magenta) labeled. (a–c) Huntingtin monoclonal antibody MAb2166, co-stained with Hoechst DNA dye (cyan). (d–f) Huntingtin monoclonal antibody C20,
co-stained with cofilin monoclonal MAb22. (g–i) Huntingtin monoclonal MAb2166 co-stained with an antibody against actin. (j–l) Co-staining with antibodies
against cofilin and actin. (m–o) Huntingtin monoclonal antibody MAb2166, in cells expressing an mCerulean–cofilin fusion protein. (B) Immunofluorescence
on 6-day-old primary hippocampal neurons treated with 10% DMSO for 90 min to induce rod formation. Untreated cell (a–d) stained with affinity purified rabbit
IgG to chick ADF (a), huntingtin monoclonal antibody MAb2166 (b) and co-stained with Hoechst DNA dye. Secondary antibodies were either Alexa 488 (green)
or Alexa 595 (magenta) labeled. DMSO treated cell (e–h). Merged overlapping signal is pseudo-colored white. Scale bar is 10 mm.
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huntingtin using MAb2166 (Fig. 1Am–o). To verify that these
observations were not artifactual to immortalized tissue
culture cells, or to heat shock, we imaged endogenous
cofilin and huntingtin in primary mouse hippocampal
neurons, with and without 10% dimethyl sulfoxide (DMSO)
treatment (35) to induce cofilin rods (Fig. 1Be–h), with
similar localization of endogenous wild-type mouse huntingtin
to cofilin rods. In summary, upon heat shock or DMSO
induced cell stress, huntingtin protein entered the nucleus
and localized to cofilin–actin rods. We did not observe hun-
tingtin at cytoplasmic cofilin–actin rods under any cell
stress conditions tested in any cell type, indicating that this
is likely a nuclear function of huntingtin during stress.

In order to quantify the effect of the polyglutamine expan-
sion on nuclear cofilin–actin rods, we quantitatively compared
the rod formation in STHdhQ7/Q7 and STHdhQ111/Q111 cell
lines during stress. STHdhQ7/Q7 cells formed numerous (8+
5) (Fig. 2Aa–c and B), short 3–5 mm rods upon heat shock
(33), whereas STHdhQ111/Q111 cells formed fewer (2+ 1)
and longer rods that often spanned the nucleus to 10 mm
(Fig. 2Ad–f and B), phenotypically similar to persistent rods
previously defined by others in AD models (23). The percen-
tage of cells that formed rods during stress was not statistically
different at the 60 min time point (Fig. 2C). We also observed
endogenous huntingtin protein in a heat-shocked mouse fibro-
blast cell line, NIH 3T3 (Fig. 2Ag–i), and found that hunting-
tin localized to cofilin rods phenotypically similar to
STHdhQ7/Q7 cells. Thus, huntingtin localization to nuclear
cofilin rods upon stress is not limited to neuron-derived
cells. This is consistent with endogenous huntingtin protein
expression in all cell types outside of the brain (1).

In AD, cytoplasmic cofilin–actin rods are shown to persist
beyond the stress when cells are returned to normal conditions
(23). In order to assay whether mutant huntingtin rods were
persistent or not, we heat-shocked cells, and fixed them
immediately following heat shock (t ¼ 0), or placed them
back at 338C and allowed them to recover for 3 or 24 h (t ¼
3 or t ¼ 24). This was followed by fixation and immunofluor-
escence with anti-cofilin MAb22 (Fig. 2D). A minimum of 20
sequential frames at ×63 magnification were imaged and the
number of rod forming cells were counted. Recovery values
were normalized to the number of rod forming cells observed
at t ¼ 0. After 24 h recovery, the wild-type cell line recovered
almost completely with only 2% of rods persisting, whereas
mutant cells still had a 36% persistence rate (Fig. 2E). Strik-
ingly, 100% of nuclear rods that persist beyond 3 h (in any
cell type) have a persistent rod phenotype (Fig. 2Dc, g, h,
see arrows).

For subsequent experiments, based on our quantitative phe-
notyping of the different cell lines, we generated a phenotypic
threshold defining a cell with the wild-type rod phenotype as
having .4 rods/nucleus (rod length spanning 1–6 mm) and
a cell that has a persistent rod phenotype to have between 1
and 4 rods/nucleus with at least 1 rod being .4 mm. Using
these parameters, we quantified the percentage of rod
forming cells with persistent rod phenotypes immediately fol-
lowing heat shock. We found that only 27.6+ 6.1% of rod
forming STHdhQ7/Q7 cells form nuclear rods with a persistent
phenotype compared with 83+ 5.6% of rod forming
STHdhQ111/Q111 cells. Collectively, these results indicate that

huntingtin has a normal universal role in the nucleus with
respect to nuclear rod formation and that this role is disrupted
by a polyglutamine expansion. In addition, the presence of
mutant huntingtin causes an increase in the persistence of
nuclear cofilin–actin rods once the cell has been allowed to
recover from stress, thus directly implying huntingtin dysfunc-
tion in this stress response.

In order to consistently assay cofilin rod formation, we
made a stable STHdhQ7/Q7 cell line expressing the mCeru-
lean–cofilin fusion protein. To assess any essential role of
wild-type huntingtin in this cell stress response, we treated
STHdh mCerulean–cofilin cell lines with specific small inter-
fering ribonucleic acid (siRNA) to knockdown levels of hun-
tingtin. After siRNA knockdown of huntingtin was
confirmed by western blot (Fig. 3A), we compared rod for-
mation in STHdh mCerulean–cofilin cells treated with hun-
tingtin siRNA or a control siRNA during and after heat
shock stress by visualizing mCerulean–cofilin (Fig. 3B and
C). We did not observe any difference in percentage of cells
forming rods upon heat shock at 60 min whether huntingtin
levels were reduced or not (Fig. 3B). After 1 h stress,
35.5+ 2.3% of rod forming cells had a persistent rod pheno-
type when scramble siRNA was transfected versus 51.6+
4.3% when huntingtin siRNA was transfected (Fig. 3B).
After 24 h recovery, we observed a significant increase in per-
sistent rods after huntingtin knockdown; 3.5+ 0.38% of rods
persisted in cells transfected with scrambled siRNA versus
21.4+ 6.5% when huntingtin siRNA was transfected
(Fig. 3C). These results show that when wild-type huntingtin
is knocked down, the cofilin–actin rod phenotype and
defects are similar to cells expressing mutant huntingtin
(Fig. 3B), indicating a loss of function with polyglutamine
expansion in huntingtin.

