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Abstract

Inferring protein-protein interactions from sequences is an important task in computational

biology. Recent methods based on Direct Coupling Analysis (DCA) or Mutual Information

(MI) allow to find interaction partners among paralogs of two protein families. Does success-

ful inference mainly rely on correlations from structural contacts or from phylogeny, or both?

Do these two types of signal combine constructively or hinder each other? To address these

questions, we generate and analyze synthetic data produced using a minimal model that

allows us to control the amounts of structural constraints and phylogeny. We show that cor-

relations from these two sources combine constructively to increase the performance of

partner inference by DCA or MI. Furthermore, signal from phylogeny can rescue partner

inference when signal from contacts becomes less informative, including in the realistic

case where inter-protein contacts are restricted to a small subset of sites. We also demon-

strate that DCA-inferred couplings between non-contact pairs of sites improve partner infer-

ence in the presence of strong phylogeny, while deteriorating it otherwise. Moreover,

restricting to non-contact pairs of sites preserves inference performance in the presence of

strong phylogeny. In a natural data set, as well as in realistic synthetic data based on it, we

find that non-contact pairs of sites contribute positively to partner inference performance,

and that restricting to them preserves performance, evidencing an important role of

phylogeny.

Author summary

In protein sequence data, the amino acid usages at different sites of a protein or of two

interacting proteins can be correlated because of functional constraints. For instance, the

need to maintain physico-chemical complementarity among two sites that are in contact

in the three-dimensional structure of a protein complex causes such correlations. How-

ever, correlations can also arise due to shared evolutionary history, even in the absence of

any functional constraint. While these phylogenetic correlations are known to obscure the

inference of structural contacts, we show, using controlled synthetic data, that correlations
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from structure and phylogeny combine constructively to allow the inference of protein

partners among paralogs using just sequences. We also show that pairs of amino acids

that are not in contact in the structure have a major impact on partner inference in a natu-

ral data set and in realistic synthetic ones. These findings explain the success of methods

based on pairwise maximum-entropy models or on information theory at predicting pro-

tein partners from sequences among paralogs.

Introduction

Most cellular processes are carried out by interacting proteins. Thus, mapping protein-protein

interactions is a crucial goal. Since high-throughput experiments remain challenging [1], it is

interesting to exploit the growing amount of available sequence data to identify candidate pro-

tein-protein interaction partners. The amino-acid sequences of interacting proteins are corre-

lated, both because of evolutionary constraints arising from the need to maintain physico-

chemical complementarity between amino acids that are in contact in the three-dimensional

structure of protein complexes, and because of shared evolutionary history. On the one hand,

correlations from structural contacts have received substantial interest, both within single pro-

teins and across interacting protein partners. Global statistical models [2, 3] using the maxi-

mum entropy principle [4] and designed to match the one- and two-body statistics of natural

sequence data, often called Direct Coupling Analysis (DCA) [5], have allowed to determine

three-dimensional protein structures from sequences [6–8], to analyze mutational effects [9–

12], protein evolution [13] and conformational changes [14, 15], to design proteins [16], to

find residue contacts between known interaction partners [5, 17–23], and to predict interac-

tion partners among paralogs [24, 25] and protein-protein interaction networks [26, 27] from

sequence data. On the other hand, correlations arise in protein sequences due to their common

evolutionary history, i.e. phylogeny [28–30], even in the absence of structural constraints.

Functionally related [31] and interacting [32] protein families tend to have similar phyloge-

nies. This can arise from global shared evolutionary pressures on interacting partners, result-

ing in similar evolutionary rates [33–37], and from mere shared evolutionary history,

including common timing of speciations and gene duplications [36]. Accordingly, methods

based on sequence similarity, e.g. Mirrortree [38–42], or on the simultaneous presence and

absence of genes, e.g. phylogenetic profiling [43–45] allow to predict which protein families

interact. Mutual information (MI), which includes all types of statistical dependence between

the sequences of interacting partners, slightly outperforms DCA at predicting interaction part-

ners among paralogs [46]. While DCA allows to infer interaction partners among paralogs in

synthetic data that only comprises correlations from contacts [47], good performance is also

obtained at this task by DCA and MI in synthetic data that only includes phylogenetic correla-

tions [48]. Therefore, correlations from contacts and from phylogeny are both useful to predict

protein-protein interaction partners among paralogs. This stands in contrast with the identifi-

cation of structural contacts by DCA [5, 6, 30, 49–51], where phylogenetic correlations obscure

structural ones, motivating the use of phylogeny corrections [52, 53], such as the Average

Product Correction [54, 55], reweighting close sequences [6, 7, 55, 56], and Nested Coevolu-

tion [57].

Recently, deep learning has brought major advances to the computational prediction of

protein structures [58], and these approaches have been extended to the prediction of protein-

protein interactions and of protein complex structures [59–61], outperforming DCA-based

ones [59]. Coevolution between candidate partners is an important ingredient of these new
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methods. For each candidate pair of proteins, they start by constructing a paired or partially

paired multiple sequence alignment of homologs, using species information, orthology, and

genome proximity in prokaryotes [26, 27, 59–61]. These paired alignments are used as input of

the deep neural networks, and their quality impacts that of the final predictions [59, 61].

Therefore, DCA- and MI-based methods to infer partners among paralogs from sequences,

such as those introduced in [24, 25, 46] could be employed to enrich and improve these input

alignments.

How do DCA- and MI-based methods to infer protein partners among paralogs of two pro-

tein families perform in the presence of both phylogeny and structural contacts? Does success-

ful inference mainly rely on one or the other of these two sources of correlations? Do they

combine constructively or hinder each other? What changes when one dominates over the

other? Answering these questions is important to understand the performance of DCA- and

MI-based methods to infer protein partners in natural data, and should help to develop new

methods that combine information from both phylogeny and contacts in an optimal way.

However, a substantial challenge is that real data sets contain a given mix of these signals,

which is unknown and difficult to disentangle. Therefore, to address these questions, we gen-

erate synthetic data in a minimal model that allows us to control the amounts of structural

constraints and phylogeny. We also consider a data set of natural sequences, as well as syn-

thetic data generated using models inferred on this natural data. Our focus is on predicting

partners among paralogs, starting from a training set of known interaction partners, but our

methods can be extended to the case where there is no training set via an Iterative Pairing

Algorithm (IPA) [24, 46].

We find that correlations from structural contacts and from phylogeny add constructively

in partner inference by DCA or MI. Furthermore, the signal from phylogeny can rescue part-

ner inference in regimes of relatively weak selection and in the realistic case where inter-pro-

tein contacts are restricted to a small subset of sites. We show that DCA-inferred couplings

between non-contact sites improve partner inference in the presence of strong phylogeny,

while deteriorating it otherwise, and that they suffice to obtain good performance in the pres-

ence of strong phylogeny. In a natural data set, as well as in realistic synthetic data, we find

that non-contact pairs of sites contribute positively to the performance of partner inference

among paralogs, and that restricting to them preserves performance, evidencing an important

role of phylogeny.

Methods

Modeling structural constraints with Potts models

General approach. We model the constraints stemming from the physicochemical com-

plementarity of amino acids that are in contact in the three-dimensional structure of protein

complexes by pairwise interactions in a Potts model. We consider concatenated sequences

composed of two interacting partners A and B with respective lengths LA and LB. We denote

by αi 2 {1, . . ., q} the state of site i 2 {1, . . ., LA + LB}, where q is the number of possible states.

The Hamiltonian of a concatenated sequence~a ¼ ða1; :::; aLAþLB
Þ reads:

Hð~aÞ ¼ �
XLAþLB

i¼1

hiðaiÞ �
XLAþLB

j¼1

Xj� 1

i¼1

eijðai; ajÞ ; ð1Þ

where fields hi yield conservation, while (direct) couplings eij model pairwise interactions.

Pairwise maximum entropy inference (DCA) yields the Potts Hamilitonian in Eq 1 [5, 62].
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Minimal model. In our minimal model, sequences are strings of binary variables repre-

sented by “Ising spins” taking values −1 or 1 (q = 2). Equivalently, one could take values 0 or 1,

which is more usual for proteins [29, 63, 64], but we choose the spin convention to make the

link with statistical physics [47]. These spins are coupled via uniform ferromagnetic couplings,

set to unity, on all edges of an Erdős-Rényi random graph, all other couplings being zero, and

all fields being zero. In the Ising (or zero-sum) gauge [65], employing Ising notations, i.e. h(αi)

= hiαi and eij(αi, αj) = Jijαiαj, and then implementing our choices hi = 0 for all i and Jij = 1 if

ði; jÞ 2 E, where E is the set of edges of the Erdős-Rényi graph, and Jij = 0 otherwise, the Ham-

iltonian in Eq 1 can be simplified to

Hð~aÞ ¼ �
XLAþLB

i¼1

hiai �
XLAþLB

j¼1

Xj� 1

i¼1

Jijaiaj ¼ �
X

ði;jÞ2E

aiaj : ð2Þ

Here, the sequence~a ¼ ða1; :::; aLAþLB
Þ 2 f�1g

LAþLB is a string of LA + LB Ising spins.

