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Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia
to carry out daily life and rehabilitation training. However, due to the low signal-to-noise
ratio and large individual differences, EEG feature extraction and classification have the
problems of low accuracy and efficiency. To solve this problem, this paper proposes a
recognition method of motor imagery EEG signal based on deep convolution network.
This method firstly aims at the problem of low quality of EEG signal characteristic data,
and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform
(CMWT) to preprocess the collected experimental data sets based on time series
characteristics. So as to obtain EEG signals that are distinct and have time-frequency
characteristics. And based on the improved CNN network model to efficiently recognize
EEG signals, to achieve high-quality EEG feature extraction and classification. Further
improve the quality of EEG signal feature acquisition, and ensure the high accuracy and
precision of EEG signal recognition. Finally, the proposed method is validated based on
the BCI competiton dataset and laboratory measured data. Experimental results show
that the accuracy of this method for EEG signal recognition is 0.9324, the precision is
0.9653, and the AUC is 0.9464. It shows good practicality and applicability.

Keywords: EEG signal, motor imagination, deep convolutional neural network, short time fourier transform,
continuous morlet wavelet transform, BCI classifier, CSP algorithm

INTRODUCTION

Brain-Computer Interface (BCI) is a communication control system established between the brain
and external devices (computers or other electronic devices) through signals generated during brain
activity (Gao, 2008; Mohamed et al., 2017; Wang et al., 2019). The system does not rely on muscles
and nerves other than the brain, and establishes direct communication between the brain and the
machine. It is a new and high-end human-computer interaction method.

The Motor Imagery Brain-Computer Interface (MI BCI) based on electroencephalogram (EEG)
belongs to the category of spontaneous brain-computer interface (Abiri et al., 2018). The purpose of
MI BCI is to accurately identify the user’s physical movement intentions, which commonly include
imagination of left and right hands, feet, and tongue movements. This is of great significance to
the fields of medical rehabilitation, leisure and entertainment (Vasilyev et al., 2017; Minkyu et al.,
2018). Figure 1 is a structural diagram of a simple motor imagery recognition system. However,
due to the non-stationary, non-linear, low signal-to-noise ratio and other characteristics of EEG
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signals, there are still many problems to be solved in terms of
preprocessing, feature extraction, and multi-mode classification
(Yazici et al., 2019). As a result, there are fewer BCI systems that
can be practically applied.

The EEG signal is a multi-channel signal, and there is no
perfect theory for the role of each channel in classification.
For EEG signal identification and classification, the
traditional methods are mostly to manually select channels
for experiments. In this process, it is possible to lose
effective features or introduce unnecessary noise (Duan
et al., 2020). At the same time, the EEG signal has its own
low signal-to-noise ratio and other characteristics, plus
interference from external environmental factors. It is also
difficult to process its signal characteristics, which makes it
difficult for its recognition accuracy to meet actual needs
(Kim et al., 2018).

With the rise of big data and artificial intelligence technologies,
deep learning algorithms have developed rapidly recently.
Fruitful results have been achieved in the field of computer
vision and speech recognition. Among them, the deep
convolutional network represented by the CNN algorithm
has low network complexity and strong feature extraction
capabilities, which can well solve the problem of difficult
feature extraction of EEG signals. Therefore, it is particularly
urgent and feasible to recognize EEG signals based on deep
convolutional networks.

RELATED RESEARCH

The significance of studying brain-computer interface technology
is not limited to promoting the development of rehabilitation
medicine. More importantly, it opens up a new way for people
to obtain brain information, and at the same time enriches
the content of brain cognitive science and neuroinformatics.
It has huge research prospects, important theoretical value
and practical significance. As the basic research in brain-
computer interface, the research of EEG signal recognition is a
multidisciplinary problem (Aznan et al., 2016; Xu et al., 2020).
The key lies in how to extract and classify EEG signals accurately
and effectively. At present, many scholars have carried out in-
depth research on this.

