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ABSTRACT

Pancreatic islet �-cell failure is key to the onset
and progression of type 2 diabetes (T2D). The ad-
vent of single-cell RNA sequencing (scRNA-seq) has
opened the possibility to determine transcriptional
signatures specifically relevant for T2D at the �-cell
level. Yet, applications of this technique have been
underwhelming, as three independent studies failed
to show shared differentially expressed genes in T2D
�-cells. We performed an integrative analysis of the
available datasets from these studies to overcome
confounding sources of variability and better high-
light common T2D �-cell transcriptomic signatures.
After removing low-quality transcriptomes, we re-
tained 3046 single cells expressing 27 931 genes.
Cells were integrated to attenuate dataset-specific
biases, and clustered into cell type groups. In T2D
�-cells (n = 801), we found 210 upregulated and
16 downregulated genes, identifying key pathways
for T2D pathogenesis, including defective insulin se-
cretion, SREBP signaling and oxidative stress. We
also compared these results with previous data of
human T2D �-cells from laser capture microdissec-
tion and diabetic rat islets, revealing shared �-cell
genes. Overall, the present study encourages the
pursuit of single �-cell RNA-seq analysis, preventing
presently identified sources of variability, to identify
transcriptomic changes associated with human T2D
and underscores specific traits of dysfunctional �-
cells across different models and techniques.

GRAPHICAL ABSTRACT

INTRODUCTION

The last decade showed a sharp increase in our ability
to investigate whole transcriptomes at a high resolution.
In parallel to the continuous improvements of sequencing
platforms, the emergence of single-cell RNA sequencing
(scRNA-seq) (1) made it possible to obtain transcript se-
quences out of individual cells, enabling to capture features
of cellular differentiation, pathogenesis and adaptation (2–
4), which would have been overlooked using bulk RNA-seq.
The applications of such technology are very promising, es-
pecially for the study of heterogeneous tissues containing
different cell types or the analysis of rare cells, in that it al-
lows to characterize which genes are selectively expressed in
different cell types, to reconstruct the trajectories of cell dif-
ferentiation and response to stimuli (5,6) and to infer under-
lying regulatory networks (7). Altogether, scRNA-seq has
the potential of filling knowledge gaps in our current under-
standing of how genetics and environmental factors affect
the phenotype of single cells, and how these in turn influ-
ence the structure–function of tissues and organs (8).
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The heterogeneous nature of pancreatic tissue makes it an
excellent target to be analyzed with scRNA-seq. In fact, the
organ is made up of a number of different cell types hav-
ing either exocrine or endocrine secretory functions. Cells
belonging to the latter category are found in the islets of
Langerhans, which are cell clusters predominantly com-
posed of �, �, � and PP cells that secrete glucagon, insulin,
somatostatin and pancreatic polypeptide, respectively. The
�-cells are the sole source of insulin produced in the human
body, and are therefore strictly implicated in the onset and
progression of type 2 diabetes (T2D) (9,10). Therefore, the
molecular and physiological characterization of �-cells in
T2D is central for the identification of specific pathways and
functions associated with their failure, which could provide
novel insights into T2D pathophysiology for better preven-
tion and treatment of this disease. Importantly, �-cells are
probably heterogeneous (11,12), which may affect how pu-
tative �-cell subpopulations respond to the predisposing ge-
netic background and metabolic stresses leading to T2D.

So far, scRNA-seq has been applied to human islets from
non-diabetic (ND) and T2D donors in three valuable inde-
pendent studies (13–15) in an effort to identify differentially
expressed genes (DEGs) in T2D. A comparison of the sets
of DEGs in �-cells from these studies revealed, surprisingly,
that not a single gene was shared (16). This discrepancy
could be due to the complex etiology of T2D and the (rela-
tively) limited number of donors analyzed; it should also be
considered that these studies had different experimental and
analytical steps, from the isolation of single cells to the com-
putational analysis of sequenced reads, which inevitably add
technical sources of variability that can confound biologi-
cally relevant data (17,18).

