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Dopamine D2 −141C Ins/Del and Taq1A
polymorphisms, body mass index, and
prediction error brain response
Guido K. W. Frank1,2, Megan E. Shott1, Marisa C. DeGuzman1,2 and Andrew Smolen3

Abstract
The prediction error model is a widely used paradigm that is conceptually based on neuronal dopamine function.
However, whether dopamine receptor gene alleles contribute to human neuroimaging prediction error results is
uncertain. Recent research implicated the dopamine D2 receptor in behavior response during a prediction error
paradigm and we expected that polymorphisms of that receptor would contribute to prediction error brain response.
In this study, healthy female participants in the early follicular phase of the menstrual cycle underwent a taste
prediction error paradigm during functional magnetic resonance imaging. Participants were also genotyped for
dopamine receptor polymorphisms. Our data suggest that the dopamine D2 receptor −141C Ins/Del and Taq1A
polymorphisms together with body mass index selectively explain putamen prediction error response. This was true
using a region of interest analysis as well as for a whole-brain analysis (FWE corrected). Polymorphisms for dopamine
D1 or D4 receptors, dopamine transporter, or COMT did not significantly contribute to prediction error activation. The
prediction error model is a computational reward-learning paradigm that is important in psychiatric research and has
been associated with dopamine. The results from this study indicate that dopamine D2 receptor polymorphisms
together with body mass index are important determinants to include in research that tests prediction error response
of the brain. Psychiatric disorders are frequently associated with elevated or reduced body weight. Adding BMI to
genetic information in brain-imaging studies that use reward and the prediction error paradigm may be important to
increase validity and reliability of results.

Introduction
Brain reward response has been associated with dopa-

mine (DA) function1. However, identifying how DA
genotype contributes to this brain activation has been
challenging2. Previous studies used a “multilocus” com-
posite DA genotype approach, where an additive score
was calculated based on a presumed DA signal-enhancing
vs. -reducing alleles2,3. This strategy requires knowledge
of the biochemical significance of each allele on DA

signaling, though, and it has been uncertain if the biolo-
gical effects of the polymorphisms are additive2.
Those referenced previous studies had applied brain-

imaging tasks for receipt or anticipated receipt of taste or
monetary reward stimuli, or a game that involved gues-
sing numbers to win money2,3. However, reward proces-
sing involves a complex brain circuitry and various
neurotransmitters, and those tasks were not necessarily
anchored in a model for DA-related brain response4. An
approach that has been associated with neuronal DA
response is reinforcement learning, especially in the
context of unexpected receipt or omission of reward sti-
muli1. Midbrain dopaminergic neurons exhibit a phasic
burst when receiving unexpected reward (“positive pre-
diction error”), and will shift the signal to the onset of a
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conditioned stimulus, which they have learned will predict
reward receipt1. A negative prediction error (PE) (dip in
DA neuron activity) is evoked when the predicted sti-
mulus association is violated (unexpected reward omis-
sion, negative PE). In this model, the so-called temporal
difference algorithm, a PE can be calculated based on
expectation and reward outcome, which directly relates to
changes in phasic or tonic DA neuron activity1,5,6. Human
brain-imaging studies have shown that especially the
ventral striatum (caudate, putamen) and midbrain are
responsive to or code the PE6.
The PE model is part of the National Institute of Mental

Health (NIMH) research domain criteria initiative (RDoC,
positive valence, approach motivation) and has therefore
become highly relevant for psychiatric research7,8.
Understanding the involvement of specific neuro-
transmitter receptors in this model is of critical impor-
tance to identify specific pharmacological targets when
studying disorders associated with altered DA and reward
function. Although DA-D1 and DA-D2 receptors have
been associated with PE response, the specific receptor
alleles involved have been elusive, and this distinction of
function has also been questioned9,10. Specifically, those
reports hypothesize that phasic DA signals encode
unexpected rewards and are associated with behavioral
activation through D1 receptors that have low DA affinity.
On the other hand, avoidance learning and behavior
inhibition are mediated through the high DA affinity D2
receptors. However, such a dichotomous view may not be
correct, and those receptor systems may be working more
in concert than antagonistically9,10. Recent research has
implicated in particular the DA-D2 receptor (DA-D2R)
and one of its polymorphisms, the Taq1A allele, in a
behavioral PE reinforcement learning task11. However, we
are not aware of studies that have investigated the effects
of DA gene polymorphisms on human PE brain response.
In this study, we investigated the role of DA-D2R alleles