Most existing feature extraction methods rely on human
knowledge and experience. However, due to the limitations of
human knowledge and experience, artificially designed features
have certain limitations, and they cannot extract suitable
features well, resulting in limited classification accuracy (Wang
and Bezerianos, 2017). In addition, the process of finding
suitable features usually requires some additional experiments,
which will take a lot of time and energy. Traditional EEG
signal feature recognition research mostly uses Short Term
Fourier Transform (STFT) or Wavelet Transform (WT) to
extract the time-frequency features of EEG signals (Tabar and
Halici, 2017; Lee and Choi, 2019; You et al., 2020). However,
these tasks are generally based on the extraction of time-
frequency features in a fixed time period of EEG data or in
the same frequency band. There are limitations in extracting

features of EEG data in fixed time bands and frequency
bands. Based on the extracted time-frequency features, some
researchers select features for different experimental subjects
to improve the classification accuracy on motor imaging tasks.
Luo et al. (2016) first uses wavelet packet decomposition
technology to extract time-frequency features. Then use the
dynamic frequency feature selection (DFFS) to select the feature
with the highest classification accuracy for each experimental
object. Li et al. (2017) first selects the time period with the
highest correlation between the event-related desynchronization
(ERD)/event-related synchronization (ERS) phenomenon in the
collected EEG signals. Then use WPD to extract the time-
frequency characteristics of the EEG signal. Finally, the feature
selection algorithm is used to select the feature with the highest
classification accuracy. Saa and Cetin (2012) proposed the Filter
Bank Common Spatial Pattern (FBCSP). After filtering the
original EEG signal with a set of filters, the CSP method is
used to extract features on each filtered frequency band. Finally,
the feature selection algorithm is applied on the basis of the
extracted features. The above work research has improved the
accuracy of some motor imaging tasks to a certain extent.
However, since it takes a lot of time to select the characteristics
of the experimental data set for each experimental object, it
is not universal.

In recent years, deep learning has been widely used in
computer vision, speech recognition and recommendation
systems, and has achieved great success. Because the deep
learning method can automatically extract the input signal
features, it avoids the limitations of manual design features.
Therefore, some scholars apply deep learning algorithms to the
classification of motor imagery EEG signals (Chu et al., 2018;
He et al., 2020). Among the many deep learning algorithms,
Convolutional Neural Network (CNN) has become the most
popular method in the motor imagination EEG classification
algorithm because of its excellent feature extraction capabilities.
Literature (Lawhern et al., 2018) proposed a CNN structure
that can be applied to a variety of popular brain-computer
interface paradigms (including motor imagination, P300 visual
evoked potentials, etc.). A higher classification accuracy rate
than the FB-CSP method is obtained. Li (2020) proposed a
moving image classification algorithm based on spatiotemporal
features extracted by convolutional neural network. The temporal
and spatial characteristics of the EEG signal are extracted by
the longitudinal convolution kernel and the lateral convolution
kernel, respectively. And built a five-layer neural network
model to classify EEG signals. Wei et al. (2019) uses EEG
emotion data set SEED for emotion recognition research.
The abstract features of EEG samples are automatically
extracted based on the convolutional neural network in deep
learning, eliminating the need for manual feature selection
and dimensionality reduction. And with the most advanced
methods at present, a considerable accuracy rate has been
achieved. Li et al. (2020) proposed an algorithm combining
continuous wavelet transform and simplified convolutional
neural network to improve the recognition rate of MI-
EEG signals. The feasibility of the algorithm is verified by
the BCI dataset.
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FIGURE 1 | Structure of motor imagery recognition system.

Drawing on the existing research work of EEG signal
recognition, this paper proposes a motor imagery EEG signal
recognition based on deep convolutional network. The main
contributions are as follows:

1) Aiming at the difficult problem of EEG signal feature
extraction, short-term Fourier transform is used to
collect experimental data sets based on time series
characteristics, so as to obtain EEG signals with time-
frequency characteristics. And use continuous Morlet
wavelet transform to further process the EEG signal
difference of the data set. Provide high-quality data
support for subsequent training and testing of deep
convolutional network models.