The single-cell field is witnessing an incredibly fast pro-
gression, with the establishment of toolkits such as Scanpy
(19) or Seurat (20) that enable the seamless implementation
of standardized analytical workflows to scRNA-seq data.
This, coupled with the definition of better guidelines and
standards (21), not only makes it easier to integrate datasets
within a single analytical design to correct for study-specific
bias (22), but also removes the influence of technical biases
arising from different computational tools and algorithms.

In this study, we aimed to deliver a comprehensive pic-
ture of the human pancreatic single �-cell transcriptomes
in T2D. To do so, we integrated the three major scRNA-
seq studies of human islets in a single dataset that was then
analyzed by focusing on �-cells to identify shared DEGs
and pathways to reconcile the identified features of T2D
�-cells with the current biological knowledge of this con-
dition (23–25). To evaluate the consistency of our find-
ings, we also compared our results with those of (i) an-
other study of �-cells from T2D patients and controls, based
on an orthogonal methodology, namely laser capture mi-
crodissection (LCM) (26), and (ii) islets from a rat model of
pancreatectomy-induced hyperglycemia (27).

MATERIALS AND METHODS

Analysis of sequencing data and dataset integration

The fastq files from the three studies re-analyzed in this
work were downloaded using SRA toolkit (https://ncbi.
github.io/sra-tools/) for the projects archived in SRA (28)

(SRP075377 and SRP075970), or custom bash script for the
one deposited in ArrayExpress (29) (E-MTAB-5061). Meta-
data reporting information for each cell, including donor
ID, gender, body mass index and diabetic condition, were
downloaded as well from the respective repositories. For
one dataset (14), we excluded cells not having values of the
quality metadata as ‘OK’.

The reads were aligned against the human refer-
ence genome GRCh37 (Ensembl 87 annotation) using
STAR 2.7.3 (30) with ‘–quantMode TranscriptomeSAM
GeneCounts’, obtaining for each study a table reporting
per-gene read counts of each cell. From this point on-
ward, all downstream analyses were conducted using ad-
hoc Python scripts implementing functions from the tool-
box Scanpy (19). The read count files were integrated with
the cell metadata and the Ensembl annotation to produce
three AnnData files, which were used to perform cell-wise
quality control (QC) analyses.

Defining the number of read counts per sample as
‘counts’, the number of genes with at least one read mapped
as ‘expressed genes’ and the ratio of reads mapped on mito-
chondrial genes as ‘mitochondrial fraction’, we considered
counts, expressed genes and mitochondrial fraction as tech-
nical covariates defining the quality of each cell. Specifically,
cells with relatively high number of counts and genes are
likely representing multiplets, i.e. two or more cells captured
and sequenced assuming a single cell, whereas high mito-
chondrial fraction and low expressed genes are indicative of
lysed cells. We considered the distribution of these variables
and their covariation separately for each dataset, defining
separate threshold values that allowed to identify and flag
cells as ‘low quality’, which were then excluded from down-
stream analysis. Contemporary with cell-level QC, genes ex-
pressed in less than three cells or expressed only in a single
dataset were not considered for downstream analyses.

After QC, the datasets were concatenated and the counts
were normalized by scaling the count values to obtain a
total count of 10 000 for each cell and then log trans-
formed. This normalized dataset was analyzed to com-
pute the dispersion of each gene with respect to its
mean value to annotate genes as highly variable using the
‘highly variable genes’ function of Scanpy. This allowed to
define a set of 971 genes displaying a high variability in each
single dataset, which was used to perform dataset integra-
tion with mutual nearest neighbors (MNN) algorithm (22)
as implemented in mnnpy (https://github.com/chriscainx/
mnnpy). Visualization of single cells before/after MNN
correction was performed with uniform manifold approx-
imation projection (UMAP) as implemented in Scanpy.