Importantly, the Erdős-Rényi graph is fixed throughout, as it models the set of contacts of two

given interacting protein families assembling into a specific complex structure. For simplicity

we take LA = LB = L. We consider an Erdős-Rényi graph with 2L = 200 vertices, where any two

vertices are connected with probability p = 0.02. Because inter-protein contacts are generally

sparser than intra-protein ones, we also study other graphs satisfying this constraint.

Models inferred from real data. We also generate more realistic synthetic data from

Potts models inferred from two different natural sequence data sets. The first one is composed

of 23, 633 pairs of natural sequences of interacting histidine kinases (HK) and response regula-

tors (RR) from the P2CS database [66, 67]. The second one comprises 17,950 pairs of ABC

transporter proteins homologous to the Escherichia coli MALG-MALK pair of maltose and

maltodextrin transporters [19, 24]. In both of these natural data sets, interacting partners are

determined using proximity in the genome (either using annotations of the P2CS database or

following the approach from Ref. [19]), allowing us to assess partner inference performance in

these natural data sets as well as in synthetic ones. In protein sequences, there are q = 21 states,

namely the 20 natural amino acids and the alignment gap. We use state-of-the-art methods

that have good generative properties, namely bmDCA [16, 68] and arDCA [69]. In practice,

we employ bmDCA with its default parameters for q = 21, and with default parameters except

twait,0 = 1000 and Δt0 = 100 for q = 2 (motivated by the faster equilibration observed for q = 2).

For arDCA, we use default parameters, apart from the reweighting parameter θ = 0.2 (chosen

to match the bmDCA value) and the regularization strengths λJ = 2 × 10−4 and λh = 10−5 for

q = 21 or λJ = 2 × 10−3 and λh = 10−4 for q = 2 (chosen to reproduce one- and two-body fre-

quencies well, see S10, S11 and S13 Figs).

Generating synthetic data with controlled amounts of structural

constraints and phylogeny

General approach. We generate synthetic data using Markov Chain Monte Carlo sam-

pling along a phylogenetic tree [30, 49], employing the Potts model Hamiltonian H in Eq 1

(for q = 21) or Eq 2 (for q = 2) to model structural constraints. As we focus on pairs of protein

families with given structures, we assume that the ancestral protein complex already had the

same structural constraints, and we take as our ancestral concatenated sequence AB an equilib-

rium sequence under the Hamiltonian H at sampling temperature T. We then simulate evolu-

tion along the chosen phylogenetic tree (see below): random mutations are proposed at sites

chosen uniformly at random, independently on each branch of the tree. Each proposed muta-

tion is accepted with a probability p given by the Metropolis criterion at sampling temperature
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T:

p ¼ min 1; exp �
DH
T

� �� �

; ð3Þ

where ΔH is the difference between the value of H after the mutation and before it. This mod-

els natural selection for maintaining structure [47]. Indeed, all mutations that decrease H are

accepted (p = 1), while those that increase H can be rejected (p< 1), and will generally be

rejected if T is small.

Minimal model. In our minimal model, a simple phylogeny is introduced via a binary

branching tree with a fixed number n of “generations” (duplication events) and a fixed number

μ of accepted mutations on each branch (between two subsequent duplication events; see Fig

1). It gives rise to 2n concatenated sequences AB on the leaves of the tree, which constitute a

synthetic data set of paired sequences, where partners A and B evolved together along the tree.

In practice, we choose n = 10, and thus 2n = 1024, ensuring that inference works well without

phylogeny [47], and is computationally fast.

Controlling the importance of structural constraints and phylogeny. Tuning the sam-

pling temperature T and the number μ of mutations per branch allows us to control the rela-

tive importance of structural constraints and phylogeny. First, Eq 3 shows that when T! 0,

mutations that increase the value of H are all rejected, yielding strict selection for structure.

Conversely, when T!1, all mutations are accepted, so that all correlations in the data arise

from phylogeny (and finite-size noise). Second, if μ is small, then all sequences resemble the

ancestral one, yielding extreme phylogenetic correlations. If μ is very large, even sister

sequences arising from the last branching event become independent [48], leaving only corre-

lations from structure.

Pure structural constraints limit and pure phylogeny limit. First, to consider the limit-

ing case that only involves structural constraints, independent equilibrium sequences are gen-

erated using the Markov Chain Monte Carlo sampling scheme explained above (see Eq 3).

Each sequence is generated starting from a different initial random sequence [47]. The equili-

bration time is determined by the convergence of the Hamiltonian value, see S2 Fig (note that

the convergence of the absolute magnetization correlation function gives similar results [47]).

Second, to consider the limiting case that only involves phylogeny, synthetic sequences are

evolved along a phylogenetic tree, and all proposed mutations are accepted, simulating neutral

evolution, where mutations have no fitness effect. Note that with structural constraints, when

T!1, all proposed mutations are also accepted since |ΔH|�T, despite the fact that they may

be deleterious (ΔH> 0).

Models inferred from real data. We employ generative models inferred on natural paired

sequences (see above) to generate realistic synthetic data either without or with phylogeny.

While bmDCA infers a Potts model, arDCA directly infers the distribution of probability of

sequences [69]. First, to generate contact-only data, we employ a Markov Chain Monte Carlo

procedure for bmDCA (equilibrium is considered reached after 106 accepted mutations for

q = 21, or 105 for q = 2), while we directly sample independent sequences from the inferred dis-

tribution for arDCA. Second, to generate data that incorporates both phylogeny and contacts

[49], we employ a tree inferred on the data set of natural paired sequences via FastTree2 [70].

As the length b of a branch gives the mutation probability per site along it [70], we generate

data by making bb × (LA + LB)cmutations on a branch of length b.
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Inference problem

Question. Given two protein families A and B that interact, and starting from a training

set of known AB partners, we aim to find, in each species of a testing set (see Fig 1), which spe-

cific proteins A and B are evolutionary and functional partners. We assume for simplicity that

there is a strict one-to-one pairing between each A and its partner B.

Species in the minimal model. In our minimal model, we randomly group concatenated

AB sequences into sets of equal size m, representing species. The m different sequences A (or

B) within a species represent paralogs. This minimal model, where species contain random

assortments of sequences, is realistic if exchange between species (horizontal gene transfer) is

sufficiently frequent. As in Ref. [48], we compare this random-species model to more realistic

ones (see S9 Fig), and qualitative conclusions are not affected, although the minimal model

yields higher phylogenetic signal. In the testing set, within each species, we blind the pairings

of the chains A and B. We then aim to infer these pairings, i.e. to recover for each A chain its

evolutionary and functional partner, which is the B chain that coevolved with it.

Species in the model inferred from natural data. In our more realistic model where syn-

thetic sequences are generated employing Hamiltonians and phylogenies inferred from natural

sequence data, we rely on the inferred tree to define species. On each leaf of the inferred tree

lies a natural paired sequence, coming from a given species. When generating data along this

tree, we put the generated sequence on a given leaf of the tree into the species associated to this

leaf in the natural data. The distribution of the number of sequence pairs per species in the

synthetic data then exactly matches that of the natural data, and sequences in each species have

the same positions in the tree as in the natural data. The inference question is then asked in the

exact same way as in the minimal model.