2) It is oriented to the high accuracy and high precision
requirements of EEG signal recognition for motor
imagination. Based on the improved CNN network model,
it realizes efficient recognition of EEG signals. Based on
the advantages of the convolutional neural network’s own
network model, combined with the CSP algorithm, two-
level feature extraction and classification are performed
on the motor imagination EEG signal. Further improve
the quality of EEG signal feature acquisition. Ensure the
efficient performance of EEG recognition for ideal data sets
and measured data sets.

The rest of this article is organized as follows. The third
section introduces the data set used in this article and explains
the corresponding data preprocessing methods. The fourth
section introduces the main principles of EEG signal recognition
based on the improved CNN network model. The fifth section
carries out corresponding experimental simulation analysis on
the feasibility and optimality of the proposed method. The sixth
section is the conclusion and outlook.

DATASET PROCESSING

Sample Dataset
EEG signals are the distribution of potentials on the scalp
produced by brain neuron activity, and are usually obtained by

using an EEG device. The EEG data set used in this paper is BCI
competiton data set.

The collection process of BCI competiton is described as
follows: The subject wears an electrode cap and sits quietly
in front of the computer, and imagines the movement of the
left hand, right hand or right foot according to the prompts
on the screen. Each subject performed a total of 280 motor
imagination, 140 of which were left and right. The process of a
single experiment lasting 7s is as follows:

(1) 1.5 s before the start of the experiment, a “++” prompt
appeared on the screen to remind the subjects that they
were about to perform the motor imagination task.

(2) At the beginning of the 1.5s of the experiment, the “+”
disappeared, and L, R, F or arrows moving in different
directions appeared in the center of the screen. According
to the letters or moving arrows, the subjects imagined the
movement of the left hand, right hand, and right foot. The
process lasted 3.5 s.

(3) The arrows and letters on the screen disappear without any
display. The subject can enter a relaxed state and rest for 2 s.

In the experiment, a 118-lead electrode cap was used to collect
the EEG voltage on the scalp of the subject (Cheng et al., 2020).
The acquisition frequency is 100 Hz. The EEG signals of all
the above processes are collected by the system, so the EEG
signals obtained are 5 matrices with 118 rows and 280∗7∗100
columns. Among them, the effective EEG signal of each subject
performing the motor imaging task is a matrix of 118 rows and
280∗3.5∗100 columns.

During the experiment, the experimental paradigm shown in
Figure 2 was used (Graimann et al., 2003).

Data Preprocessing
When a person is performing limb motor imagination, a specific
position in the motor sensory cortex of the brain will have
regular potential changes (Pfurtscheller et al., 2005). When
subjects perform unilateral limb motor imaging, the intensity
of U rhythm (8–12 Hz) in the contralateral cortex of the
brain decreases, and the intensity of Q rhythm (12–25 Hz) in
the ipsilateral cortex increases, which is called event related

Frontiers in Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 655599

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-655599 March 19, 2021 Time: 16:18 # 4

Xiao and Fang Deep Convolution Neural Network

FIGURE 2 | MI experimental paradigm.

desynchronization (ERD) and event related synchronization
(ERS) phenomenon (Mousavi and Sa, 2019). These two
phenomena are important basis for distinguishing different types
of EEG signals. Therefore, the time-frequency domain analysis
method that combines the two is one of the most efficient analysis
methods (Padfield et al., 2019).

Short-Time Fourier Transform
The short-time Fourier transform first divides the entire time
series into several time segments of equal length. Then calculate
the frequency spectrum information in each time segment
by Fourier transform. Obtain the change of each frequency
component with respect to time from the surface. The calculation
formula is as follows:

S
(
f , k

)
=

N−1∑
n=0

s (n)
[
W
(
n− k

)
e
f 2πfn
−N

]
(1)

Where,S (n) represents the time series of EEG signals.W (n)
represents window function.N represents the number of time
points recorded.k represents the index of different time
windows.f represents the frequency component in the signal.n
represents time point. The length of the time window required
to be divided in the formula is the same, which determines that
the algorithm performs well when measuring high-frequency
components. When measuring low-frequency components, it is
often accompanied by distortion.