Unsupervised clustering and cell type annotation

Detection of single-cell communities was done using the
Louvain modularity algorithm (31) implemented in Scanpy
(https://github.com/vtraag/louvain-igraph) with resolution
= 0.5. The relative contribution of genes in separating clus-
ters was computed with the ‘rank genes groups’ function of
Scanpy, manually evaluating their association with major
pancreatic cell types using literature information and gene
expression markers reported in PanglaoDB (32).

https://ncbi.github.io/sra-tools/
https://github.com/chriscainx/mnnpy
https://github.com/vtraag/louvain-igraph
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Differential expression in T2D and enrichment analyses

DEGs in T2D �-cells were identified using DESeq2 (33)
with the following design: Counts ∼ Dataset + Diabetes,
where Counts is the matrix of raw count data, Dataset is a
three-level factor (SEG, XIN, LAW) indicating the dataset
of origin and Diabetes is a two-level factor (T2D, ND) indi-
cating the diabetes status of the donor. Genes were consid-
ered as DEG if passing these thresholds: <0.05 for corrected
P-value (false discovery rate, FDR) and >2 for the absolute
value of fold change (FC). DEG identification for individ-
ual datasets was performed similarly, with the following de-
sign: Counts ∼ Diabetes.

Gene set enrichment analysis (GSEA) was performed us-
ing Enrichr with the following datasets: the Gene Ontol-
ogy 2018 (GO) subsets Biological Process, Molecular Func-
tion and Cellular Component (34,35); BioPlanet 2019 (36);
KEGG 2019 (Homo sapiens) (37–39); Reactome 2016 (40);
and a consensus of transcription factor target genes from
Encode and ChEA. All gene sets are available at https:
//amp.pharm.mssm.edu/Enrichr/#stats.

Overlapping expression trends were identified with two-
tailed rank–rank hypergeometric overlap (RRHO) (41,42)
of genes ranked according to −log(P-value) × direction,
where direction is the sign of the expression change in T2D
versus ND. A custom R script implementing the RRHO
package (v. 1.24.0) was used to compute and analyze the hy-
pergeometric distribution matrix, which allowed us to iden-
tify genes corresponding to overlapping expression trends.

Coding and data visualization

To visualize the obtained results, ad-hoc Python scripts
were used combining Scipy (43), Pandas, Matplotlib (44),
Seaborn and Scanpy (19). The volcano plot of DEGs was
produced with R (https://www.r-project.org/). The analyti-
cal workflow was organized using a Jupyter notebook.

RESULTS

A merged scRNA-seq dataset of islets from T2D patients

We obtained raw sequencing data of three studies: E-
MTAB-5061 (14), SRP075377 (13) and SRP075970 (15)
(hereafter referred to as SEG, XIN and LAW, respectively)
(Figure 1A), whose deposited sequences represent the tran-
scriptome of single cells passing QC checks as defined by
the respective authors. Read count matrices reporting the
relative gene expression in each cell were also available, but
we decided not to use them since different approaches were
used to obtain them from raw data. By re-analyzing the
original reads with the same pipeline, we removed variabil-
ity coming from usage of different tools.

As shown in Table 1, the datasets differed in terms of
donor selection, single-cell isolation and sequencing library
preparation, but also in QC criteria for expressed genes,
total read counts and mitochondrial fraction (Figure 1B).
For the number of expressed genes, we found a unimodal
distribution for XIN and LAW with a peak around 5500,
whereas SEG showed a bimodal distribution with peaks
around 4000 and 8000. We also found SEG to display a
higher variance for total read counts, having a high number

Table 1. Main features of the datasets used

Dataset
Number of donors
(T2D, ND)

Number of
cells

Read
length

Average million
read count (std)

SEG 10 (4, 6) 2209 43 0.558 (0.525)
XIN 18 (6, 12) 1600 75 1.145 (0.551)
LAW 24 (9, 15) 638 75 1.689 (0.653)

The table reports the different features of the datasets used, in terms of
number of donors (total, T2D and ND), number of cells with available
raw sequencing data, length of sequencing reads and the average number
of reads (million) per cell.

of cells with extremely low read counts and outliers with ex-
pression up to 6 million reads, and high mitochondrial frac-
tion, with outliers having values close to 1. XIN had no cells
with mitochondrial fraction >0.25, reflecting differences in
QC criteria used in the original studies.