Fig 1. Construction of a synthetic data set in the minimal model. A binary branching tree provides a minimal phylogeny. Structural constraints are represented by

pairwise couplings on the edges of an Erdős-Rényi graph (Hamiltonian H in Eq 2). Starting from an ancestral concatenated sequence AB of 2L Ising spins (here L = 4), a

series of n duplication events (“generations”, here n = 3) are performed. Between these duplications, and independently on each branch of the tree, μ mutations take place

(here μ = 2, and mutated sites are highlighted). Each mutation is an accepted spin flip at one site, and the acceptance criterion is given by Eq 3. This process yields 2n = 8

chains AB at the tree leaves. This data is then randomly split into a training set and a testing set. In the testing set, groups of m sequences modeling species are randomly

formed (here m = 3). Next, the evolutionary and functional pairings between chains A and B are blinded within each species of the testing set.

https://doi.org/10.1371/journal.pcbi.1010147.g001
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Inference methods

Training set statistics. The statistics of the training set of paired chains AB, of total length

LA + LB, are described using the empirical one-site frequencies of each state αi at each site i 2
{1, . . ., LA + LB}, denoted by fi(αi), and the two-site frequencies of occurrence of each ordered

pair of states (αi, αj) at each ordered pair of sites (i, j), denoted by fij(αi, αj). Covariances are

computed as Cij(αi, αj) = fij(αi, αj) − fi(αi)fj(αj). When we employ mean-field DCA (mfDCA)

and mutual information (MI), pseudocounts with weights denoted by λ and defined as in Refs.

[24, 46, 48] are introduced [6, 7, 17, 46]. The value λ = 0.5 is usually employed in mfDCA [6, 7,

24], while smaller values have proved better for MI [46, 48]. Thus, we always take λ = 0.5 for

mfDCA and λ = 0.01 for MI. However, we do not employ any phylogenetic reweighting

(except where noted) because our aim is to investigate the effect of phylogeny, and also because

this reweighting has very little impact on the inference of partners [24].

DCA-based inference method. DCA is based on building a global statistical model con-

sistent with the empirical one- and two-body frequencies of the training set [5–7, 62], through

the maximum entropy principle [4]. This results in a probability of observing a given sequence

reading [62]:

Pða1; . . . ; aLAþLB
Þ ¼

exp½� H�
Z

; ð4Þ

where the Hamiltonian H is given by Eq 1, i.e. by the Potts model, and Z is a normalization

constant. Inferring the couplings and the fields that appropriately reproduce the empirical

covariances is a difficult problem [71]. Within the mean-field approximation (mfDCA), which

we employ for partner inference as in [24, 47, 48], inferred coupling strengths can be simply

approximated by êijðai; ajÞ ¼ � C� 1
ij ðai; ajÞ in the reference-state gauge [6, 7, 72]. One then

makes a gauge change to the zero-sum (or Ising) gauge [24, 48, 54], which attributes the small-

est possible fraction of the energy to the couplings, and the largest possible fraction to the fields

[5, 54].

The effective interaction energy EAB of each possible pair AB in the testing set is given by

EAB ¼ �
XLA

i¼1

XLAþLB

j¼LAþ1

êijða
A
i ; a

B
j Þ : ð5Þ

In real proteins, approximately minimizing such a score has proved successful at predicting

interacting partners [24]. Note that we only sum over inter-protein pairs of sites (i.e. involving

one site in A and one in B), and that we do not include fields, because we focus on interactions

between A and B.

MI-based inference method [46]. The pointwise mutual information (PMI) of a pair of

states (αi, αj) at a pair of sites (i, j) is defined from the empirical one and two-body frequencies

of the training set as [73–75]:

PMIijðai; ajÞ ¼ log
fijðai; ajÞ

fiðaiÞfjðajÞ

" #

: ð6Þ

A pairing score SAB for each possible pair AB in the testing set can then be defined as the

sum of the PMIs of the inter-protein pairs of sites of this concatenated chain AB (i.e. those
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involving one site in chain A and one site in chain B):

SAB ¼
XLA

i¼1

XLAþLB

j¼LAþ1

PMIijða
A
i ; a

B
j Þ : ð7Þ

From scores to partner prediction. Our goal is to find the best 1-to-1 mapping of puta-

tive partners A-B in each species of the testing set. We assign a score to each possible partner

of interaction using Eqs 5 or 7, and select the one-to-one assignment which optimizes the sum

of scores for all chosen pairs by solving the corresponding linear assignment problem [76–79].

Results

Correlations from structural contacts and from phylogeny both contribute

to the performance of partner inference

In order to understand the origin of the performance of partner inference from protein

sequences observed on real data using DCA [24] and MI [46], we construct synthetic data sets

from a minimal model where the contributions of structural contacts and phylogeny can be

tuned via the number μ of mutations per branch of the tree and the sampling temperature T
(see Methods). How do these two parameters impact the performance of partner inference?

Addressing this question will provide insight into the interplay of correlations from structural

contacts and from phylogeny in partner inference.

Impact of the number of mutations per branch. Fig 2 shows the impact of varying the

number μ of mutations per branch of the tree on the performance of partner inference, mea-

sured via the fraction of correctly predicted partner pairs (recall that each protein A in the test-

ing set is paired with one partner B within its species, see Methods). In Fig 2, when μ≲ 15, the

performance of partner inference in our data set that incorporates both structural contacts and

phylogeny approaches that of a data set that only involves phylogeny (see Methods and

Ref. [48]). Indeed, similarities between related sequences are large for small μ, yielding domi-

nant phylogenetic correlations. Conversely, when μ ≳ 70, Fig 2 shows that the performance of

partner inference in our data set including both ingredients approaches the one obtained with

only structural contacts (see Methods and Ref. [47]). Indeed, when μ becomes large enough,

similarities due to phylogeny vanish even between closest relatives, and all sequences become

effectively independent. More precisely, the number of differences between two sister

sequences AB arising from the last duplication events is about 2μ (exactly 2μ if all mutations

affect different sites), and if it is of the same order as the total sequence length 2L, or larger, i.e.

if μ ≳ L = 100 here, then even sister sequences lose all phylogenetic correlations. Accordingly,

Fig 2 shows that for μ ≳ 90, performance in the pure-phylogeny data set drops to the chance

expectation (“null model”), which corresponds to making random one-to-one pairings of

sequences A and B within each species. Fig 2 also demonstrates that DCA and MI yield similar

performance for partner inference, with MI becoming slightly better when phylogeny is not

too strong, consistently with Refs. [46, 48].

Importantly, Fig 2 shows that partner inference performance in our data set including con-

tacts and phylogeny is better than for both limiting data sets. Therefore, partner inference is

made more robust by the fact that correlations from contacts and from phylogeny both con-

tribute. Depending on how strong phylogeny is (i.e., here, on how small μ is), the dominant

ingredient is either contacts or phylogeny, but in the generic case, these two signals add con-

structively to increase performance.
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Impact of sampling temperature. Fig 3 shows the impact of varying the sampling tem-

perature T on the performance of partner inference for two different values of μ, one where

phylogeny dominates, μ = 15, and one where contacts and phylogeny both have an important

contribution, μ = 30 (see Fig 2). The sampling temperature T impacts inference because 1/T is

a proxy for the strength of selection on structural contacts (see Methods). It is analogous to the

effective temperature at which foldable sequence have been selected in sequence space by evo-

lution [80]. In addition, in our minimal model, a phase transition between a ferromagnetic

Fig 2. Impact of mutation number on partner inference performance. The fraction of correctly predicted partner

pairs is shown versus the number μ of mutations per branch of the tree for the minimal model incorporating

constraints both from contacts and from phylogeny. Specifically, an ancestral chain AB of 2L = 200 spins is evolved

along a binary branching tree (see Fig 1) with n = 10 generations, and μ mutations per branch, yielding 210 = 1024 pairs

AB, at sampling temperature T = 5 under the Hamiltonian in Eq 2 on an Erdős-Rényi graph with p = 0.02. The limiting

cases with only contacts and only phylogeny are also shown for comparison. The first one corresponds to independent

equilibrium sequences at T = 5 under the Hamiltonian in Eq 2 on the same graph. The second one corresponds to

neutral evolution on the same binary branching tree. Each of these three data sets is randomly split into a training set

of 400 chains AB and a testing set of 624 chains AB. The latter are randomly divided in 156 species of 4 chains AB each,

and pairings between A and B chains are blinded in each species. Partnerships are then predicted using the scores in

Eq 5 (mfDCA) or Eq 7 (MI). Each point is averaged over 20 generated data sets, and 20 random choices of the training

set for each of them. The null model shows the expectation of the correct prediction fraction if pairs are made

randomly within each species.

https://doi.org/10.1371/journal.pcbi.1010147.g002

Fig 3. Impact of sampling temperature on partner inference performance. The fraction of correctly predicted partner pairs is shown versus the sampling

temperature T for the minimal model incorporating constraints both from contacts and from phylogeny. Data generation and inference are performed exactly as

in Fig 2, using the same parameters and the same graph for contacts. However, here, T is varied and μ = 15 (panel A) or μ = 30 (panel B). The limiting cases with

only contacts and only phylogeny are also shown for comparison. The null model shows the expectation of the correct prediction fraction if pairs are made

randomly within each species.

https://doi.org/10.1371/journal.pcbi.1010147.g003
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(ordered) phase where all spins tend to align and a paramagnetic (disordered) phase occurs at

an intermediate critical temperature Tc� 4.2 (found by examining the absolute magnetization

of sequences generated with only contacts, see S3 Fig, top panels). In the data set with only

contacts, this phase transition strongly impacts partner inference performance, with a peak

around Tc apparent in Fig 3 (see also Refs. [47, 81]). Qualitatively, at very low T, deep into the

ferromagnetic phase, sequences are very similar to one another, as spins tend to all align,

which makes inference difficult. At very high T, sequences become fully disordered and no

longer reflect constraints from contacts, making inference difficult again. An optimum is thus

expected at intermediate temperatures. The increased performance close to Tc has been stud-

ied in detail in Ref. [81] for contact prediction, and no direct effects of criticality were found.