We then wanted to ascertain whether the effect of mutant
huntingtin presence was dominant, an important factor when
considering the genetics of HD. Immortalized striatal
neurons from a heterozygous (STHdhQ111/Q7) mouse were
heat-shocked, and we performed similar immunofluorescence
for cofilin. At the 1 h time point, the heterozygous cells
formed rods with a similar phenotype to mutant cells: 69+
3.3% (SE) of rod forming cells had a persistent rod phenotype
(Fig. 3B). This indicates that the changes in rod formation can
happen even when wild-type huntingtin is present, and thus
the persistent rod phenotype is dominant.

In order to visualize the dynamics of cofilin rod formation
during cell stress, we used STHdhQ7/Q7 and STHdhQ111/Q111

cell lines stably expressing mCerulean–cofilin fusion
protein, and observed live cells over time during heat shock
stress by fluorescence microscopy using a heated stage (Sup-
plementary Material, Videos S1 and S2). Cells were imaged
every 60 s during heat shock. These temporal experiments
were repeated multiple times and parameters of rod formation,
rod persistence time, rod length and time to cell death were
quantified and compared (Supplementary Material,
Table S1A). Typical results are presented in Figure 4. These
experiments revealed that the average time before nuclear
cofilin rods was observed during cell stress were significantly
longer in STHdhQ111/Q111 (35 min) versus STHdhQ7/Q7

(16 min) cell lines (Fig. 4A and B) (Supplementary Material,
Videos S1 and S2). A detailed quantitative comparison of
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the rod phenotypes between the two cell lines demonstrated
that mutant huntingtin cell lines were significantly delayed
in rod formation during stress, and that rods were typically
fewer and longer, with a persistent phenotype (Supplementary
Material, Table S1A). This is consistent with our earlier results
in fixed cell lines expressing only endogenous cofilin. In con-
trast to fixed cells, live cell temporal observations demonstrate
that fewer STHdhQ111/Q111 cells form rods during stress in the
presence of mutant huntingtin. These data highlight the impor-
tance of using live cell imaging for these observations.

We used the same assay to track huntingtin siRNA effects
on a cell-by-cell basis using a siRNA transfection fluorescent
marker indicator (Block-itTM, Alexa Fluor Red) in our
mCerulean–cofilin stable STHdhQ7/Q7 cell line (Fig. 4Ca–b
and h–i). When cells were transfected with huntingtin
siRNA, the cells had a delayed rod formation response upon
stress, and a persistent rod phenotype (Fig. 4Ck–m) mimick-

ing what occurred in our STHdhQ111/Q111 cofilin stable cells.
There was also a significantly faster cell death due to stress

after siRNA treatment (44 min versus 79 min for the
scrambled control) (Fig. 4D; Supplementary Material,
Table S1B and Videos 3 and 4). Thus, huntingtin has a critical
normal function in cell heat shock stress response, and the
mutant huntingtin protein or knockdown of normal huntingtin
protein appears to delay the onset of this stress response and
affect the normal recovery from stress.

Under normal growth conditions, cofilin has an essential
function in actin treadmilling, or turnover from the monomeric
soluble state to the filamentous fibers. This function is controlled
by the reversible phosphorylation of cofilin by LIM kinase (36).
During stress, cofilin becomes hyper-dephosphorylated. Depho-
sphorylated cofilin has a strong affinity for adenosine dipho-
sphate actin and saturates F-actin, forming rods or bundles
that sequester most of the cofilin and thus slow turnover of the
remaining F-actin sparing ATP for other cellular processes
(24,25). LIM is targeted by Parkin in PD (37), and cofilin
levels are highly variant in PD lymphocytes (38). Therefore,
we western blotted cofilin in protein samples from HD patient

Figure 2. Mutant huntingtin protein affects nuclear cofilin rod formation and induces persistence of cofilin rods. Immunofluorescence with either huntingtin or
cofilin antibodies in either STHdhQ7/Q7 or STHdhQ111/Q111 cell lines. (A) Mutant huntingtin protein affects the number and size of nuclear cofilin stress rods upon
60 min heat shock. (a–c) Huntingtin or cofilin immunofluorescence before (a), or after heat shock (b–c) in STHdhQ7/Q7 cells. (d–f) Huntingtin or cofilin immu-
nofluorescence before (d), or after heat shock (e–f) in STHdhQ111/Q111 cells. (g–i) Huntingtin or cofilin immunofluorescence before (g), or after heat shock (h–i)
in NIH 3T3 mouse fibroblast cell line. (B). Comparison of number of nuclear rods per cell immediately after 60 min heat shock in STHdhQ111/Q111 or STHdhQ7/Q7