We excluded cells with signatures of low viability (i.e. low
count depth, high fraction of mitochondrial genes) or mul-
tiplets, defined as multiple cells sequenced and labeled as a
single cell. We considered each dataset separately to define
threshold values for metrics such as number of expressed
genes, total read counts and fraction of read counts on mi-
tochondrial genes (see Table 2). We also excluded outlier
genes, defined as those expressed in less than three cells or
being present in a single dataset.

After removing the cells not satisfying the QC criteria,
we concatenated the data into a single merged dataset, con-
taining (i) a gene count matrix embedding 3046 cells and
27 931 genes, and (ii) a metadata matrix with the ancillary
information available for each cell and donor. The dataset is
available as an h5ad file (see the ‘Data availability’ section).

Normalization of dataset effects and cell-level analyses

Considering that our integrated dataset contains data from
three laboratories using different protocols and technolo-
gies, gene expression might present systematic differences
due to batch effects. In order to correct this technical source
of variation, we applied a data integration method (MNN
correction) on our dataset to better highlight biological fea-
tures shared between cells. To visualize the effects of such
correction, we identified a set of 971 highly variable genes,
which were used for UMAP two-dimensional representa-
tion of the cells labeled according to the dataset of origin.

This visualization (Figure 1C) shows clearly separated
groups of cells with similar transcriptomes, with LAW and
XIN exhibiting remarkable overlap, whereas SEG is more
distinct. After MNN correction (Figure 1C), there was a
larger overlap of SEG with the other datasets, indicating a
reduction of the dataset effect on the transcriptomic differ-
ences between cells.

We next performed unsupervised clustering of the cells
based on their corrected gene expression profiles, obtaining
seven different cell clusters, i.e. �, �, �, PP, ductal, stellate
and acinar cells (Figure 2A). From the transcriptomic sig-
natures of the identified groups, we selected genes maximiz-
ing the diversity between groups to annotate their identity
(Figure 2B and Supplementary Figure S1). This led to the
identification of nine marker genes (GCG, INS, PPY, SST,
ANXA4, CFTR, SPARC, REG1A and SPINK1) whose

https://amp.pharm.mssm.edu/Enrichr/#stats
https://www.r-project.org/
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Figure 1. An integrated dataset of single-cell transcriptomes from studies of human islets (T2D versus ND). (A) The three studies considered in this work
are Segerstolpe (SEG) (14), Xin (XIN) (13) and Lawlor (LAW) (15) that analyzed the indicated total number of cells from the indicated number of T2D
and ND donors. The Venn diagram recapitulates the previous comparison of DEGs (by Wang and Kaestner) (16), showing paucity of shared DEGs. (B)
The plots report the number of expressed genes, total read counts and the mitochondrial enriched fraction of the cells of each dataset. Extreme values of
these parameters indicate low-quality cells, as cells with high read counts and expressed genes might represent multiplets of captured cells, while a high
fraction of mitochondrial genes expression is indicative of lysed cells (21). The histograms on the axes of each plot represent the marginal distributions of
the corresponding variables (i.e. read counts: top; expressed genes: right). (C) UMAP visualization of the integrated dataset before (left) and after (right)
the normalization with MNN. Cells are colored according to the dataset of origin to highlight the effect of the MNN normalization.
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Figure 2. Analysis of the integrated dataset at the cell level. (A) The UMAP visualization of the integrated dataset (after MNN) with cells color labeled
according to the clusters assigned with the unsupervised method Louvain (31). (B) The heatmap reports the normalized expression of the 10 most rep-
resentative genes of each cluster (rows) in each cell (columns). Columns are color labeled according to cell clusters. (C) Distribution of the expression of
marker genes for each cell type (violin plots). Normalized expression of the most representative marker genes in each cell with a UMAP visualization. (D)
The sections in the circular plot represent the cell counts stratified in different categories. From outer to inner: donor diabetes condition (T2D, ND) per
dataset and cell type, dataset (SEG, XIN, LAW), cell types and donor diabetes condition (T2D, ND) per cell type with aggregated datasets.
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Table 2. QC filtering criteria