Note that, more broadly, understanding which regime or phase is relevant in natural data is of

high interest [80, 82].

What is the impact of temperature when data are generated with both phylogeny and con-

tacts? Fig 3 shows that phylogeny substantially increases performance for T> Tc. More pre-

cisely, when phylogeny dominates (μ = 15, Fig 3A), partner inference performance is modest

at low temperatures, but it improves as T reaches Tc, and does not suffer the high-temperature

decay observed in contact-only data when T increases above Tc. Performance remains very

good at large T, tending to the phylogeny-only performance value, which is high in this regime,

consistently with Ref. [48]. We note that, in the low-temperature regime, performance is

worse than with contact-only data. In the ordered phase, about half of the contact-only

sequences include mainly 1, while others include mainly −1 (see S1 Fig). In a typical species

with four pairs AB comprising two sequences with mainly 1 and two with mainly −1 (or three

of one type and one of the other), pairing the A and B chains of the same overall sign is easy,

but degeneracy makes distinguishing among them very hard, making the baseline expectation

of partner performance about 50% (more precisely, about 47%, as there is a 1/8 probability to

get all four sequences of the same type). By contrast, in data generated with contacts and phy-

logeny, evolution starts from an equilibrium ancestral chain AB, which is already mainly com-

posed of either 1 or −1. At low temperatures, switching the overall sign by successive

mutations is difficult, and the whole phylogeny tends to retain the magnetization sign of its

ancestor (see S1 Fig). Thus, the baseline expectation is only 25% (random within-species

matching), thereby explaining the lower performance of partner inference for data with con-

tacts and phylogeny at low T. However, this “freezing” of states occurring in the low-T limit in

the present ferromagnetic Ising model is not expected to be the most relevant regime in real

proteins. Thus, most other figures presented here correspond to T = 5> Tc.

Let us now turn to the regime where phylogeny is less dominant (μ = 30, Fig 3B). While the

low-temperature results are similar to those for μ = 15, performance now substantially decays

in the high-temperature regime (this decay is very minor for μ = 15). Indeed, contacts become

less informative as disorder increases, as for contact-only data. However, phylogeny makes

this decay less strong, and at very high temperature, performance tends to the phylogeny-only

value. Fig 3 also confirms that DCA and MI yield similar results, with MI becoming slightly

better at high temperatures.

Impact of the training set size and of the number of pairs per species. In addition to

the parameters μ and T that allow us to tune the relative importance of phylogeny and contacts,

other parameters strongly impact inference. First, S4 Fig shows that a sufficiently large training

set is required to accurately identify partners within each species. This holds both for DCA

and for MI, but MI yields better performance for relatively small training sets, as for real data

[46]. While trends are similar for μ = 15 (S4(A) Fig) and for μ = 30 (S4(B) Fig), larger training

sets are required to obtain the same performance in the latter case, confirming the positive

impact of phylogeny on partner inference. The need for sufficiently large training sets also
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holds for data sets including only contacts and only phylogeny (see also Refs. [47, 48]). These

results are in line with previous ones obtained for DCA-based [24, 25] and MI-based [46] pre-

dictions of protein-protein interactions from natural protein sequence data. Second, the pair-

ing task becomes more difficult when the number of pairs per species increases. Accordingly,

S5 Fig shows that the performance of partner inference decays as species contain more pairs

AB. This decay is slowest for our data set including both contacts and phylogeny, highlighting

that these two signals add constructively.

Impact of the graph of contacts. How does the set of structural contacts impact the per-

formance of partner inference? Because inter-protein contacts are generally sparser than intra-

protein ones, we now consider graphs of contacts that take into account this constraint [47],

contrary to our minimal Erdős-Rényi graph. Apart from the graph defining contacts, the data

generation process and the inference procedures are exactly the same as before. S6 Fig shows

that the same overall behavior is observed for the performance of partner inference for all

graphs considered. With phylogeny, the range of temperature values leading to high perfor-

mance is larger than for contact-only data sets. Moreover, for graphs possessing a smaller

interface region between the two partners (S6C and S6D Fig), the signal from contacts only

does not suffice for good inference, and phylogeny then rescues inference.

Couplings between non-contacting sites improve partner inference in the

presence of strong phylogeny

Contributions of contacting and non-contacting sites to partner inference. How does

phylogeny improve the inference of partners? So far, we have shown that phylogeny often

enhances the performance of partner inference. Indeed, partners share a common evolution-

ary history (here, they are generated together along the phylogenetic tree), and therefore, phy-

logeny yields correlations between sites that are informative of partnership. These

phylogenetic correlations [48] are captured both by MI and DCA scores. Indeed, MI quantifies

statistical dependence of any origin between random variables. The fact that DCA incorporates

phylogenetic signal might seem more surprising, since it yields a Boltzmann distribution (Eq

4) with a Potts Hamiltonian (Eq 1), thus formally resembling an equilibrium physical model.

However, DCA approximately constructs the maximum-entropy distribution matching the

one- and two-body frequencies measured in the training set. Its training objective is to match

these empirical frequencies, whatever their origin. Thus, inferred DCA couplings incorporate

phylogeny. In our minimal model, structural contacts only exist on the graph edges, and other

(non-contact) pairs of sites have zero couplings in the Hamiltonian in Eq 2 used for data gen-

eration. Nonzero values of the inferred couplings between non-contact sites can arise due to

phylogeny, but also due to finite-size effects, or to the approximations made in the inference

procedure (yielding for instance nonzero couplings for pairs of sites that are indirectly con-

nected through other sites and thus correlated). Furthermore, the values of couplings between

contacting sites can also be impacted by phylogeny, finite-size effects and inference approxi-

mations. How do couplings between contacting and non-contacting sites contribute to the

inference in this synthetic data?

To address these questions, we restrict either to contact pairs of sites, or to non-contact

pairs of sites in the score used for partner inference by DCA. Specifically, instead of the score

EAB in Eq 5, we use either

EC
AB ¼ �

XLA

i¼1

XLAþLB

j¼LAþ1

êijða
A
i ; a

B
j ÞIEði; jÞ ; ð8Þ
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when restricting to contacts, or

ENC
AB ¼ �

XLA

i¼1

XLAþLB

j¼LAþ1

êijða
A
i ; a

B
j Þ½1 � IEði; jÞ� ; ð9Þ

when restricting to non-contacts, where IEði; jÞ is 1 if ði; jÞ 2 E and 0 otherwise, E being the set

of edges of the graph representing contacts. Because in our minimal model eij(αi, αj) = αiαj if

ði; jÞ 2 E and 0 otherwise (see Methods), we also use the score

ER
AB ¼ �

XLA

i¼1

XLAþLB

j¼LAþ1

aA
i a

B
j IEði; jÞ ; ð10Þ

which would coincide with that in Eq 8 if inference was perfect.

Fig 4 shows the performance of inference when these different scores are used on a data set

containing constraints from contacts and phylogeny. When phylogeny dominates, i.e. for

small μ, restricting to contacts by using the score in Eq 8 strongly deteriorates the performance

of inference. Thus, couplings between non-contacting sites then include phylogenetic informa-

tion relevant to infer partners. Conversely, when the effect of phylogeny is smaller, i.e. for large

μ, restricting to contacts improves inference performance compared to using the full score.

This deleterious impact of non-contacting pairs is probably due to the fact that these couplings

also arise from finite-size noise and inference approximations, in addition to phylogeny.

Results obtained from the score based on the real Hamiltonian Eq 10 are close to those

obtained with Eq 8, and even a little worse when phylogeny is very strong, because the real

Hamiltonian cannot capture any phylogeny.