In order to effectively measure the change trend of the
µ rhythm and β rhythm in the signal, this paper selects
the time-frequency matrix obtained by the time window
of 0.5s and the hamming window function (Soroosh and
Mohammadi, 2018). Combine the time-frequency matrices on
the two channels C3 and C4. A three-dimensional tensor with
a size of 33∗35∗2 is obtained as the input of the subsequent
convolutional neural network.

Continuous Morlet Wavelet Transform
The Morlet wavelet transform uses a wavelet of finite length and
attenuation as the base to measure the intensity of each rate
component in the signal over time. The formula is as follows:

W
(
a, b

)
=

∫
∞

−∞

x (t)
1
√
a
ψ

(
t − b
a

)
dt (2)

Where,x (t) represents the signal sequence.ψ (t) represents the
wavelet basis.t represents the time point. The parameter a
controls the scaling of the wavelet function. When a takes a
value from small to large, the wavelet function gradually widens,
so the low-frequency components can be better measured.
And by adjusting the parameter b, the shift of the wavelet
function is controlled to obtain the intensity information of
each frequency band at different time domain positions. The
calculation formulas of Morlet wavelet center time and time
domain span are as follows:

ψ (x) = e−x
2

cos

(
π

√
2

ln 2
x

)
(3)
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∫
∞

−∞
t |ψ (t)|2 dt∫

∞

−∞
|ψ (t)|2 dt

(4)

1tψ =

√√√√∫
∞

−∞
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|ψ (t)|2 dt∫
∞

−∞
|ψ (t)|2 dt

(5)

The calculation formula for center frequency and bandwidth is as
follows:

ω0 =

√√√√∫
∞

−∞
ω |9 (ω)|2 dω∫

∞

−∞
|9 (ω)|2 dω

(6)

1ωψ =

√√√√∫
∞

−∞
(ω− ω0)

2
|9 (ω)|2 dω∫

∞

−∞
|9 (ω)|2 dω

(7)

Where, 9 (ω) is the frequency component information obtained
after ψ (t) undergoes Fourier transform. It can be known from
the above formula that when the wavelet transform measures
high frequency components, because the wavelet used is narrow,
a smaller time domain span can be obtained, but the frequency
domain span will be enlarged accordingly. Therefore, in the
output time-frequency matrix, the resolution of the frequency
dimension of the high frequency part is relatively low, and
the low frequency part is just the opposite. Similarly, the C3
and C4 channel position information are integrated, and a
sample matrix of size 35× 1152× 2 is obtained as the input of
the neural network.
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FIGURE 3 | Flow chart of BCI classifier design and training.

EEG SIGNAL CLASSIFICATION BASED
ON IMPROVED CNN NETWORK MODEL

BCI Classifier Design and Training
Process
The ability of deep learning algorithms to extract features is
greatly improved compared with traditional algorithms. And
generally, the more complex the network, the more sufficient
features are extracted, and the better the result of the classifier.
However, the advantages of the classification accuracy of deep
learning algorithms are usually only reflected when the number
of sample sets is large enough. And the more complex the
network, the more parameters to be trained, the more training
set samples will be needed.

It should be noted that the high complexity of the network
model cannot be pursued blindly in the design of neural
networks. We should balance the network structure and the
number of sample sets, and design a preliminary neural network
in advance (Anuse and Vyas, 2016; Ha and Jeong, 2019). Through

the learning curve of the training set and the cross-validation
set during the training process, it is judged whether the network
is in an over-fitting or under-fitting state. Then debug the
hyperparameters in the network according to the network status,
and decide whether to increase the number of samples and
how to modify the network structure. Until a network model
with satisfactory classification effect is designed. Figure 3 is a
flowchart of the brain-computer interface classifier design used
in this article.