Dataset
Number of cells
before QC

Number of
good quality
cells

Number of
genes before
QC

Number of
genes after
filtering

Range of
expressed genes

Range of total
read count
(million)

Maximum
mitochondrial
fraction

SEG 2209 1148 33 466 27 931 2500–9000 0.3–2 0.4
XIN 1600 1382 33 466 27 931 2500–7000 0.5–2.2 –
LAW 638 516 31 511 27 931 2500–9000 1–3 0.4

The table reports for each dataset the number of cells and genes before and after the QC filtering, as well as the threshold values used to identify good
quality cells. Ranges are pairs of values indicating the lower and the upper bound thresholds.

expression is associated with specific pancreatic cell types
(Figure 2C). This information allowed us to characterize the
cell type composition of our dataset at different hierarchi-
cal resolution (aggregated, dataset and individual level) and
related to disease state (T2D versus ND), testing the enrich-
ment of cell types in each condition. We observed substan-
tial differences in the abundance of cell types between dif-
ferent datasets (Figure 2D). SEG had half the proportion
of �-cells of other datasets (15% versus 30% and 41%), and
substantially higher ductal, � and PP cells. Acinar cells were
missing in XIN.

Differentially expressed genes in T2D �-cells

A previous study comparing scRNA-seq transcriptomic
signatures of T2D showed no shared DEGs (16). To assess
how much of this variability is effectively due to differences
in data processing, we identified DEGs separately for each
dataset and compared them. Since no DEGs are shared be-
tween datasets (Supplementary Figure S2), variability ob-
served is probably due to different sample source, prepara-
tion and other experimental steps rather than data process-
ing.

Using our merged dataset, we regressed out bias due to
the dataset of origin. Comparing the T2D versus ND �-cell
subpopulations, we identified 226 DEGs (FDR ≤ 0.05, FC
≥ 2), with 210 upregulated and 16 downregulated genes in
T2D (see Figure 3A). Of these, 60 were protein-coding genes
(Figure 3B), which were manually curated based on the
available literature and databases (i.e. UniProt, STRING,
KEGG and GWASdb) to explore their pathophysiological
role (Supplementary Table S1). For 35 DEGs, their func-
tion could be related to T2D, including �-cell failure mech-
anisms, such as defective insulin secretion, increased ox-
idative stress, altered autophagy and apoptosis (24,25,45–
47) (Figure 3B). The remaining 25 genes have not been de-
scribed previously. Of these, 16 genes have an undefined
function, whereas the other 9 could be ascribed to cellu-
lar processes linked to �-cell dysfunctions (Supplementary
Table S1). These include CABIN1, CKS1B, C19orf60 and
SDR39U1 (affecting cell survival), SLC31A1 (involved in
copper homeostasis), DNAJA4 (associated with ER stress),
ZC3H8 (regulating the expression of GATA3), OTUD3 and
UBALD1 (affecting ubiquitination) (48–58).

We then performed GSEA on seven datasets using En-
richr. The results of this analysis showed an enrichment of
several categories that can be associated with altered �-cell
pathways (Figure 3C and Supplementary Table S2), includ-
ing the control of hydrogen peroxide and respiratory burst
(GO:0010310, GO:0060263), the activity of NADPH oxi-

dase for ROS generation (GO:0016176) and the ionotropic
glutamate receptor (GO:0008328). Of interest, a pathway
that appeared positively enriched in multiple datasets is re-
lated to lysosome function, which is associated with au-
tophagy (59).

Generalizing common transcriptomic signatures of T2D �-
cells across different methodologies

To verify the extent to which our results may be general-
izable, we compared the gene expression signatures of the
present integrated transcriptomic dataset with those from
two other models. We used (i) the results obtained by mi-
croarray gene expression analysis of human T2D and ND
�-cell enriched samples yielded by LCM (60), as a model
similar to the human single �-cell approach, and (ii) the
data recently generated by islet RNA-seq assessment in 90%
pancreatectomized, hyperglycemic rats (27), as a less close
model.