lines. Rod forming cells were imaged as a z-stack and the mass projection was used to count number of rods per nucleus in each cell type. N ¼ 3, n ¼ 10 per
replicate, total n ¼ 30. ∗P-value of n , 0.001. (C) Comparison of number of cells with nuclear rods immediately after 60 min heat shock. Cells were fixed
immediately after 60 min heat shock and 20 sequential images at a random area in the dish were taken at 63×. Number of cells with nuclear rods were
counted and expressed as a percentage. N ¼ 3, P-value of 0.210. N.S., not statistically significant. (D) Immunofluorescence staining against cofilin in either
STHdhQ7/Q7 (a–d) or STHdhQ111/Q111 (e–h) cell lines. Images shown directly after heat shock stress (b, f) or after 3 h (c, g) or 24 h (d, h) recovery at
optimal conditions. Control, no stress, images shown (a, e). (E) Quantification of percent rod forming cells with persistent nuclear rods after 3 and 24 h at
338C was performed as described for (C). Percent cells with persistent rods expressed as a percentage of initial rod forming cells immediately after heat
shock stress (t ¼ 0) for each trial. N ¼ 3; ∗P-value of 0.163; N.S., not statistically significant. ∗∗P-value of 0.003. Persistent rod phenotype highlighted with
white arrows. All scale bars are 10 mm.
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lymphocyte samples obtained from gradient density
centrifugation-separated pellets from blood. These samples
were collected from patients at the four clinically defined
(Shoulson–Fahn) stages of HD, including pre-manifest patients
and age-matched controls, for a total of 39 individuals. We per-
formed western blots using monoclonal antibodies raised
against cofilin protein (Fig. 5A). We observed a higher order
cofilin complex that was enhanced with advancing stages of
HD. The size of the higher order band was consistent with the
additive molecular weights of actin and cofilin proteins, which
have been shown by others to be capable of stably cross-linking
in vitro (39). Blotting for actin revealed a band migrating at the
same size in these samples (Fig. 5A). Therefore, this complex
contained cofilin and actin, and was stable despite sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS–
PAGE), boiling and 1% dithiothreitol treatment, indicating a
covalently linked complex. When quantitatively comparing
the ratios of cofilin trapped in the cofilin–actin complex to the
free cofilin (higher order band to lower order band) by pixel
density analysis, we noted that more cofilin was present in the
higher order complex as the stages of HD advanced. This
effect was statistically significant between control or pre-
manifest individuals and early or late stages of HD (Fig. 5B).
Thus, the degree of cross-linked cofilin–actin complex from
patient lymphocytes could be tracked from pre-manifest
patients to patients with advancing stages of HD.

We additionally obtained longitudinal primary lymphocyte
samples from four HD patients, three of whom had progressed
from pre-manifest to early HD, while one patient remained pre-
manifest on both samplings. For all three individuals who had
progressed to early HD, we observed an increase in trapped
cofilin–actin complexes (Fig. 5C and D). No increase in
cofilin–actin complex was observed in the pre-manifest individ-
ual (Fig. 5D, patient #2) consistent with the population studies,
and the greatest increase in ratio of cofilin–actin complex to free
cofilin was observed in a patient who had progressed from pre-
manifest to a later stage of HD (Fig. 5D, patient #1). The two sets
of data from different patient populations, and from individual
patients over time similarly demonstrated that trapped

cofilin–actin complexes increase with disease onset and
increasing severity of HD. This raises the question as to what
is actually mediating this cross-linkage and what connection
there may be between cofilin and actin cross-links in lympho-
cytes and cofilin–actin rods in model systems.

In the past, others have observed the ability of cofilin and
actin to be covalently cross-linked in vitro upon addition of
transglutaminase (29). Tissue transglutaminase (TG2) is an
intracellular protein with many functions, but is known to cat-
alyze the formation of a covalent bond between polypeptide-
bound lysine and polypeptide-bound glutamine (40). Several
lines of evidence prompted us to examine TG2 activity in
our system. First, TG2 activity and expression are highly elev-
ated in neurodegenerative diseases, including HD in the brain
(27), cerebrospinal fluid and plasma (41), as well as in AD
(42). For example, TG2 has been shown to co-localize with
pathological lesions in AD brains (43) and isopeptide cross-
links have been detected in paired helical Tau filaments
(44). Of relevance to this study, TG2 activity has been
shown to be increased in HD patient lymphocytes, in a
CAG length-dependent manner (28). Furthermore, a TG2
knockout mouse crossed with an HD model mouse results
in reduced neuronal death and increased lifespan (45).
Regular polyglutamine (46) as well as expanded polygluta-
mine (47) have been shown to be TG2 substrates and TG2
is mis-regulated in HD; however, there is evidence showing
that TG2, although involved in HD progression, does not
cross-link or co-localize to inclusions of mutant huntingtin
(48). Consistent with this, there is evidence showing that in
an HD mouse model TG2 is involved in HD progression in
an aggregate-independent manner (49). Recently, TG2 has
been shown to modulate transcriptional changes in HD indi-
cating aberrant nuclear activity apart from aggregation (50).
Given these data, we tested whether TG2 could be responsible
for the cofilin–actin cross-links observed in clinical HD lym-
phocyte samples.

We wanted to ascertain whether TG2 could have activity at
rods in our live cell STHdh system. FLIM measures the
change in fluorescence lifetime of the donor fluorophore, in

Figure 3. Huntingtin protein is required for proper cofilin nuclear rod formation and clearance following cell stress. (A) Western blot against huntingtin protein
after control siRNA or huntingtin-specific siRNA was expressed in wild-type huntingtin STHdhQ7/Q7 cells for 72 h. Anti-actin shown as a loading control. (B)
Comparison of percent nuclear rod forming cells with persistent rod phenotype in heat-shocked cells. Comparison between STHdhQ7/Q7, STHdhQ111/Q111 and
STHdhQ7/Q111 cell lines as well as in STHdhQ7/Q7 cells following siRNA treatment. Experiment performed as described previously. N ¼ 3, ∗P-value of
,0.003, ∗∗P-value of 0.028. (C) Comparison of percent of rod forming cells with nuclear persistent rods after 72 h siRNA treatment, heat shock and 24 h recov-
ery. Quantification performed as previously described. N ¼ 3, ∗P-value of 0.046.
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this case mCerulean blue cyan fluorescent protein (CFP),
which inversely correlates to FRET efficiency in the presence
of an acceptor, in this case eYFP. This is not affected by spec-
tral bleed-through or protein concentration, and thus is the best
standard of FRET measurement between two individual pro-
teins observed in live cells (30). This method is used to deter-
mine whether two proteins are directly interacting within 8 nm
of 3D space in vivo, as FRET efficiency drops off to the sixth
power with distance (30). FRET efficiency, E, is calculated as
1 minus the lifetime of the donor in the presence of acceptor/
lifetime of donor without acceptor. mCerulean–cofilin was
used as our donor and eYFP (Venus yellow variant) or
eYFP-TG2 as our acceptor. Under steady-state conditions,
mCerulean–cofilin could be visualized in both the nucleus
and cytoplasm, with mCerulean–cofilin having a fluorescent
lifetime of 2600 ps, either with eYFP or eYFP-TG2
co-expressed (Fig. 6Aa–c versus d–f shown on the color
scale map as green and red dashed line). This indicated that
there is no FRET under steady-state conditions, hence no