By contrast, restricting to non-contact pairs via the score in Eq 9 yields an inference perfor-

mance as good as with the complete score in Eq 8 for very small μ, confirming that non-con-

tact pairs incorporate most phylogenetic signal. As μ increases and phylogenetic signal

weakens, performance using the score in Eq 9 decays sharply. This decay resembles that

observed in Fig 2 for partner inference on purely phylogenetic data, confirming that non-con-

tact couplings mainly arise from phylogeny. However, performance using the score restricted

to non-contact pairs remains slightly higher than the null model for large μ, while it tends to

the null model with purely phylogenetic data. Contrary to most of the signal associated to non-

contact sites, this small residual performance cannot be attributed to phylogeny, and might

arise from the fact that non-contact couplings contain indirect correlations, stemming from

contacts but mediated by intermediate sites. This is despite the fact that DCA reduces such

contributions compared to covariance or mutual information [5, 81]. The importance of indi-

rect correlations could be impacted by the approximations made when inferring couplings. To

explore this, we employed couplings inferred by bmDCA, which yields a much better inference

quality than mfDCA in terms of generative properties [68], but is computationally much

heavier. S7 Fig shows that the results using bmDCA are almost identical to those obtained by

mfDCA, which shows the robustness of our conclusions. Note that even sites that are not cou-

pled to any other ones carry some phylogenetic signal, as illustrated by S8 Fig.

Impact of gradually removing non-contacting pairs of sites. To gain further insight into

the impact of non-contact pairs of sites on partner inference, we next investigate the impact of

removing them gradually. We remove them either randomly, or by decreasing rank order of

the absolute value of the inferred couplings, or based on mutation timing. Indeed, non-contact

pairs may have high impact because they have large absolute inferred coupling values, and/or

because they feature strong phylogenetic correlations. Fig 5 shows histograms of the values of

inferred Ising couplings Ĵ ij, defined by êijðai; ajÞ ¼ Ĵ ijaiaj, between contact and non-contact
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pairs of sites, for μ = 5 (Fig 5A) and for μ = 30 (Fig 5C). In the first case, where phylogeny dom-

inates, the values of Ĵ ij do not allow one to distinguish contacts from non-contacts. In the sec-

ond case, contact pairs feature higher values of Ĵ ij, which would allow to infer them better,

although there is still a strong overlap, partly due to the rather small training set (100

Fig 4. Impact of contact and non-contact pairs of sites on partner inference performance. The fraction of correctly

predicted partner pairs is shown versus the number μ of mutations per branch of the tree for the minimal model

incorporating constraints both from contacts and from phylogeny, either with the full score defined in Eq 5 with

couplings inferred using the training set, or with this score restricted to the pairs of sites that are actually in contact (Eq

8), or to those that are not in contact (Eq 9), or with a score computed with the real couplings used for data generation

(Eq 10). Data generation and inference (apart from the score definition) are performed exactly as in Fig 2, using the

same parameters and the same graph for contacts.

https://doi.org/10.1371/journal.pcbi.1010147.g004

Fig 5. Impact of gradually removing non-contact pairs of sites on partner inference performance. Panels A and C

show the normalized histogram of the inferred couplings Ĵ ij for contact and non-contact pairs of sites. Panels B and D

show the fraction of correctly predicted partner pairs versus the number of removed non-contact pairs of sites, when

gradually removing their contribution from the score in Eq 5, going toward the one in Eq 8. The non-contact pairs are

removed either randomly, or in decreasing rank order of jĴ ijj values, or in increasing order of the earliest time (i.e.,

earliest generation in the tree) when mutations have affected both sites i and j, not necessarily in the same sequence. In

A and B, μ = 5, while in C and D, μ = 30. All data is shown for the minimal model incorporating both constraints from

contacts and phylogeny. Data generation and inference (apart from the score definition) are performed exactly as in

Fig 2, using the same graph for contacts and the same parameters, except that here, the training set comprises 100

paired chains AB. In panels A and C, data is generated just once. In panels B and D, each point is averaged over 100

generations of the data.

https://doi.org/10.1371/journal.pcbi.1010147.g005
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sequences) employed here, which was chosen for the partner inference task to be successful

with the score in Eq 5, but still improvable (see S4 Fig). Next, Fig 5B and 5D show the impact of

progressively removing non-contact couplings on the performance of partner inference. For

small μ, removing them decreases performance, while the opposite holds for large μ, consistent

with Fig 4. Moreover, for μ = 5 (Fig 5B), removing them in decreasing rank order of absolute Ĵ ij

yields a quicker and sharper decay of performance than removing them in random order. Thus,

large absolute non-contact couplings contain relevant information for partner inference.

Removing them in increasing order of the earliest time along the phylogeny when mutations

have affected both sites i and j, not necessarily in the same sequence, yields a similarly quick and

sharp decay, corroborating the idea that phylogeny is the main relevant source of information in

these non-contacting pairs. Indeed, early coupled mutations lead to large phylogenetic correla-

tions. Conversely, for μ = 30 (Fig 5D), ranking-based removal of non-contacts leads to an earlier

increase of performance than random removal, but earliest-mutation-based removal is almost

equivalent to random removal. This illustrates the reduced importance of phylogeny in this case.

Generalization to another phylogeny model. So far, we have considered a model where

sequences generated along a phylogeny are randomly grouped into “species”. Such random

species are realistic if exchanges of genes between species (i.e. horizontal gene transfer events)

are very frequent. But more generally, different levels of relatedness are expected between

sequences within and across species. To assess the robustness of our results to this point, we

also considered another, completely different, phylogeny model, with duplication, loss and

speciation events, and without any exchange between species [48]. In this model, the number

m of paired sequences per species is fixed.

S9 Fig shows the performance of inference versus the fraction of species that undergo a

duplication-loss event upon speciation. Overall, performance is good, but it decreases when

the frequency of duplication-loss events increases, especially if there is substantial signal from

phylogeny (small to intermediate μ). Indeed, when there are no duplication-losses, this model

features a distinct phylogeny for each ancestral sequence, i.e. m different phylogenies (m = 4 in

S9 Fig). Similarities between the chains of the testing and training set that share the same

ancestor then allow to predict evolutionary partners, and contacts are useful too, yielding very

good inference performance. Conversely, when there are many duplication-losses, chains

descending from a single ancestral protein will take over in each species, analogously to the

mutant fixation process in population genetic models such as the Moran model [83]. Thus,

phylogenetic correlations gradually become less useful, and even hurtful compared to the con-

tact-only case, when the frequency of duplication-loss events increases. Moreover, chains

resulting from recent duplication-loss events are very hard to distinguish, making inference

difficult in this regime [48]. S9(A) Fig further shows that when the probability of duplication-

loss is small, correlations from contacts and phylogeny add constructively. This is consistent

with the results obtained above with our first phylogeny model. S9(B) Fig shows the impact of

restricting to contacts or to non-contacts in the pairing score used for partner inference.

Restricting to contacts yields better results than restricting to non-contacts for large enough

values of μ, but the opposite holds for small ones (μ = 5) where phylogenetic correlations play

a crucial role. This is consistent with our other results (see Fig 4). Hence, our main conclusions

hold for two very different phylogeny models, demonstrating their robustness.

Interplay of contacts and phylogeny in natural data and in synthetic data

generated from models inferred on natural data

Our minimal model allows us to tune the importance of contacts and phylogeny, but contains

strong simplifications. Natural data comprises q = 21 possible states, which are the 20 natural
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amino acids and the alignment gap. Potts models inferred from natural data involve broad dis-

tributions of couplings, and include nonzero fields [5–7, 51]. Phylogenies inferred from data

are also much more complex than our binary tree with a fixed number of mutations on each

branch [49, 70], and the assignment of sequences to species results from speciation and hori-

zontal gene transfer. Do the conclusions obtained with our minimal model hold for natural

data? How important are signals from phylogeny and contacts in natural data? To address this

question, we consider two data sets of interacting pairs of natural sequences. The first one is

composed of 23,633 pairs of histidine kinases (HK) and response regulators (RR) from the

P2CS database [66, 67]. The second one comprises 17,950 pairs of ABC transporter proteins

homologous to the Escherichia coli MALG-MALK pair of maltose and maltodextrin transport-

ers [19, 24]. To gain further insight into the importance of phylogenetic signal, we infer gener-

ative models of this paired sequence alignment using two state-of-the-art methods, bmDCA

[68] and arDCA [69] (see Methods), and we generate data from them, either without phylog-

eny or along a phylogenetic tree inferred from the natural alignment [49]. Importantly, in the

latter case, we retain the species labels of the leaves of the inferred tree and we use them to

group synthetic sequences into species (see Methods). Hence, the relationship between species

and positions on the tree is the same in this synthetic data generated with phylogeny as in the

natural data. Note that we employed both bmDCA and arDCA for the HK-RR data set, but

only arDCA for the ABC transporter data set, because the longer sequences yield very long

computation times with bmDCA in that case. We checked that two-body and one-body fre-

quencies of the original data set were well-reproduced by those of the data set generated with-

out phylogeny (S13 Fig). We also checked that the inference of contacts was possible on the

generated data sets, although it deteriorates when generating with phylogeny (S14 Fig).