Construction of Convolutional Neural
Network
In this paper, the classic CNN structure is modified, and the input
sample data is reduced from the traditional two-dimensional
to one-dimensional. The reconstructed CNN is used to extract
and classify the one-dimensional feature data obtained after the
motion imagination EEG is processed by the CSP algorithm.
After the one-dimensional feature data of EEG is subjected to the
feature extraction process again through the convolutional layer,
the fully connected layer and the Softmax classifier are used to
output the classification results. The CNN structure of this paper
is shown in Figure 4.

The improved CNN structure is mainly divided into 5 layers,
the first layer is the input layer (I1). The input sample data
size is 1 × N. Among them, N is the number of features
obtained after the motion image EEG is processed by the
CSP algorithm, N = 4 × m; The second layer (C2) and
the third layer (C3) are both convolutional layers for feature
extraction of input sample data. The second layer (C2) has
i2 convolution kernels, and the size of the convolution kernel
is 1 × n2. The third layer (C3) has i3 convolution kernels
with a size of 1 × n3. Due to the small length of the
input sample data, the downsampling layer is omitted in this
CNN; The fourth layer (F4) forms a single-layer perceptron
together with the fifth layer (O5) in a fully connected way.
After processing the output result of the third layer (C3),
the classification result is output. The convolutional network
is shown in Eq. 8.

CNN = [I1(1× N)− C2(i2 × 1× n2)] − C3(i3 × 1× n3)

−F4− O5] (8)

It is assumed that the convolution kernel of each layer is
represented by a matrix of size [i∗1, nl], where il represents
the number of convolution kernels of the first convolution
layer, and nl represents the length of the one-dimensional
convolution kernel. When training starts, these convolution
kernels are initialized to random values between [-0.3, +0.3].
Then the error value Error between the network predicted
category Yi and the sample actual category Ri is corrected
through the error back propagation algorithm, where Error
is as in Eq. 9. If W lφ

i and blφi represent the weight and
deviation of the i-th convolution kernel of the l-th convolutional
layer, the feature map Hlφ

i is as in Eq. 10. The input
and output of the j-th neuron in the fourth (F4) and fifth
(O5) layers of the fully connected layer are xl(j) and yl(j)
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FIGURE 4 | Improved CNN network structure.

respectively. The hyperbolic tangent function is used as the
neuron activation function, and the connection method is
shown in Eq. 11.

Error =
n∑

i=1

(Yi − Ri)2 (9)

Hlφ
i = H(l−1)φ

i W lφ
i + blφi (10)

yl(j) = tanh[xl(j)W l
+ bl(j)] (11)

Network Training
In the training process of the improved CNN classifier in
this paper, there are still a large number of hyperparameters
that need to be manually set. The specific hyperparameters
related to network training in this experiment will be
set as follows.

(1) Batch size and epoch: The batch size is the number of
samples used in a training process. The value of the number
of epochs is equal to all training samples divided by the
batch size. In the training process of deep learning, all
training sets are usually not loaded into memory at once for
iterative calculations. Because the total number of training
sets is too large, it will cause problems such as low memory
efficiency and slow training speed. Experimenters need
to consider the server memory size, input sample size,
network model complexity and other factors to choose
an appropriate batchsize. Make the network only read
batchsize training samples during each training process.
Setting the Batchsize too small will cause the network
to be difficult to converge and underfit. If the batchsize

is set too large, it will result in reduced efficiency or
memory overflow. In this experiment, the batchsize is 64
and the epoch is 150.

(2) Learning rate: Learning rate is a very important
hyperparameter in network training. Whether it is
set reasonably can directly affect the final classification
accuracy of the network. If the learning rate is set
too small, the error curve will fall too slowly, and the
learning rate will be too large, which will cause the error
to explode, and the network cannot correctly find the
direction of the gradient drop. After many attempts
and comprehensive considerations, this experiment
dynamically changes the learning rate during the training
process. Set the initial value of the learning rate to 0.02 and
the end value to 0.0002. Decay in the form of math.exp
(- /decay_ speed). Where i is the number of iterations,
decay_speed is the decay speed, and the value is 1,000
in this paper.