interaction between the proteins. Under heat shock conditions
in mCerulean–cofilin expressing cells, the lifetime of
mCerulean–cofilin did not change from 2600 picoseconds
when only eYFP was co-expressed (Fig. 6Ag–j and B). The
lifetime of mCerulean–cofilin was significantly shorter due
to FRET in the presence of eYFP-TG2 (Fig. 6Ak–r and B),
with the strongest FRET efficiency at the cofilin–actin rods,
from 2600 to under 2000 ps (indicated by yellow–orange
in Fig. 6Bl, m, p, q, see arrows). The interaction between
mCerulean–cofilin and eYFP-TG2 gave an average of
15.6% FRET efficiency over the whole cell area (with the
maximum possible being �30% for this donor–acceptor
FRET pair) versus the average of the eYFP control interacting
with mCerulean–cofilin of 0.7% (Fig. 6Aj versus n, quantified
in 6B). These data show that eYFP-TG2 can directly interact
with mCerulean–cofilin on both nuclear and cytoplasmic
cofilin rods in vivo (see arrows in Fig. 6Bl, p, q) which may
lead to a cross-link of cofilin and actin, especially if elevated
calcium levels are present, as seen in HD (51).

Figure 4. Huntingtin is required for normal cell heat shock stress response and mutant huntingtin affects the rate of the nuclear cofilin rod stress response. Tem-
poral imaging in live STHdhQ7/Q7 or STHdhQ111/Q111 cells stably expressing mCerulean–cofilin fusion protein. (A) mCerulean–cofilin imaged over time
showing nuclear cofilin rod formation in both wild-type and mutant cell lines at 10 and 32 min, respectively (b versus g), following panels show length of
times rods exist and time of clearance during maintained heat shock at 428C (c–e and h–j). (B) Comparison graph of average time to nuclear rod formation
for stable mCerulean–cofilin wild-type (N ¼ 15) and mutant (N ¼ 9) STHdh cells during live cell imaging experiments. ∗P-value of 0.007. (C) Temporal
imaging in live STHdhQ7/Q7 cells stably expressing mCerulean–cofilin. Cells were co-transfected with control siRNA or huntingtin-specific siRNA and
Block-iTTM Alexa Fluorw red for 72 h prior to experiments. Single-cell visualization of control (a–b) or huntingtin siRNA (h–i) transfection with labeled Block-
iTTMAlexa Fluorw red. Visualization of STHdhQ7/Q7 cells with mCerulean–cofilin during heat shock, treated with control siRNA (c–g). STHdhQ7/Q7 cells with
cofilin–mCerulean during heat shock, treated with siRNA to huntingtin (j–n). (D) Comparison graph of average time to cell death in mCerulean–cofilin stable
STHdhQ7/Q7 (N ¼ 13) or STHdhQ111/Q111 (N ¼ 24) cells imaged live and STHdhQ7/Q7 mCerulean–cofilin cells treated with control siRNA (N ¼ 5) or huntingtin
siRNA (N ¼ 6) imaged live during heat shock. ∗P-value of 0.003. Scale bars are 10 mm.
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To ask whether TG2 could catalyze a cross-linked cofilin–
actin band as observed in our HD lymphocyte sample western
blots, we assayed for the presence of the cofilin–actin com-
plexes in STHdh cells by western blotting for endogenous
cofilin under conditions of steady state, heat shock, with
TG2 over-expressed, and under heat shock with TG2 over-
expressed (Fig. 6C). When over-expressing eYFP-TG2, we
had �25% transfection rate by direct visualization of YFP
(data not shown). A cofilin–actin band co-migrating with a
similar higher order cofilin–actin band in clinical HD
patient lymphocytes was observed when TG2 was over-
expressed coupled with stress conditions (Fig. 6C). The
effect seen in the HD patient sample was more robust than
that in our model system, which may indicate that lymphocyte
population in HD may be undergoing a chronic stress, as
opposed to the transient stress of our assay. The data we
provide indicate that a disrupted mechanism of TG2 in HD
may be aberrant cross-linking of cytoskeletal proteins.

DISCUSSION

Previous work has described the first 17 amino acids of hunting-
tin as being an amphipathic alpha helix with an affinity for the
ER. Huntingtin has the ability to come off the ER and enter

the nucleus during stress (9), following the classic model of
ER stress-sensor proteins (52). Here, we demonstrate that hun-
tingtin directly affects nuclear actin remodeling during the
heat shock stress response. In the past, huntingtin has been
shown to bind F-actin (53) and localize to tubulin-rich structures
at the mitotic spindle (10). Our data show that huntingtin loca-
lizes to an additional form of the dynamic cytoskeleton,
nuclear cofilin–actin rods, during stress. The cofilin rod stress
response occurs to halt a small proportion of actin from tread-
milling, so the ATP that would be used in this dynamic turnover
can be used elsewhere for more crucial cell functions (25). Other
than freeing up ATP (25), the exact role of nuclear actin rods is
not known. Rods may influence chromatin structure and
dynamics as well as transcription in response to stress, all of
which are affected in HD (7,54). All of our data studying
nuclear cofilin rods were acquired by observing full-length
endogenous huntingtin expressed at normal levels. While data
suggest that the amino terminus of huntingtin is involved in
cytoskeletal association (9,53), optimal huntingtin interactions
with the cytoskeleton may require additional domains at the
carboxyl-terminus of the protein (55). In live cells, FRET with
cofilin was only observed with full-length huntingtin and not
with smaller fragments (Supplementary Material, Fig. S1),
implying that this huntingtin function is a loss of function of
fragments of huntingtin. Our data show that in the presence of