Fig 6 shows the fraction of correct predicted pairs versus the size of the training set for the

natural data set, as well as for the synthetic data sets generated from inferred models. Both for

HK-RRs and ABC transporters, results employing the usual mfDCA-based score in Eq 5 are

qualitatively similar for the real and synthetic data sets, as well as to the results from our mini-

mal model (S4 Fig). Furthermore, the performance of partner inference is similar for synthetic

data sets generated from inferred models with and without phylogeny. This is a priori reminis-

cent of cases with relatively low phylogeny in the minimal model (S4B Fig). However, DCA

models inferred from natural data reproduce all empirical correlations, including those from

phylogeny. Some inferred couplings are thus of phylogenetic origin, and give rise to correla-

tions in the sequences generated from these models without phylogeny. These additional cou-

plings can help partner inference, by extending the set of pairs of sites that can yield

information relevant for pairing, and by increasing the diversity of covariance and coupling

values. This may contribute to the performance of partner inference in the synthetic data set

generated without phylogeny. This effect can be assessed in our minimal model, by generating

data from models inferred by bmDCA or arDCA (the initial data employed for inference

being generated using the Hamiltonian in Eq 2, with or without phylogeny, see S10 and S11

Figs). S12 Fig shows that in our minimal model, partner inference performance is higher with

data generated from inferred models, compared to similar data generated directly from the

original Hamiltonian in Eq 2. This demonstrates that inferred models incorporating couplings

from various sources, including but not restricted to phylogeny, yield better partner inference

performance than contact-only models. This effect explains at least partly the performance of

partner inference for synthetic data sets generated from more realistic inferred models but

without phylogeny in Fig 6.

In this context, it is interesting to investigate the effect of restricting to contact pairs of

amino-acids or to non-contact ones. Fig 6 shows partner inference performance for the

reduced scores in Eqs 8 and 9. It demonstrates that restricting to contact pairs (Eq 8) tends to
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deteriorate partner inference performance, to a minor extent for natural data (even using the

generous distance threshold of 8 Å between closest atoms to define contacts—but note that the

contacts observed in crystal structures are not necessarily all those that exist in vivo), and more

strongly for data generated using DCA models inferred from natural data. This difference is

consistent with the less good contact inference from generated data, see S14 Fig. Moreover,

restricting to non-contact pairs (Eq 9) only yields a minor decrease of inference performance

for all these data sets, compared to using the full score (Eq 5). Thus, strikingly, the information

contained in non-contact pairs is sufficient for inference. Overall, our results on natural data

and on realistic synthetic data are consistent with what is observed for intermediate to rela-

tively-strong phylogeny in our minimal model (Figs 4 and 5 and S12 Fig).

Discussion

While they obscure the identification of contacts by coevolution methods [5, 6, 30, 51, 53], cor-

relations that arise in protein sequences due to phylogeny [28–32, 38, 41] become useful in

order to identify interaction partners from protein sequences. Indeed, interaction partners

tend to have similar evolutionary histories, which is directly exploited in some protein-protein

interaction prediction methods [38–45]. In this context, the success of DCA- and MI-based

Fig 6. Partner inference in natural data and in synthetic data generated from models inferred on natural data.

The fraction of correctly predicted partner pairs is shown versus the number of sequence pairs in the training set for

two different natural data sets of paired sequences, HK-RR (panels A and B) and ABC transporters (panel C). For both

of them, we also present results obtained on synthetic data sets generated using models learned from the

corresponding natural data set by bmDCA (panel A) or arDCA (panels B and C), either with or without phylogeny.

Recall that pairings are predicted within each species. For this, species identifiers are obtained for natural sequences.

When generating synthetic data along inferred phylogenetic trees, we retain the species identifier of the original

natural sequence corresponding to this leaf, and attribute this species identifier to the synthetic sequence that is

generated on this leaf. This yields artificial data sets with a similar species structure as the natural ones. In each case,

the full data set is split into a training set and a testing set, each comprising a given number of species (and thus of

paired sequences). Partnerships are then predicted using the score in Eq 5 based on mfDCA, or with its variants

restricting to amino-acid pairs in contact (Eq 8) or to those not in contact (Eq 9). Contacts are defined using a

threshold of 8 Å between closest atoms in the experimental complex structures 3DGE for HK-RRs and 3RLF for ABC

transporters, retrieved from the PDB [84]. The null model shows the expectation of the correct prediction fraction if

pairs are made randomly within each species.

https://doi.org/10.1371/journal.pcbi.1010147.g006
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approaches at predicting protein-protein interaction partners among paralogs from natural

protein sequences [24, 25, 46] can potentially be due to correlations from structural contacts

needing to maintain their complementarity, or to correlations from phylogeny, or both. Shed-

ding light on the origin of the performance of these methods is an important step toward con-

structing better ones. However, disentangling the impact of different sources of signal in

natural data is a difficult task.

In this study, we generated and analyzed synthetic data produced within a minimal model

that allows us to control the amounts of structural constraints and phylogeny. We showed that

these two signals add constructively to increase the performance of inference of partners

among paralogs by DCA or MI. Furthermore, signal from phylogeny can rescue partner infer-

ence in cases where signal from structural contacts becomes less informative, including in the

realistic case where inter-protein contacts are restricted to a small subset of sites. We also dem-

onstrated that DCA-inferred couplings between non-contact pairs of sites improve partner

inference in the presence of strong phylogeny, while deteriorating it otherwise. Furthermore,

in the strongly phylogenetic regime, inference is almost as good when restricting to non-con-

tact pairs of sites than when including all pairs. An important advantage of our controlled syn-

thetic data is that functional constraints are exactly known because they are an input of the

model (the couplings in the Hamiltonian). Moreover, tuning the strength of functional and

phylogenetic signals allowed us to determine their respective roles, while disentangling them

in natural data is difficult. However, our minimal model is a strong simplification compared to

natural data. To make the connection, we next considered a natural data set, as well as realistic

synthetic data based on it. We confirmed that non-contact pairs of sites contribute positively

to partner inference performance. Moreover, restricting to non-contact pairs of amino acids

yields inference performances that are very close to those obtained when all pairs are

accounted for. These results are in line with what was observed in our minimal model with

strong phylogeny, and evidence an important role of phylogeny in partner inference on natu-

ral data.

While we demonstrated that phylogenetic correlations are helpful to determine partners

among the paralogs of two protein families, the importance of their contribution is an issue for

the task of determining whether two protein families interact or not. Indeed, while families of

proteins in direct physical interaction often have similar evolutionary histories [38–42], this

can also be the case for proteins that are not directly interacting, e.g. those that belong to the

same pathway, or are expressed in the same operon in bacteria, or for proteins with similar

evolutionary rates [33–37]. Nevertheless, physically interacting protein families can be distin-

guished from others using the top DCA scores between amino acids [26, 27, 48], or alterna-

tively, the top predicted contact probability over all amino acid pairs [59] or a docking quality

score [60, 61] in deep learning approaches. Importantly, all these methods, whether they are

DCA-based or deep learning-based, start from a paired multiple sequence alignment of homo-

logs of the two candidate interaction partners. The methods discussed here, which allow to

predict partners among the paralogs of two protein families, can potentially improve the depth

and quality of these paired alignments.

Several interesting extensions are possible. First, in this work, we considered the problem of

partner inference starting from a training set of known partners, but our methods allow us to

address the case where there is no training set via an Iterative Pairing Algorithm (IPA) [24,

46]. It would be interesting to extend the present study to this case. Next, we assumed for sim-

plicity that there was a strict one-to-one pairing between partners. Natural systems can be

more complex, e.g. involving different numbers of members of the two families considered

within each species, or proteins with multiple partners (i.e., promiscuity or cross-talk). The

first point can be addressed by a slight modification of our approach, using an “injective
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matching strategy” [25] that leaves unpaired some sequences of the family with more paralogs.