(3) Initialization of weights and biases: In this experiment, the
weight wi,j is initialized as normal random initialization,
and the bias wb is initialized as a constant matrix 0.1.

(4) Dropout:Overfitting often occurs in the training process of
deep learning. Corresponding solutions include increasing
the number of training set samples, adding a regularization
function, and adopting methods such as Dropout. Since
the convolutional neural network uses Relu as the
activation function, the sparsity of the function makes
the network self-regularized. Therefore, this experiment
uses the Dropout method to set its value to 0.5, so that
50% of the hidden layer nodes do not work in the layer
that uses Dropout during each training process. Thereby
reducing the phenomenon of over-fitting and enhancing
the expressive ability of the network model.
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FIGURE 5 | Influence of convolution check on identification results.

After designing the CNN network model and assigning all
the hyperparameters in the model, start training the classifier.
Convolutional networks are trained using BP algorithm (Jia et al.,
2019; Liu et al., 2020), and the process is divided into three steps:
The forward propagation calculates the output value aij, the back
propagation calculates the error δij, the gradient of the weight wij
is calculated and the weight is updated.

The output value ad,i,j of the forward propagation process of
the convolutional layer is calculated as follows. WhereDis the
input depth and F is the size of the convolution kernel.wd,m,n
represents the weight of the mth row and nth column of
the d-th convolution kernel.xd,i,j represents the element in
row i and column j of the d layer input.f is the Relu
activation function.wb is the bias of the convolution kernel.

ad,i,j = f

(D−1∑
d=0

F−1∑
m=0

F−1∑
n=0

wd,m,nxd,i+m,j+n + wb

)
(12)

Because the CNN network uses the connection method of the
local receptive field and the down-sampling operation such as
pooling processing, the calculation method of the error term of
the model is very different from the traditional fully connected
network. The derivation process of the l− 1-th layer error term
δl−1 in the back propagation process of the CNN convolutional
layer is shown in the following Eqs 13–16, where Ed represents
the error function. The calculation of the error term of the
CNN pooling layer depends on the specific pooling method.
The error term of the maximum pooling is transferred from
the next layer to the position corresponding to the upper layer
δl−1

i,j intact, and the error term of the remaining positions is set
to 0. The average pooling error term δl−1 is evenly distributed
from the next layer δl to each neuron corresponding to the
previous layer.

netl = conv
(
W l, al−1

)
+ wb (13)

al−1
i.j = f l−1

(
netl−1

i,j

)
(14)

δl−1
i,j =

∂Ed
∂netl−1

i,j
=

∂Ed
∂al−1

i,j

∂al−1
i,j

∂netl−1
i,j

=
∑

m
∑

n w
l
m,nδ

l
i+m,j+nf

′

(
netl−1

) (15)

δl−1
=

D∑
d=0

∑
m

∑
n

wl
m,nδ

l
i+m,j+nf

′

(
netl−1

)
(16)

The last step of training is to calculate the gradient and update
the weight accordingly. The pooling layer does not introduce
the parameters to be learned, only the gradient of the weight
and bias of the convolution layer needs to be calculated. Due
to weight sharing, each weight wi,j has an effect on each netli,j,
so its calculation formula is shown in the following Eqs 17
and 18. Finally, the network uses the gradient descent method
to update the weights, as shown in Eq. 19. In the equation,
η is the learning rate. Through repeated iterations of a large
number of samples, the error function value is continuously
reduced every time the weight is updated. Training of the
CNN model.

∂Ed
∂wi,j
=
∑

m
∑

n
∂Ed

∂netlm,n

∂netlm,n
∂wi,j

=
∑

m
∑

n δm,nal−1
i+m,j+n

(17)

∂Ed
∂wb
=

∑
m

∑
n

δlm,n (18)

wi,j = wi,j − η
∂Ed
∂wi,j

(19)

EXPERIMENT AND ANALYSIS

In order to verify the feasibility and practicability of the
method mentioned above, the experimental simulation
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FIGURE 6 | The curve of training error with iteration times.