Figure 5. White blood cell populations from HD patients show a cross linked cofilin–actin complex on a western blot which increases with clinical onset and
severity of disease. Western blots on the protein extracted from blood buffy coat histopaque-treated pellets from HD patients at different clinically defined stages
of HD (the Shoulson–Fahn method). Western blot was done using MAb22 cofilin or anti-actin antibodies. (A) Typical comparison of samples between age-
matched controls and either pre-symptomatic, early stage 1 and 2 patients and late stage 3 and 4 patients. Mobility of either cofilin or actin is indicated by
black arrows. (B) Quantification of percent cofilin signal in higher order cofilin–actin band from western blots performed on control and HD patient blood
samples. Analysis done using pixel intensity analysis using NIH Image J. Control (N ¼ 7), pre-symptomatic (N ¼ 11), early stages 1 + 2 (N ¼ 9), late stages
3 + 4 (N ¼ 12). ∗P-value , 0.05. (C) Western blot of cofilin in longitudinal blood samples (prepared as described previously) from four HD patients, three
of whom had progressed in HD from pre-symptomatic to early HD between samplings. (D) Graph shows percent cofilin signal in higher order cofilin–actin
band in western blot determined by pixel intensity analysis using NIH Image J.
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mutant huntingtin this stress response is impaired: the stress
response is slower, fewer cells respond and a persistent
nuclear rod phenotype is induced. Defective actin turnover is
quickly establishing itself as a common theme among other neu-
rodegenerative diseases, including PD (37) and AD (22,23) indi-
cating that defective actin remodeling through cofilin may be
universally contributing to the age-onset progression of these
neurodegenerative diseases. Specifically in AD, cofilin–actin
rods have been shown to persist in neurites leading to axonal
dystrophy (23).

Cofilin rods can be induced by stresses that cause protein
misfolding, increased calcium and decreased available ATP.
These include temperature stress, 10% DMSO, ATP depletion

with sodium azide and 2-deoxyglucose to inhibit metabolism,
heavy metals and hydrogen peroxide (23,33). Chronic low
ATP levels have been described in HD patient brains and
HD animal models (56,57), presumably from defective mito-
chondrial metabolism (58). A defect in the actin stress
response could further contribute to the aberrant ATP regu-
lation in HD. Our findings suggest that defective actin remo-
deling during stress may lead to persistent rods causing a
decline in the available cofilin in the cell, or that the altered
actin dynamics during stress may be toxic. Either of these out-
comes would predict that a population of neurons requiring
higher levels of active actin turnover and having high ATP
demands would be greatly affected in HD. Notably, the

Figure 6. TG2 directly interacts with cofilin–actin rods during stress and TG2 over-expression induces a cofilin–actin complex in stressed cells. (A) STHdh cells
were transiently transfected with mCerulean–cofilin and either eYFP alone (a–c, g–j) or eYFP-TG2 (d–f, k–r), and FLIM analysis was performed either before
(a–c, d–f) or following a 45 min heat shock at 42.58C (g–j, k–n, o–r). Fluorescence lifetimes for mCerulean blue are presented with a continuous pseudocolor
rainbow scale representing time values ranging from 1750 to 3250 ps. The lifetime distribution curve of the mCerulean–cofilin is shown as a histogram on the
right representing the number of pixels at each lifetime. The red vertical broken line marks the median lifetime distribution for the cell. Red arrows connect
histogram value position with lifetime image value. (B) Box and whisker plot representing FRET efficiency, with FRET occurring at distances ,8 nm for
these FRET pairs. All imaging and FRET analysis were done in Hank’s HEPES buffer pH 7.3. N ¼ 3, n . 10 for each donor–acceptor pair. ∗P , 0.001.
Line ¼ mean; box ¼ 1 standard deviation from the mean; whiskers ¼ 2 standard deviations from the mean. (C) STHdhQ7/Q7 cells were heat-shocked (at
42.58C for 45 min) and/or transfected with eYFP-TG2 (for �36 h). Western blot using MAb22 anti-cofilin was performed on cell pellets to determine
whether a higher order cofilin band would be observed. Higher order band observed only in stressed cells over-expressing TG2. Patient HD stage 4 lymphocyte
sample was used as a size control for cofilin–actin band. Glyceraldehyde 3-phosphate dehydrogenase loading control was used. Cells were verified for YFP-TG2
expression by fluorescent microscopy.
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highly dendritic MSNs are predominantly affected in HD,
whereas the smaller interneurons in the striatum, with fewer
projections, are spared (59). Dynamic actin turnover is critical
to the health of neurons due to its role in maintaining the plas-
ticity of dendritic spines, which is critical in projection
neurons (31). Furthermore, active actin remodeling to main-
tain synaptic and dendritic structures is a huge energy
burden, using up to half of the total ATP in a steady-state
cell (60). Therefore, the reduced ability of these cells to free
up ATP during stress or defective actin turnover, even
subtly, would conceivably lead to the changes in spine
density, axonal atrophy and eventual neurodegeneration, all
observed in MSNs in HD.

Although this is the first report of defective actin turnover
via cofilin in HD, several previous studies have reported ben-
eficial effects of the Rho-associated kinase (ROCK) inhibitor,
Y-27632, in HD model systems (61). ROCK is an upstream
modulator of cofilin. ROCK inhibition effectively leads to
reduced phosphorylation of cofilin and therefore increased
actin binding cofilin activity (62). ROCK inhibitors have
shown in vivo beneficial effects in both mouse (63) and
Drosophila models (64) of HD. Thus, our findings provide a
potential mechanistic link between the role of huntingtin in
the cell stress response and the independent observations
that ROCK inhibition has protective benefit in several HD
models. This suggests that modulating the activity of cofilin
and actin may have therapeutic potential in HD.