In a first set of analyses, we used the RRHO approach
(41) that allows to compare differentially expressed tran-
scriptomes between independent studies in a threshold-free
way and visualize both the significance and direction of the
possible overlays. In the work by Marselli et al. (26), here-
after referred to as MAR, the analysis of 10 T2D and 10
ND �-cell enriched samples identified 1742 DEGs utilizing
a significance threshold of lower confidence bound ≥1.2,
corresponding to 1086 upregulated and 656 downregulated
genes. The comparison of the transcriptomes of MAR T2D
versus ND with those of our integrated T2D versus ND sin-
gle �-cell transcriptome assessment is reported in Figure
4A. The analysis revealed that although there were genes
regulated in opposite direction, 191 transcription signatures
overlapped between the two studies (173 upregulated and 18
downregulated). Among them, there were 20 genes with P-
value ≤0.05, of which 11 have been previously described in
association with T2D traits (61–71) (Supplementary Table
S3).

In the study by Ebrahimi et al. (27), hereafter referred to
as EBR, the authors characterized rat islet transcriptomic
changes following 90% pancreatectomy. At 10 weeks after
surgery, pancreatectomized, hyperglycemic animals showed
many islet transcriptome changes in comparison with con-
trols. There were 7844 DEGs, many of which associated
with glucose toxicity, stress, inflammation and �-cell iden-
tity. The RRHO comparison of EBR data with the present
single �-cell transcriptome results revealed that there were
1014 common genes that were upregulated (Figure 4B).
Among them, 118 genes were significantly (P ≤ 0.05) reg-
ulated in both datasets (Supplementary Table S3), and 61



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4 7

Figure 3. Analyses of the integrated dataset at the gene level. (A) Volcano plot reporting the significance and FC values obtained for each �-cell gene with
DESeq2. The horizontal and vertical red lines report the threshold used to define DEGs (shown in red). (B) Classification of DEGs according to biotype
(outer circle) and direction of change (inner circle). The gene symbols associated with T2D-related functions are reported colored differently according to
the corresponding expression change direction (green: upregulated; red: downregulated). (C) Terms enriched in the DEG set. For each term, the number
of associated genes (dot size) and enrichment significance (color scale) are reported. The reported terms correspond to the six most significant terms for
each dataset.

of these genes have been previously linked to T2D features
(72–126) (Supplementary Table S3).

Next, we compared the three datasets (integrated single
cells, MAR and EBR) to identify shared genes (Figure 4C).
We considered only genes with P ≤ 0.05 and found a set of
208 genes, of which 41 and 8 were, respectively, upregulated
and downregulated in all three datasets (Supplementary Ta-
ble S4). Interestingly, several of such genes (20 upregulated
and 4 downregulated) have been reported to be linked to di-

abetes (74,76,91–93,111,112,126–138) (Supplementary Ta-
ble S4).

DISCUSSION

The present work was prompted by the observation that,
comparing the results of the three available studies of pan-
creatic �-cells from individuals affected by T2D and ND
controls (13–15), scRNA-seq ‘failed’ to deliver a shared
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Figure 4. Shared transcriptomic patterns between single �-cells, MAR and EBR. (A) RRHO map showing overlap between the single-cell differential
expression of T2D versus ND and the differential expression of T2D versus ND in MAR. A detailed description of the MAR dataset is provided in the
text. Genes are ranked by FC from most downregulated to most upregulated. The level map colors show normalized −log P-values for overlap, with
an indication of the smallest P-value for clusters with statistically significant overlap between genes upregulated in both datasets (bottom left quadrant),
downregulated in both (top right quadrant), upregulated in MAR T2D and downregulated in single-cell T2D (top left quadrant), and downregulated in
MAR T2D and upregulated in single-cell T2D (bottom right quadrant). (B) RRHO map showing overlap between the single-cell differential expression
of T2D versus ND and the differential expression of T2D versus ND in EBR. A detailed description of the EBR dataset is provided in the text. Genes
are ranked by FC from most downregulated to most upregulated. The level map colors show normalized −log P-values for overlap, with an indication of
the smallest P-value for clusters with statistically significant overlap between genes upregulated in both datasets (bottom left quadrant), downregulated
in both (top right quadrant), upregulated in EBR T2D and downregulated in single-cell T2D (top left quadrant), and downregulated in EBR T2D and
upregulated in single-cell T2D (bottom right quadrant). (C) Differentially regulated genes shared in the present integrated single �-cell dataset, MAR and
EBR data. The Venn diagrams indicate the number of DEGs (P ≤ 0.05) shared between the single-cell dataset, MAR and EBR. The diagrams separate
upregulated (left) and downregulated (right) genes.