The second point could be tackled through variants of our approach and of the IPA [24], e.g.

by introducing a threshold on the pairing score, and retaining all candidate pairs passing this

threshold, even if several involve a given sequence. In practice, knowing that interactions are

one-to-one in some model species could be used to make one-to-one predictions in other spe-

cies, but generalizing the IPA to allow for multiple partners is an important direction for future

work. Besides, while our study of synthetic data generated using models inferred from natural

data allowed us to bridge our minimal model and natural data and to assess the importance of

signal from contacts and from phylogeny in these more realistic cases, we were faced with the

issue that inferred couplings include phylogeny. Thus, disentangling signals was much harder

than in the minimal model, as the couplings from phylogeny make the model richer even in

the absence of phylogeny in the data generation step. While this is a difficult problem, it could

be partially addressed by applying phylogeny corrections to the inferred couplings [51, 57].

This could also shed light on whether some of the useful signal from non-contact pairs is com-

ing from collective functional constraints, similar to sectors in single proteins [29, 57, 85], an

interesting possibility that was not explored here. Investigating the impact of imperfections in

protein sequence alignment on partner inference would also be highly relevant, as well as

including the possibility of one-to-many pairings and crosstalk. Finally, understanding the rel-

ative impact of structural constraints and phylogeny in the inference of interaction partners

from sequences opens the way to exploiting them together more efficiently.

Supporting information

S1 Fig. Magnetization for data generated without and with phylogeny. Histograms of the

mean magnetization m ¼ ð
P2L

i¼1
aiÞ=ð2LÞ of a paired chain are shown at two different sam-

pling temperatures T (T = 2< Tc in panels A and B; T = 5> Tc in panels C and D) for data

generated without (contacts only, panels A and C) or with phylogeny (contacts & phylogeny,

panels B and D). Contacts are defined by the same Erdős-Rényi graph with p = 0.02 as in Fig 2.

In the contact-only case, histograms are computed on an equilibrium data set of 1024 indepen-

dent sequences generated by Metropolis Monte Carlo sampling under the Hamiltonian in Eq

2 (without phylogeny). In practice, data is taken after 10,000 accepted mutations, see S2 Fig. In

the contacts & phylogeny case, histograms are computed on a data set of 1024 sequences gen-

erated on a single binary branching tree with μ = 15 mutations per branch.

(EPS)

S2 Fig. Convergence of absolute magnetization in the contact-only limit with different

graphs. The mean of the absolute magnetization jmj ¼ jð
P2L

i¼1
aiÞ=ð2LÞj of a paired chain is

shown versus the number of accepted mutations for each graph considered in S6 Fig. For each

curve, data sets of 5000 independent sequences were generated by Metropolis Monte Carlo

sampling under the Hamiltonian in Eq 2 (without phylogeny). The graphs considered are: (A)

the same Erdős-Rényi graph with p = 0.02 as in Fig 2; (B) a stochastic block model graph with

two blocks of 100 nodes each, and p = 0.02 within each block and p = 0.005 between blocks;

(C) an “interface” graph with two blocks of 100 nodes each, and p = 0.02 within each block,

but where only 10 nodes in each block are allowed to be in contact with nodes of the other

block, with p = 0.25; (D) a graph corresponding to the contact map from the experimental

HK-RR complex structure in Ref. [86] with threshold at 4 Å between closest atoms.

(EPS)

S3 Fig. Ferromagnetic-paramagnetic phase transitions with different graphs. Histograms

of the mean magnetization m ¼ ð
P2L

i¼1
aiÞ=ð2LÞ of a paired chain are shown at different
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sampling temperatures T for each graph considered in S6 Fig. Histograms are computed on

5000 independent sequences generated by Metropolis Monte Carlo sampling under the Ham-

iltonian in Eq 2 (without phylogeny). In practice, data is taken after 10,000 accepted mutations

(20,000 for the HK-RR graph), see S2 Fig. The graphs considered are: (A) the same Erdős-

Rényi graph with p = 0.02 as in Fig 2; (B) a stochastic block model graph with two blocks of

100 nodes each, and p = 0.02 within each block and p = 0.005 between blocks; (C) an “inter-

face” graph with two blocks of 100 nodes each, and p = 0.02 within each block, but where only

10 nodes in each block are allowed to be in contact with nodes of the other block, with

p = 0.25; (D) a graph corresponding to the contact map from the experimental HK-RR com-

plex structure in Ref. [86] with threshold at 4 Å between closest atoms. These graphs are

exactly the same as in S2 Fig.

(EPS)

S4 Fig. Impact of training set size on partner inference performance. The fraction of cor-

rectly predicted partner pairs is shown versus the number of sequence pairs AB in the training

set for the minimal model incorporating both constraints from contacts and phylogeny,

exactly as in Fig 2. Specifically, an ancestral chain AB of 2L = 200 spins is evolved along a

binary branching tree (see Fig 1) with n = 10 generations, and μ = 15 (panel A) or μ = 30

(panel B) mutations per branch, yielding 210 = 1024 pairs AB, at sampling temperature T = 5

under the Hamiltonian in Eq 2 on the same graph as in Fig 2. The limiting cases with only con-

tacts and only phylogeny are also shown for comparison. The first one corresponds to inde-

pendent equilibrium sequences at T = 5 under the Hamiltonian in Eq 2 on the same graph.

The second one corresponds to neutral evolution on the same binary branching tree. Each of

these three data sets is randomly split into a training set comprising a variable number of

chains AB and a testing set. The latter is randomly divided in species of 4 chains AB each, and

pairings between A and B chains are blinded in each species. Partnerships are then predicted

using the scores in Eq 5 (mfDCA) or Eq 7 (MI). Each point is averaged over 20 generated data

sets, and 20 random choices of the training set for each of them. The null model shows the

expectation of the correct prediction fraction if pairs are made randomly within each species.

(EPS)

S5 Fig. Impact of the number of pairs per species on partner inference performance. The

fraction of correctly predicted partner pairs is shown versus the number m of sequence pairs

AB per species in the testing set for the minimal model incorporating both constraints from

contacts and phylogeny, exactly as in Fig 2. Specifically, an ancestral chain AB of 2L = 200

spins is evolved along a binary branching tree (see Fig 1) with n = 10 generations, and μ = 15

(panel A) or μ = 30 (panel B) mutations per branch, yielding 210 = 1024 pairs AB, at sampling

temperature T = 5 under the Hamiltonian in Eq 2 on the same graph as in Fig 2. The limiting

cases with only contacts and only phylogeny are also shown for comparison. The first one cor-

responds to independent equilibrium sequences at T = 5 under the Hamiltonian in Eq 2 on the

same graph. The second one corresponds to neutral evolution on the same binary branching

tree. Each of these three data sets is randomly split into a training set of 400 chains AB and a

testing set of 624 chains AB. The latter are randomly divided in species of m chains AB each

(here m is varied) and pairings between A and B chains are blinded in each species. Partner-

ships are then predicted using the scores in Eq 5 (mfDCA) or Eq 7 (MI). Each point is averaged

over 20 generated data sets, and 20 random choices of the training set for each of them. The

null model shows the expectation of the correct prediction fraction if pairs are made randomly

within each species.

(EPS)
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S6 Fig. Partner inference performance for different graphs defining contacts. For four dif-

ferent graphs (panels A to D), the fraction of correctly predicted partner pairs is shown versus

the sampling temperature T for the minimal model incorporating both constraints from con-

tacts and phylogeny. Specifically, an ancestral chain AB of 2L = 200 spins is evolved along a

binary branching tree (see Fig 1) with n = 10 generations, yielding 210 = 1024 pairs AB, and μ
= 15 mutations per branch, under the Hamiltonian in Eq 2 on (A) the same Erdős-Rényi

graph with p = 0.02 as in Figs 2 and 3; (B) a stochastic block model graph with two blocks of

100 nodes each, and p = 0.02 within each block and p = 0.005 between blocks; (C) an “inter-

face” graph with two blocks of 100 nodes each, and p = 0.02 within each block, but where only

10 nodes in each block are allowed to be in contact with nodes of the other block, with

p = 0.25; (D) a graph corresponding to the contact map from the experimental HK-RR com-

plex structure in Ref. [86] with threshold at 4 Å between closest atoms. These graphs are

exactly the same as in S2 and S3 Figs. For each graph, the limiting cases with only contacts and

only phylogeny are also shown for comparison. The first one corresponds to independent

equilibrium sequences under the Hamiltonian in Eq 2 on the same graph. The second one cor-

responds to neutral evolution on the same binary branching tree. For each graph, each of these

three data sets is randomly split into a training set of 400 chains AB and a testing set of 624

chains AB. The latter are randomly divided in 156 species of 4 chains AB each, and pairings

between A and B chains are blinded in each species. Partnerships are then predicted using the

score in Eq 5. Each point is averaged over 10 data sets. The null model shows the expectation

of the correct prediction fraction if pairs are made randomly within each species. Note that,

for sampling, equilibrium is considered reached for 10,000 accepted mutations, except for

HK-RR graph where we perform 20,000 accepted mutations (see S1 Fig).