Given our findings that the polyglutamine expansion affects
cofilin dynamics in neuronal populations, we sought to test
whether changes in cofilin properties could be observed in per-
ipheral cells from HD patients. We performed western blotting
against cofilin and actin from HD patient lymphocytes and
observed a higher order protein band corresponding with the
size of a putative cofilin–actin cross-link which increased
with disease progression. In our attempt to determine what
may cause the SDS resistant, cofilin–actin cross-link, we
noted that transglutaminase has the ability to cross-link
cofilin and actin in vitro (29) and that tissue transglutaminase
(TG2) is thought to be involved in multiple neurodegenerative
disorders, including HD (40). TG2 is a transamidating enzyme
that can cross-link the 1-amino group of polypeptide bound
lysine and the g-carboxamide group of polypeptide bound glu-
tamine through an acyl transfer reaction forming a stable
covalent cross-link. This reaction may be reversible and is
highly dependent upon calcium levels for activation (40).
TG2 binds calcium which activates its enzymatic activity in
a concentration-dependent manner (65). Disrupted calcium
signaling is also noted in HD (66) and an increase in
calcium levels is a hallmark of most cellular stress events.
TG2 activity and expression are up-regulated in HD (27),
and notably have been shown to have aberrant activity in
HD lymphocyte populations in a CAG length-dependent
manner (28). To test whether TG2 could cause a similar
cofilin–actin cross-link in vivo, we over-expressed TG2 in
STHdh cells and activated it using heat shock stress. In this
manner, we can recapitulate the higher order cofilin protein
band from patient lymphocytes in STHdh cells. Furthermore,
using FLIM–FRET, we show that TG2 can directly localize
to cofilin rods during stress suggesting that TG2 may not
only cross-link free cofilin and actin, but that its activity

may be involved in the aberrant nuclear cofilin–actin stress
rod response in HD. Consistent with our data highlighting
the importance of full-length huntingtin, disrupted calcium
signaling in an HD mouse model requires the polyglutamine
expansion in the context of the full huntingtin protein (66).
Calcium levels can also be elevated upon massive over-
expression of a small fragment of polyglutamine-expanded
huntingtin that requires the presence of N17 (11). This indi-
cates that aberrant TG2 activation may be present in many
HD models, but for different reasons. It is especially notable
that the genetic cross between a TG2 knockout mouse and
an HD model mouse can rescue HD toxicity supporting the
dysfunctional role of TG2 as a strong contributor to the HD
phenotype in this model (45).

Based on the findings presented in this paper, we propose a
model in which huntingtin protein acts as a cell stress response
protein at the ER (Fig. 7). Under cell stress conditions, which
lead to ER stress and increased cellular calcium, full-length
huntingtin translocates to the nucleus and plays a role in
actin remodeling in response to stress. Once the cell has recov-
ered from stress, actin remodeling should return to normal.
However, when polyglutamine-expanded huntingtin is
present, this nuclear actin stress response is impaired; there
is a prolonged aberrant regulation of calcium-causing acti-
vation of TG2 where it can act on cofilin–actin. This defective
actin remodeling would have multiple undesirable effects in a
neuron, such as synaptic and dendritic dysfunction, leading to
the initial synaptic dysfunction and changes in spine density
observed in the early stages of HD. This would likely lead
to additional cell stress, further decreases in cellular ATP
and additional intracellular calcium increases, progressively
augmenting the cycle.

The implications of our findings may lead to new thera-
peutic targets for HD, including: alteration of mutant hunting-
tin nuclear localization in response to stress; inhibition of TG2
enzymatic activity (67) or activation of alternative stress–
response pathways that override or circumvent the function
of the huntingtin protein in actin-mediated cell stress response.
The ratio of free cofilin to cross-linked cofilin can be quantifi-
ably measured in human blood pellets, suggesting that this
assay may be developed into a potential biomarker for HD.

MATERIALS AND METHODS

Tissue culture and generation of stable cell lines

Mouse striatal STHdhQ7/Q7, STHdhQ111/Q111 and STHdh7/Q111

(a kind gift of M. E. MacDonald, MGH) cell lines derived
from the mouse striatum of wild-type mice and knock-in HD
mice, were grown in Dulbecco’s modified Eagle’s medium
(Invitrogen) with 10% fetal bovine serum (FBS) (Invitrogen)
at 338C with 5% CO2. Striatal cells were clonally selected
and grown under G418 drug selection at 338C to ensure temp-
erature sensitive selection. NIH 3T3 cells were grown in Dul-
becco’s modified Eagle’s medium (Invitrogen) with 10% FBS
(Invitrogen) at 378C with 5% CO2. Stable STHdhQ7/Q7 and
STHdhQ111/Q111 cell lines were generated by co-transfecting
pmCerulean–Cofilin and pPuro using turbofect (Fermentas).
Cells were grown under puromycin drug selection (Sigma)
and positive colonies selected manually using colony selection
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rings. Stable cell lines were then maintained normally under
only G418 selection.