view of T2D-associated transcriptomic alterations of �-cells
from human islets, possibly due to a number of method-
ological issues (16). Here, we show that an integrated anal-
ysis of the three datasets, based on recently developed algo-
rithms and computational frameworks specific for single-
cell transcriptomics (19,21,22), allowed us to identify genes
that were differentially expressed in T2D versus ND �-cells,
with potential pathophysiological roles.

These new tools mentioned above have made it possi-
ble to integrate different datasets and deal with techni-
cal covariates, allowing the re-analysis of published data
to obtain novel biological insights (22). In particular, the
pan-transcriptome we obtained by merging the published
scRNA of human �-cells (13–15) has a larger sample size,
hence is more robust against biases arising from donor-

specific sources of biological variability (including a sup-
posed effect of multiple and various T2D etiologies). For
instance, this approach allowed us to reconcile discrepan-
cies between the results of the three different studies. As an
example, the genes TUBA1B and LEPROTL1 were down-
regulated in T2D according to LAW, upregulated according
to SEG and not significantly different according to XIN;
according to our analysis, these genes are not differentially
expressed.

We strived to minimize technical sources of variabilities
that could affect our analyses. Indeed, the comparison of
QC metrics revealed a divergence between datasets at the
cellular level that likely reflect separate selection criteria op-
erated by the respective authors. Briefly, the original studies
were not uniform concerning the minimal quality level of
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cells to be subjected to downstream analyses, with effects
that include a different heterogeneity within cell types ob-
served by the authors. For instance, Segerstolpe et al. (14)
reported heterogeneity for the �-cell group, whereas Xin
et al. (13) did not. To obtain cells with comparable quality
levels and reduce this bias, we adopted a conservative ap-
proach using different thresholds for each dataset to remove
low-quality cells. Even with such harmonization, UMAP vi-
sualization of transcriptomes revealed a separation of cells
according to the dataset of origin, implying that differences
in experimental procedures, from islet culturing to RNA-
seq library preparation and sequencing, impact the islet
cell transcriptomes. To minimize this effect, we used MNN
(22,139), but standardized procedures and materials in fu-
ture studies will increase reproducibility.

Our integrated dataset identified 226 DEGs in �-cells as-
sociated with T2D, most of which were overexpressed. Since
we used the T2D condition to contrast the transcriptomes,
we expected some DEGs to recapitulate known signatures
of diabetes. Indeed, among the 60 differentially expressed
protein-coding genes there were 35 genes with functions re-
lated to �-cell damage, such as impaired insulin secretion,
increased oxidative stress, deranged autophagy and apopto-
sis (24,25,45–47) (Figure 3B). In addition, we identified nine
genes (CABIN1, CKS1B, C19orf60, SDR39U1, SLC31A1,
DNAJA4, ZC3H8, OTUD3 and UBALD1) not previously
associated with diabetes, but that are known to be involved
in processes potentially linked to �-cell dysfunction, such as
cell turnover, oxidative stress and ER stress (Supplementary
Table S1). Hence, the presence of genes with a known rel-
evance in the context of T2D (24,25,45–48,51–53,140–152)
provides a confirmation of the validity of the approach we
used.