in driving PE response in the human brain using func-
tional magnetic resonance brain imaging (fMRI). Eise-
negger et al.11 indicated that the DA-D2R would be
involved in PE response. But the direction in which allele
frequency would drive brain activation has been elusive.
We therefore decided to use linear regression modeling to
test those effects. Previous data comparing individuals
with anorexia nervosa and obesity suggested that body
mass index (BMI) could also contribute to PE response12.
Starvation is associated with certain adaptations, which
drive food intake13–15, including changes in DA release
and receptor expression15. Similarly, overeating and
associated weight gain cause changes in the DA system,
and specifically in DA-D2R expression16. Those described
changes occur on a continuum between under-, normal-
and overweight individuals12, and we therefore hypothe-
sized that BMI would explain at least part of the variance

of this response in healthy controls in addition to DA-D2
genotype. For completeness, we also explored whether we
would find specific contribution of DA-D1 receptor (DA-
D1R) alleles to PE response, as well as polymorphisms for
the catechol-o-methyltransferase (COMT), DA transpor-
ter (DAT), or the DA D4 receptor (DA-D4R), which had
been included in previous studies2,3.

Subjects and methods
Study participants
Thirty-three healthy Caucasian females were included

in the study, which was approved by the Colorado Mul-
tiple Institutional Review Board. All study participants
signed informed consent. Participants ranged in age from
16 to 43 years (mean 24.3 ± 7.3) and were of normal BMI,
ranging from 18.1 to 24.2 (M 21.6 ± 1.4), based on the
Centers for Disease and Prevention definition. Study
subjects did not have a history of major medical illness
and were free from DSM-5 psychiatric diagnoses as
determined by a structured clinical interview conducted
by a doctoral level interviewer17. All women were studied
during the early phase of the follicular cycle18. This study
included novel analyses and we did not have prior data to
base the adequate sample size on. However, previous
brain-imaging studies with 20–30 individuals per group
provided significant correlational results and we expected
that over 30 subjects per group would be adequate19.

Genotyping
Participants were asked to provide saliva, from which

epithelial cells were collected, using a commercial pro-
duct, Oragene® (DNAgenotek, Kanata, Ontario, Canada).
DNA was extracted from the samples using standard
salting-out and solvent precipitation methods, yielding an
average of 45 μg of DNA. Methods for genotyping the
DAT and DRD4 polymorphisms are detailed by Haber-
stick et al.20

Genotyping of the DA-D2R (ANKK1) Taq1A
(rs1800497) and COMT Val158Met (rs4680) SNPs using
Taqman® are detailed in Haberstick and Smolen21.
The Taqman® assay for the DRD2 −141C Ins/Del

(rs1799732) utilized primers and probes from Gemignani
et al.:22 forward primer: 5′- AAA-
CAAGGGATGGCGGAATC-3′; reverse primer: 5′-
CACCAAAGGAGCTGTACCTC-3′; del probe: 5′-VIC-
CAACCCCTCCTACCCGTTCAGGC-MGB-3′; Ins
probe: 5′-FAM-CCCTCCTACCCGTTCCAGGCMGB-3′.
Taqman® assays for three SNPs in DRD1, rs686
(C___1011786_10), rs4532 (C___1011777_10), and rs5326
(C__11157157_10) were purchased from Thermo Fisher
Scientific. All SNP assays were performed according to
manufacturer’s protocols using TaqMan® Genotyping
Master Mix in an ABI 7000 real-time PCR system in a
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total volume of 15 µl containing 2 µl of genomic DNA
(≤20 ng).

Brain-imaging procedures
On the study day, participants arrived between 7.00 and

8.00 AM after an overnight fast, and received a standar-
dized breakfast with the instruction to eat until comfor-
tably full. fMRI was performed between 8.00 and 9.00
AM. Brain images were acquired on a GE Sigma 3T
scanner. T2* weighted echo-planar imaging for blood-
oxygen dependent (BOLD) functional activity was per-
formed, voxel size 3.4 × 3.4 × 2.6 mm, TR 2100ms, TE
30ms, angle 70°, 30 slices, interleaved acquisition, and
2.6 mm slice thickness with 1.4 mm gap. We also acquired
structural images (T1, SPGR field of view 22 cm, flip angle
10°, slice thickness 1.2 mm, scan matrix 256 × 256, TR 10,
TE 3, voxel size 1.2 mm3) for analysis of brain anatomy.