Primary cell growth and immunofluorescence

Sterile 0.1 mg/ml Poly-D-Lysine (Sigma-Aldrich) was diluted
in Borate Buffer (50 mM boric acid, Sigma-Aldrich; 12 mM

sodium tetraborate, Fischer Scientific) and applied to a
LAB-TEKTM eight-well chamber slide (Nalge Nunc Inter-
national) and incubated at room temperature for 30 min.
Each well was washed five times with NANO pure water
and washed once with Neurobasal medium (Invitrogen). Cul-
tures were prepared as described previously (38). A total of
15000 cells per well were plated in 400 ml of Neurobasal
medium supplemented with B27 (Gibco) and GlutaMAX
(Gibco) in a humidified 95% air/5% CO2 incubator at 378C.
Medium was changed on days 2 and 4. On day 6, the
medium was replaced with 10% DMSO (Sigma) in Neuroba-
sal with B27 and GlutaMAX and incubated for 90 min in a
humidified 95% air/5% CO2 incubator at 378C. Cells were
fixed with 4% paraformaldehyde in phosphate buffered
saline (PBS) pH 7.2 for 50 min at room temperature. Cells
were permeabilized in 0.05% Triton (Sigma), 2% FBS in
PBS and this was applied to cells for 3 min at room tempera-
ture and then washed three times with 2% FBS (Atlas, Fort
Collins, CO, USA) in PBS over the course of 1 h. Primary
antibodies include: affinity-purified rabbit IgG to chick actin
depolymerizing factor (ADF) (2 ng/l rabbit 1439), which
cross-reacts with mammalian ADF and cofilin, and
MAB2166 ant huntingtin (Millipore; 1:50 dilution), which
were both diluted in 2% FBS in PBS plus 0.05% Tween-20

(PBST) and incubated with the cells overnight at 48C. Cells
were washed two times with 2% FBS in PBS. Secondary anti-
bodies were diluted in 2% FBS in PBST at 1:1000 and include
Alexa 594 goat anti-mouse (Invitrogen) and Alexa 488 goat
and rabbit (Invitrogen). 4′,6-diamidino-2-phenylindole (Invi-
trogen) was also added to the secondary antibody solution at
1:1000. Secondary antibodies were incubated for 30 min and
then washed four times with PBS. Antifade Gold (Invitrogen)
was applied after final wash.

Plasmid construct and expression

Primers to express human cofilin1 were made (McMaster
Mobix facility) with 5′ BspEI and 3′ Acc651 overhangs and
cloning was performed, using PCR product from human
cofilin1 cDNA (OriGene), between BspEI/Acc651 sites of
pemCerCI (BD Biosciences/Clontech) to create mCer-cofilin
plasmid.

Primers—forward 5′-GATCTCCGGAATGGCCTCCGGTGT
GGC-3′;

reverse 5′-GATCGGTACCCAAAGGCTTGCCCTCCAG-3′.

TG2 YFP was a kind gift from Dr Gail Johnson. We used PCR
primers to express TG2 with 5′ BglI and 3′ ACC651 over-
hangs. Cloning was performed using PCR product from TG2
PCR between BglI/ACC651 sites of YFPCI (BD Bio-
sciences/Clontech) to create YFP-TG2.

Primers—forward 5′-GATCAGATCTGGTGGCGGAGG GA
TGGCCGAGGAGCTGGTCTTAG-3′;

Figure 7. A model for defective huntingtin-mediated cofilin rod stress response leading to activation of TG2. The grey arrow pathway highlights normal hun-
tingtin stress response by releasing from the ER, entering the nucleus and binding cofilin–actin rods, then exiting the nucleus upon stress relief. With mutant
huntingtin present, the dashed arrow pathways show a defect in huntingtin stress response, resulting in less nuclear activity and persistent rods. Back in the
cytoplasm, the black arrow pathways highlight elevated calcium due to a defective ER, which results in aberrant TG2 activation and cross-linking of
cofilin–actin in both the nucleus and cytoplasm. Defective actin remodeling critically affects neurons at the level of dendritic and synaptic dysfunction, as
well as exocytosis activity in peripheral cells.
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reverse 5′CTATGGTACCCCCTCCGCCACC GGCGGGGC
CAATGATGACATTC-3′.

Huntingtin expression constructs were previously described (8).
Plasmids were transfected using the transfection reagent

TurbofectTM (Fermentas) according to the manufacturer’s
instructions. For the full-length huntingtin FLIM-FRET exper-
iments, Lipofectamine 2000 was used as a transfection reagent
according to the manufacturer’s protocol (Invitrogen). All
co-transfections were performed using a 1:1 molar ratio of
plasmids.

Heat shock, immunofluorescence and recovery

Cells were cultured in 25 mM live-cell culture dishes at �75–
85% confluence. Once settled, media were exchanged for
HEPES-buffered (20 mM pH 7.4) media. Plates were
wrapped with parafilm and placed in a pre-warmed water
bath at 42.58C for 60 min. Cells were fixed in 4% paraformal-
dehyde for 45 min at room temperature. Cells were permeabi-
lized using ice-cold methanol at 2208C for 5 min and blocked
in 1% FBS in PBS for 45 min. Primary antibody a-cofilin
(mAB22 a kind gift from J. Bamburg 1/250), anti-actin
(20-33 sigma 1/100) or anti-huntingtin C20 (Santa Cruz)
were applied in antibody solution (Blocker + 0.02%
TWEEN-20) for 2 h. Secondary antibodies conjugated to
Alexa probes (Invitrogen) or Cy5 and FITC (Jackson labora-
tories) were used for 30 min at room temperature in antibody
solution. For recovery experiments, three dishes of each cell
type were heat-shocked as described. One dish from each
cell type was fixed immediately. Recovery dishes had media
exchanged for non-buffered media and were placed back in
the incubator and allowed to recover for either 3 or 24 h
before fixation. After fixation of all dishes, immunofluores-
cence was performed as described. When immunostaining
using the primary antibody mAB2166 anti-huntingtin (1/250
Chemicon) and anti-actin (20-33 Sigma 1/100) cells were per-
meabilized using 0.5% Triton X in PBS and 2% FBS for
12 min at 48C with the rest of the immunofluorescence pro-
cedure being performed as described. All double immuno-
fluorescence was done in series with non-cross reactive
secondary antibodies.