In addition to this, we found 25 genes with no previous
association with T2D described in the literature. Among
the criteria used to associate novel genes with a potential
�-cell role, we considered the presence of interactions with
known genes. ‘Synthetic lethals’ are gene pairs for which
the deletion/inactivation of a single gene has no major
phenotypic effects, whereas the inactivation of both genes
produces a lethal phenotype. This kind of genetic inter-
action allowed us to link C19orf60 and SDR39U1 with
MYC and RAS (52), respectively, which are relevant for
�-cell differentiation, proliferation and apoptosis (51,53).
We also found novel genes displaying proven functional in-
teractions. For instance, DNAJA4 has been shown in hu-
man colon cancer cells to be regulated by SREBP and
act as a mediator of lipotoxicity through ER stress (55).
UBALD1 and OTUD3 are enzymes involved in ubiquiti-
nation with an experimentally validated interaction with
MLYCD and PTEN, respectively, and potentially affecting
�-cell metabolic pathways, function and turnover (153). The
protein encoded by CKS1B binds SKP2, increasing the ac-
tivity of the E3 ubiquitin ligase Skp1–Cullin-1–Skp2 that
degrades p27 (50), a pathway shown to be involved in reg-
ulating �-cell mass and function with implications for T2D
development (49). Other novel transcripts that we found
to be differentially expressed in diabetic �-cells (such as
the zinc finger protein ZC3H8 and CABIN1) are involved
in mechanisms potentially associated with �-cell dysfunc-
tion, such as the regulation of intracellular calcium signal-

ing (56,154,155). Therefore, our integrative analysis partly
reconciled the previous fully inconsistent results reported
with �-cell scRNA-seq.

We then assessed how the results of our meta-analysis
compared with those from a relatively similar human
dataset (microarray of laser capture microdissection of T2D
and control islets) (26) and a less similar rat model (RNA-
seq of whole islets following hyperglycemia induced by par-
tial pancreatectomy) (27). Using the overlapping transcrip-
tomic signature (RRHO) approach, we observed that there
were several genes differentially expressed in the same di-
rection in our results and those from MAR (60), where
the authors used �-cell enriched preparation from ND and
T2D donors. Interestingly, islets from hyperglycemic pan-
createctomized rats (27) showed several changes in gene ex-
pression similar to those in our integrated human �-cell
datasets. Furthermore, based on the analysis of genes dif-
ferentially expressed (P ≤ 0.05) in the three datasets, we
observed 49 shared genes (48 upregulated). Therefore, de-
spite remarkable differences between the three models (sin-
gle human �-cells yielded after islet digestion and sepa-
rated by FACS or a microfluidic platform; �-cell enriched
preparations obtained by LCM from the pancreas of or-
gan donors; isolated islets from rats with surgically induced
hyperglycemia; use of microarray or RNAseq), a set of
shared DEGs remains associated with the dysfunctional �-
cell across biological models and experimental techniques.
These genes might represent key factors involved in the tra-
jectory of �-cell failure (see Supplementary Table S4). For
instance, upregulation of LDHA has a demonstrated in-
volvement in perturbed insulin secretion (92), and overex-
pression of RPS10 is a marker of a functionally immature
phenotype (93). Among the downregulated genes, ATP2A2
and PGRMC1 have a role in insulin secretion (127,131).
Other shared genes without previously illustrated associ-
ations could provide novel insights into signatures of �-
cell dysfunction. As an example, the gene PELP1 encodes
a coactivator involved in a number of signaling pathways,
including SRC/PI3K/AKT and ERK/MAPK, that can be
relevant for defective insulin secretion (129,130).

In conclusion, this work represents the first integration
of human islet single-cell transcriptomes to understand �-
cell dysfunction in human T2D. The dataset we assem-
bled (available at https://github.com/EBosi/scPanBetaT2D)
has allowed to (i) partly reconcile the previously re-
ported inconsistencies in single-cell analysis of human islet
cells, (ii) identify novel genes to be investigated in fu-
ture studies to better characterize the molecular basis of
T2D onset and progression, and (iii) underscore specific
traits of dysfunctional �-cells across different models and
techniques.
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