Classical conditioning task
We adapted the design used by O’Doherty et al.5 Indi-

viduals received three taste stimuli as unconditioned sti-
mulus (US) during fMRI imaging: 1M Sucrose solution
(100 trials), No solution (100 trials), or artificial saliva (80
trials). Individuals learned to associate each taste stimulus
with a unique paired visual conditioned stimulus (CS), a
geometric shape, which was only probabilistically asso-
ciated with its corresponding US: the CS shape for No
solution was followed in 20% of the trials by sucrose
(unexpected sucrose receipt, positive PE condition), and
the CS shape for Sucrose was followed in 20% of trials by
No solution (unexpected sucrose omission, negative PE
condition). Each visual cue (CS) was presented for 2 s.
With the disappearance of the visual cue, simultaneously
the taste stimulus (US) was delivered, and a black fixation
cross appeared on white background. The taste fluid
delivery occurred over 1 s. Inter-trial interval was fixed at
6 s. Subjects were instructed to swish their tongue once,
look at the fixation cross, and await the next trial. For each
subject, the first 10 trials were fixed CS shape for sucrose
followed by the delivery of US sucrose to establish an
initial stable association between the CS sucrose shape
and US sucrose taste5. All other trials were fully rando-
mized without predetermined order. The taste stimuli
were applied using a customized programmable syringe
pump (J-Kem Scientific, St. Louis, MO) controlled by E-
Prime Software (Psychological Software Tools, Pittsburgh,
PA), and individual taste applications were triggered by
the MRI’s scanner’s radiofrequency pulse23,24. Task
duration was 28min.

Brain-imaging analysis
Brain-imaging data were preprocessed and analyzed

using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). Data from each subject were realigned

to the first volume, normalized to the Montreal Neuro-
logical Institute template, and smoothed with a 6-mm
FWHM Gaussian kernel. Each image sequence was
manually inspected, and subjects with artifacts or move-
ment >3 voxel size were excluded from the analysis. Data
were preprocessed with slice time correction and motion
parameters were applied as regressors in the first-level
analysis.
We extracted mean parameter estimates across all

voxels within predefined anatomical regions of interest
(http://marsbar.sourceforge.net/) to avoid problems from
small volume corrected peak voxel statistics or violation
of normal distribution. We explored standard a priori
bilateral25 reward circuitry regions of interest (Automated
Anatomical Labeling Atlas26): bilateral caudate head,
putamen, substantia nigra, and nucleus accumbens.

Computational model analysis
To test temporal difference model-related brain

response, we modeled each participant’s individual PE
signal based on trial sequence5,27. The predicted value (V̂ )
at any time (t) within a trial is calculated as a linear
product of weights (wi) and the presence of the CS sti-
mulus at time t, coded in a stimulus representation vector
xi(t) where each stimulus xi is represented separately at
each moment in time5:

V̂ ðtÞ ¼
X

i
wixiðtÞ:

The predicted stimulus value at each time point t in the
trial is updated by comparing the predicted value at time t
+ 1 to that actually observed at time t, leading to the PE δ
(t):

δðtÞ ¼ rðtÞ þ γV̂ ðt þ 1Þ � V̂ ðtÞ;

where r(t) is the reward at time t. The parameter γ is a
discount factor, which determines the extent to which
rewards arriving sooner are more important than rewards
that arrive later during the task, with γ= 0.995. The
weights wi relate to how likely a particular US follows the
associated CS and are updated on each trial according to
the correlation between PE and the stimulus representa-
tion:

Δwi ¼ α
X

t

xiðtÞδðtÞ:

where α is a learning rate. Among various learning rates
(0.2, 0.5, 0.7), a slow α= 0.7 was the best fit for study
groups5. The initial reward values were 1 for Sucrose and
0 for No solution. The PE calculated for each trial was
modeled as an absolute (reflecting response strength)
without separating positive or negative PE trials. This
trial-to-trial calculated PE was then regressed with the
parameter estimates derived from brain activation across
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all trials within each subject. Parameter estimates were
then extracted for further analysis.

Statistical analysis
All analyses were conducted using the statistics package

SPSS 24 (IBM, Inc.).