(EPS)

S7 Fig. Impact of contact and non-contact pairs of sites on partner inference performance

using mfDCA or bmDCA. The fraction of correctly predicted partner pairs is shown versus

the number μ of mutations per branch of the tree for the minimal model incorporating con-

straints both from contacts and from phylogeny, either with the full score defined in Eq 5 with

couplings inferred using the training set, or with this score restricted to the pairs of sites that

are actually in contact (Eq 8), or to those that are not in contact (Eq 9). Scores are computed

using couplings inferred either by mfDCA (as in the rest of this work) or by bmDCA. Note

that bmDCA is employed with reweigthing θ = 0 here, as is done throughout for mfDCA.

Apart from these points, data generation and inference are performed as in Fig 2, using the

same parameters and the same graph for contacts.

(EPS)

S8 Fig. Contribution of single (non-connected) sites to partner inference performance. The

fraction of correctly predicted partner pairs is shown versus the number μ of mutations per branch

of the tree for the minimal model incorporating constraints both from contacts and from phylog-

eny, either with the full score defined in Eq 5 with couplings inferred using the training set, or with

this score restricted to the pairs of sites that are actually in contact (Eq 8), or to those that are not

in contact (Eq 9). In addition, we consider the cases of a score restricted to couplings between

those 30 sites in the graph that are not connected to any other site, and of a score restricted to

couplings between 30 randomly chosen sites in the graph, excluding couplings between contact-

ing sites. Data generation and inference (apart from the score definition) are performed employ-

ing the “Interface” graph used in S2 and S6(C) Figs for contacts, at sampling temperature T = 4

> Tc. Apart from these points, data generation and inference are performed as in Fig 2.

(EPS)
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S9 Fig. Alternative phylogeny model. The fraction of correctly predicted partner pairs is

shown versus the fraction of species that undergo a duplication-loss event at each generation in

the alternative phylogeny model [48]. To generate this data, an ancestral species comprising

m = 4 equilibrium sequence pairs AB sampled at T = 5 under the Hamiltonian in Eq 2 on the

same graph as in Fig 2 was created. Then this ancestral species was evolved by successive specia-

tion events (where all existing species are duplicated) and mutations, performed using the

Metropolis criterion with T = 5 independently for each chain in each species after each specia-

tion event (“generation”). For a certain fraction of speciation events, one sequence AB was ran-

domly removed and one was randomly duplicated in one of the daughter species (duplication-

loss event), always keeping m = 4 (see Ref. [48]). Data was generated using a tree of 8 genera-

tions, with μ accepted mutations per sequence and per branch. Because this model starts from

one ancestral species with 4 equilibrium chains, this yields 1024 chains AB separated in 256 spe-

cies. 100 species were randomly selected to form a training set of 400 pairs AB, and the rest con-

stitutes the testing set. Results are averaged over 100 replicates. A: Different values of μ are

considered, both in the model with contacts and phylogeny, and in the one with only phylogeny

(where all mutations are accepted). Results are also shown for the case with only contacts, corre-

sponding to a data set of 1024 equilibrium sequences. B: Impact of restricting the pairing scores

to the pairs of sites that are actually in contact (Eq 8), or to those that are not in contact (Eq 9).

(EPS)

S10 Fig. Reproduction of two-body frequencies by generative models, for the contact-only

minimal model. An initial data set (“data set 1”) of 1024 sequences was generated from the

contact-only minimal model (Hamiltonian in Eq 2 on the same Erdős-Rényi graph as in Figs 2

and 3) at sampling temperature T = 5. Generative models were inferred from data set 1 by

bmDCA (panel A) or arDCA (panel B). A new data set (“data set 2”) of 1024 sequences was

generated, still without phylogeny, from the resulting inferred model. Two-body frequencies

in data set 2 are shown versus two-body frequencies in data set 1. The color of each marker

represents the number of times it is observed (counts). The green dashed line shows the y = x
diagonal. Pearson correlation coefficients are 0.88 and 0.87 for panels A and B, respectively,

and linear fits yield intercepts of 0.01 and 0 and slopes of 0.98 and 0.98 for panels A and B,

respectively. The two-body frequencies shown for data set 1 include a reweighting of close

sequences with Hamming distances under 0.2 [6, 7], since bmDCA and arDCA aim to match

these reweighted frequencies [68, 69].

(EPS)

S11 Fig. Reproduction of two-body frequencies by generative models, for the minimal

model with contacts and phylogeny. An initial data set (“data set 3”) of 1024 sequences was

generated with phylogeny (binary branching tree with μ = 15 mutations per branch, and sampling

temperature T = 5) from the minimal model (Hamiltonian in Eq 2 on the same Erdős-Rényi

graph as in Figs 2 and 3). Generative models were inferred from data set 3 by bmDCA [68] (panel

A) or arDCA [69] (panel B). A new data set (“data set 4”) of 1024 sequences was generated with-

out phylogeny from the resulting inferred model. Two-body frequencies in data set 4 are shown

versus two-body frequencies in data set 3. The color of each marker represents the number of

times it is observed (counts). The green dashed line shows the y = x diagonal. Pearson correlation

coefficients are 0.994 and 0.995 for panels A and B, respectively, and linear fits yield intercepts of

0.01 and 0 and slopes of 0.97 and 1 for panels A and B, respectively. The two-body frequencies

shown for data set 1 include a reweighting of close sequences with Hamming distances under 0.2

[6, 7], since bmDCA and arDCA aim to match these reweighted frequencies [68, 69].

(EPS)
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S12 Fig. Partner inference performance for data generated with original and inferred mod-

els. The fraction of correctly predicted partner pairs is shown versus the number of sequence

pairs AB in the training set for data generated under the minimal model, and for data gener-

ated using models inferred from this generated data, either by bmDCA [68] (panel A) or by

arDCA [69] (panel B). Data generation is performed with or without phylogeny. Data genera-

tion and partner inference are performed in each case with a variable training set size, exactly

as in S4 Fig. The data sets generated from the original minimal model correspond to data set 1

described in S10 Fig (generated with contacts only) and data set 3 described in S11 Fig (gener-

ated with contacts and phylogeny). The data sets generated from inferred models correspond

to data sets 2 and 4 described in those figures, and to a data set generated with phylogeny from

the model inferred from data set 1. Generation is performed at sampling temperature T = 5

and with μ = 15 mutations per branch in cases with phylogeny. The training set is randomly

divided in species of 4 chains AB each. Partnerships are predicted using the score in Eq 5

based on mfDCA. For each point, the inference is performed over 20 generated data sets, and

20 random choices of the training set for each of them.

(EPS)

S13 Fig. Reproduction of two-body frequencies by generative models. Two body frequen-

cies in a data set of 23, 633 pairs of sequences generated without phylogeny are shown versus

the two body frequencies of the natural data set of 23, 633 HK-RR pairs. The color of each

marker represents the number of times it is observed (counts). The green dashed line shows

the y = x diagonal. Data is generated by bmDCA (panel A) or arDCA (panel B). The associated

Pearson correlation coefficients are 0.993 and 0.996 for bmDCA and arDCA, respectively.

(EPS)

S14 Fig. Inference of contacts with data generated from models inferred from natural

HK-RR data. The fraction of correctly predicted contacts is shown versus the number of pre-

dictions made. A contact between two amino acids is predicted based on the APC-corrected

Frobenius norm [53, 54] of the couplings between amino acids inferred by mfDCA: these

scores are ranked from highest to lowest, and the experimental HK-RR complex structure

3DGE [84] is employed to assess whether the contact exists or not in the real protein complex,

using a threshold of 8 Å between closest atoms. Inter-protein contacts (panels A and D) are

distinguished from intra-protein contacts (HK, panels B and E; RR, panels C and F). Inference

of contacts is performed on the natural HK-RR data set and on data generated from the model

inferred on this natural data set, either by bmDCA or by arDCA. Data is generated either with

contacts only or with contacts and phylogeny.

(EPS)
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