Stealth RNAi duplexes and transfection

Huntingtin StealthTM Select RNAi was purchased from Invi-
trogen as a set of three (MSS205082, MSS205083,
MSS205084). StealthTM RNAi Negative Control Medium
GC (Invitrogen) was purchased as a negative control.
120 pmol of RNAi was transfected into 25 mm dishes plated
at 50% confluency using the lipid-based transfection reagent,
LipofectamineTM 2000 (Invitrogen) according to the manufac-
turers protocols. Cells were treated for biochemical analysis or
processed for fluorescence microscopy 72 h after transfection.
For delta T dish live cell experiments, Block-iTTM Alexa
Fluorw red (Invitrogen) was co-transfected with huntingtin
StealthTM Select RNAi or StealthTM RNAi Negative Control
Medium GC, at a 1:3 ratio, as a control for transfected cells
during live cell imaging experiments.

Protein extraction and immunoblot assay

For STHdh cell lines, cells were grown in 10 cm dishes to con-
fluency, washed with PBS and collected using a rubber
scraper. Cells were pelleted, incubated and resuspended in
NP-40 lysis buffer with protease inhibitor cocktail. Cells
were spun at 14000g for 10 min and the supernatant (protein
fraction) was collected.

Or when protein from insoluble fraction was collected,
protein was extracted as described above and pellet was
re-suspended in NP-40 lysis buffer with protease inhibitors.
Slurry was sonicated for three cycles of 15 pulses. The settings
were set with a duty cycle of 10% and output control
power of 3.

Lymphocyte samples were obtained by extracting the buffy
coat from 3 ml total human blood using Accuspin Histopaque
1077 tubes from Sigma (Product code A6929, 3–6 ml).
Protein was extracted from lymphocyte samples as described
for the cell lines.

Equal amounts of proteins were loaded on 12% or 7%
SDS–polyacrylamide gel and electroblotted to a polyvinyli-
dene fluoride membrane. Membranes were blocked with 5%
non-fat dry milk in TBST for 1 h followed by 1 h incubation
at room temperature with anti-cofilin mAB22 (1:5000, a
kind gift from Dr J. Bamburg), anti-cofilin H12 (1:1000
Santa Cruz), anti-htt-N18 (1:10000) or anti-actin 20-33
(1:2500, Sigma). After incubation with appropriate horse-
radish peroxidase-conjugated secondary antibody (Sigma),
bands were visualized by enhanced chemiluminescence.
Quantification of western blot bands was performed using
the Image J software and densitometry, normalized to actin.
For lymphocyte samples, densitometry was performed indivi-
dually on each lane and values are expressed as percent of
total area in the higher order band.

Microscopy

All wide-field fluorescence microscope images were captured
on a Nikon TE200 epifluorescence inverted microscope
equipped with a 63× oil immersion plan apochromat NA1.4
objective and a Hamamatsu Orca ER digital camera (Hama-
matsu Photonics, Japan). Qualitative images of nuclear rods
(Figs 1 and 3) were produced by obtaining a multichannel
Z-stack and performing blind 3D non-iterative deconvolution
(Autodeblur, Media Cybernetics). Images shown are
mass-projections from deconvolved Z-stacks with gamma
alterations.

Live cell imaging

Live cell visualization was done using the Delta T4 heated
stage, lid and objective system (Bioptechs). Cells were
seeded and treated in 0.17 mm delta T dishes (Bioptechs).
Cells were heated to 42.58C using the heated stage and objec-
tive and visualized at 100× plan apochromat oil N.A1.3. As
soon as dish reached temperature, fluorescent, images were
recorded once every 60 s for the duration of the session.
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Statistical analysis

Statistical analysis was performed using the SigmaPlot Software
11.0 (Systat Software Inc.) For single comparisons, Student’s
t-tests were performed if data passed normality assumptions.
If data did not pass normality assumptions, it was analyzed by
the Mann–Whitney method. For multiple comparisons, analysis
of variance by the ranks was performed and multiple compari-
sons were performed using the Dunn method.

Fluorescence lifetime imaging measurement (FLIM)

FLIM was conducted using an inverted confocal laser-
scanning microscope (Leica TCS SP5) with a 63× glycerol
immersion NA 1.4 Plan apochromat objective. The SP5 is
run using the LAS Advanced Fluorescence software from
Leica. Two-photon excitation of samples was done using a
tunable Chameleon laser, mode-locked to deliver femtosecond
pulses at a rate of 80 MHz with an output power of 1.8 W for a
peak wavelength of 820 nm.

mCerulean and YFP fluorophores were used as FRET pairs.
Excitation of the mCerulean donor using the two-photon laser
was found to be optimal at 820 nm. Collection of mCerulean
fluorescence emission was limited to 480 + 20 nm using a
bandpass filter. All live cell imaging and FLIM were done
in Hank’s saline HEPES buffer pH 7.3.

Photons from the donor fluorophores were collected and
counted using TCSPC software from Becker & Hickl
(SPC-830). The laser power was adjusted in order to give a
photon collection count of �105 photons/s, where all FLIM
measurements were conducted over a 60 s collection time.
The lifetimes of all the pixels in the field of view (256 ×
256) were calculated by the SPC image analysis software
(Becker & Hickl GmbH) to generate exponential decay
curves. Binning and thresholding values (bin ¼ 3, threshold
¼ 10) were kept constant to ensure consistency of lifetime
measurements over multiple trials.

Förster resonant energy transfer (FRET) analysis

FRET analysis was performed using the Becker and Hickl
FLIM plug in for the ImageJ software (www.macbiop
hotonics.ca). The lifetime of every pixel in the image was cal-
culated to give a mean lifetime value for each cell. Pixels with
lifetimes outside the range of 1750–3250 were excluded from
further analysis. FRET efficiency for each image was deter-
mined using the equation E FRET ¼ 1 2 (average lifetime
D.A/average lifetime D), where average lifetime D.A indicates
the average lifetime of mCerulean–cofilin in the presence of
the indicated acceptor and average lifetime D indicates the
overall average lifetime of mCerulean–cofilin alone (no
acceptor present).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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