We created a composite score for each participant based
on each DA receptor's genotype and alleles per partici-
pant. For each region of interest, the mean value for the
PE model regression parameter estimates was extracted
and included in a multiple linear regression analysis. Each
region of interest-extracted brain parameter estimate was
considered the dependent variable. BMI as well as the DA
receptor genotypes were included as independent vari-
ables. The primary hypothesis was based on DA-D2R
polymorphisms driving PE response together with BMI
and those variables were grouped together (PE (depen-
dent)—BMI, DA-D2R polymorphisms (independents)). In
addition, the DA-D1R polymorphisms rs686, rs4532, and
rs5326 were grouped with BMI (PE (dependent)—BMI,
DA-D1R polymorphisms (independents)), as were
COMT, DAT, and DA-D4R (PE (dependent—BMI,
COMT, DAT, DA-D4R (independents)). Linear regres-
sion was performed using the “Enter” method. This
method was selected because we did not have a specific
hypothesis, which of the independent variables would
produce the best prediction equation. This is also the
most stringent method for multiple linear regression. In
addition, we performed bootstrapping. This resampling
method was used to reduce bias. In the multiple regres-
sion analysis, we assessed collinearity, and a variance

Table 1 Multilinear regression results for bilateral
putamen; β-values are standardized and associated p-
values derived after bootstrapping

β p Collinearity

tolerance

ANOVA

Right putamen

BMI −0.556 0.001 0.861 F= 7.407,

p < 0.001DRD2 −141 Ins/Del 0.396 0.018 0.887

DRD2 Taq1A −0.461 0.001 0.96

Left putamen

BMI −0.457 0.002 0.861 F= 6.592,

p < 0.002DRD2 −141 Ins/Del 0.434 0.035 0.887

DRD2 Taq1A −0.477 0.001 0.96

Fig. 1 Prediction error correlation plots. Individual scatter plots for body mass index (BMI), DA-D2R alleles for the 141 and Taq1A genotype and
bilateral putamen prediction error (PE) values (top panel: right putamen; bottom panel: left putamen)
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inflation factor of >5 was considered indicating significant
collinearity. Non-normally distributed data were rank-
transformed before statistical analysis.
We further computed a summary score (addition) for

the DA-D2R Taq1A alleles, −141C Ins/Del alleles and
BMI and performed a whole-brain regression with PE
regression maps. For the DA-D2R 141, the Del/Del gen-
otype was assigned a value of 1, the Ins/Del 2, and Ins/Ins
3; for DA-D2R Taq1A, a value of 1 was assigned to the
A1/A1, a 2 to the A1/A2, and a 3 to the A2/A2 genotype.
Those values were added to the raw BMI value and
regressed with brain response. Regression maps were
thresholded at p < 0.05 peak voxel FWE corrected. In
order to test whether a regression would be region-spe-
cific, we created a regression map at p < 0.001
uncorrected.

Results
Genotype data were within the Hardy–Weinberg
equilibrium
The combination of DA-D2R Taq1A, −141C Ins/Del

and BMI was highly predictive of bilateral putamen PE
response and survived multiple comparison correction
(Bonferroni), but not for other regions (Table 1, Fig. 1).
Figure 1 also shows directionality of DA-D2R allele as well
as BMI effects on PE. There was no interaction between
BMI and allele frequency. DA-D1R alleles or DAT,
COMT, or D4 together with BMI did not significantly

predict PE response. However, coefficients for DA-D1R
alleles rs686, rs4532 in bilateral nucleus accumbens were
significant, and after exploratory removal of the rs5326
allele and BMI, the rs686 and rs4532 alleles predicted left
nucleus accumbens PE response (F= 3.933, p < 0.03), but
did not survive multiple comparison correction.
We further computed a summary score (addition, sup-

plemental material) for the DA-D2R Taq1A alleles,
−141C Ins/Del alleles, and BMI, and performed a whole-
brain regression with PE regression maps. That showed a
cluster in the right putamen (p < 0.05, FWE corrected,
whole brain unmasked; Fig. 2, Supplemental Table 1),
which was significant at the cluster level (p < 0.002). An
additional exploratory analysis at lower significance
threshold (p < 0.001 uncorrected, 50 voxel cluster
threshold) indicated across the whole brain almost
exclusive regression with putamen brain response,
although there were three additional smaller clusters in
the middle and inferior prefrontal cortex. In that analysis,
the bilateral putamen clusters were significant p < 0.05
FWE corrected at the cluster level (right p < 0.001, left p <
0.002).

Discussion
This study provides empirical evidence that DA-D2R

alleles contribute together with BMI to human PE
response in the putamen. The DA-D2R 141 Ins/Ins and
Taq1A A2/A2 alleles and higher BMI were associated

Fig. 2 Whole-brain regression between summary scores of BMI, DA-D2R 141, and Taq1A genotype score with prediction error (PE) maps;
no mask was applied. a Threshold p < 0.05 FWE corrected; one significant cluster, x= 26, y= 4, z=−8, peak pFWE < 0.018, k= 8, right putamen,
cluster pFWE < 0.002. b An additional regression at lower threshold (p < 0.001, uncorrected) indicated that the BMI and genotype score correlated
almost exclusively with ventral putamen PE activation (cluster pFWE < 0.001 and p < 0.002, right and left hemispheres, see supplemental material for
full results)
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with lower PE response. DA-D1R allelic variation might
be a factor in nucleus accumbens response, but we did not
find evidence that DAT, COMT, or DA-D4R contribute
to this response. Previous studies using computational
algorithms found that in particular the putamen responds
to PE tasks4,5,28. Our results are consistent with those
findings.
From these results, we can propose a model for how the

combination of genotype and BMI can explain a sig-
nificant amount of variance in PE response. This is novel
and has not been shown before. This is important
for various reasons. First, it highlights the importance of
DA-D2R allele frequency and proposing a mechanism for
variation of PE response across individuals. Second,
the importance of the DA-D2R in general PE response
indicates that DA-D2R active medication may be useful
in modifying PE response, which could have clinical
implications. Third, the results suggest that variation in
BMI is also associated with changes in PE, which is
important as it suggests a mechanism for how eating
behavior can affect DA-related brain response. Our study
is a direct extension of the study by Eisenegger et al.11

that emphasized the DA-D2R and the Taq1A allele
in reinforcement learning in humans11. That study
investigated male participants only, while our study was
restricted to adult females. Sex and also the state of
menstrual cycle modify brain reward response, and future
studies need to investigate those differences further across
sexes29.
The NIMH RDoC project includes the PE model and

this paradigm has been now applied in a host of studies
including depression and psychotic disorders30,31. This
makes it even more important to understand the factors
that drive the PE signal, in order to properly contrast
brain response between healthy individuals and those with
specific psychiatric disorders. This study adds evidence to
the long hypothesized genetic underpinnings, specifically
DA-D2R alleles, driving PE response9. The DA-D2R
adapts to food intake and can be modified by the type of
diet and weight gain16,32. This has important implications
not only for conditions such as obesity and eating dis-
orders, but also for depression and schizophrenia, con-
ditions also often associated with high or low weight16,33.
It may therefore be key to assess DA receptor genotype
and BMI, and take those effects into consideration when
analyzing and interpreting studies that use this paradigm.
Our previous data showed that extremes of under and
overweight are associated with opposite PE response12.
Here we studied healthy control individuals and we
believe that being able to demonstrate those effects across
the spectrum of normal weight suggests a strong effect of
the variables studied. Nevertheless, future studies will
need to study genotype and DA-D2R effects on PE
response across the spectrum of psychiatric populations.

Limitations
Our study did not measure a specific behavior response.

However, choice and motivation have been associated
with DA-D2R and PE response34. We only studied
females and a comprehensive study is needed across both
sexes. The sample is modest and requires replication, and
in order to mitigate this, we used bootstrap procedures.
The effects of the DA-D1R alleles did not survive multiple
comparisons, however in a larger sample, their effects
could have been significant. The correlation results are
primarily driven by the major allele homozygotes and the
heterozygotes. The number of minor allele homozygote
individuals is small and their true mean value for PE
response is difficult to assess. The data from this healthy
control sample do not allow any inference on how gen-
otype and BMI interact with psychiatric illness effects.
Basic research has implicated the DA-D2R in reinforce-
ment learning response in brain regions including stria-
tum, pallidum, nucleus accumbens core, and habenula,
but human fMRI is not necessarily well positioned to
make such fine distinctions35–38. The calculated PE was
modeled as absolute or strength of PE and regressed with
the brain response reflected in the parameter estimates as
in previous studies12,19. This approach does not separate
by positive and negative activation, but has been selected
because it is uncertain whether DA receptor function can
be separated for positive and negative PE response10. We
included a broad age range in the analysis for study of a
larger population sample. In order to test for age effects,
we ran an additional exploratory analysis, which also
included age in the model. However, while BMI effects
remained significant for right (p < 0.001) and left (p <
0.031) putamen, there were no significant effects for age
for right (p < 0.495)- or left (p < 0.695)-sided putamen PE
response. We therefore do not believe that the age range
confounded the study results.
In summary, these data suggest that DA-D2R allelic

variation contributes to PE response in healthy women
together with BMI. This suggests that studies that apply
the PE model should take those variables into account.
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