FIGURE 7 | The curve of recognition accuracy with the number of iterations.

robot hardware environment is: Lenovo Tinkpad E14, AMD
Ryzen 7 4700U 8-core processor, 16GB memory, integrated
graphics; The software environment is: operating system

Chinese Windows 10, English version software Microsoft
Visual Studio 2012.

This article uses the Caffe deep learning framework to
implement model training and testing on the data set
used in this article. The data samples in the experimental
data set are divided into training set and cross-validation
set at a ratio of 8:2, and 6,880 training set samples and
1,720 validation set samples are obtained. The deep
convolutional network parameters are set according to
the corresponding network model described in the section
“Network Training.”

Network Model Optimization and
Analysis
The influence of Convolution Kernel Size on the
Accuracy of EEG Classification
For the CNN network, determining the appropriate size of the
convolution kernel is of great significance to the improvement
of feature extraction and recognition accuracy. Therefore, for
the classification of motor imagery EEG signals, this article first
studied the influence of different convolution kernel scales on the
identification of experimental data sets. The experimental results
are shown in Figure 5.

It can be seen from Figure 5, where Figure 5 shows the
changes in the classification accuracy of the motor imagination
EEG signals of experimental objects as the size of the convolution
kernel changes. It can be seen from Figure 5 that as the
size of the convolution kernel increases, the classification
accuracy of the EEG signal of the BBCI competiton dataset
has just begun to gradually increase. Then gradually decrease,
the optimal convolution kernel size is 1 × 115. The EEG
signal classification accuracy rate of the measured data set
increases first and then decreases as the size of the convolution
kernel increases, but the optimal convolution kernel size is
1 × 55. This shows that for different experimental subjects,
convolution kernels of different sizes are needed to extract the

Frontiers in Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 655599

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-655599 March 19, 2021 Time: 16:18 # 9

Xiao and Fang Deep Convolution Neural Network

FIGURE 8 | Classification results analysis based on temporal sequence.

TABLE 1 | Evaluation index of control models.

Method Accuracy Discrimination Sensitivity Specificity AUC

The proposed method 0.9324 0.9653 0.8682 0.9243 0.9464

Lawhern et al. (2018) 0.9135 0.9211 0.8732 0.8932 0.9132

Li (2020) 0.8932 0.8976 0.8321 0.8589 0.8843

Wei et al. (2019) 0.8821 0.8832 0.7932 0.7932 0.8591

most suitable features for motor imagination brain electrical
signal classification.

The Training Process of the Subject CNN Classifier
In order to further prove the feasibility and superiority of the
method proposed in this paper for accurate identification of
EEG signals, the experiment intends to analyze the training
error and training accuracy of EEG signal identification under
different iteration times. The experimental results are shown in
Figures 6, 7.

As shown in Figure 6, it can be seen that the EEG
signal data set is oriented to mixed motion imagination. Even
though the training set data volume has high-dimensional
and large-scale characteristics, the proposed improved CNN
network model also shows excellent characteristics for the
convergence speed of the recognition process. When the number
of iterations of the improved CNN network reaches 8,000
times, the training error remains below 10%. At the same
time, it can also be seen from Figure 7A that the improved
CNN network has basically achieved full signal recognition
after 9,000 iterations for the motion imaging training set
data signal recognition accuracy used in this article. The
identification of the sample test data set in Figure 7B also shows
efficient convergence characteristics. That is to say, in 8,000
iterations, the recognition accuracy of EEG signals of motor
imagination can achieve an effective recognition of more than
95%. Therefore, it is confirmed that the EEG signal recognition
method proposed in this paper has the advantages of fast and
efficient convergence characteristics.

Identification and Analysis of Mixed
Datasets
Analysis of Classification Results Based on Time
Series
The experiment divides the EEG experimental data of motor
imagination into time periods, each with a duration of 2 s as input
data. Figure 8 shows the average classification recognition rate of
the tested users in the 3 time periods from 0 to 6 s.

It can be seen from Figure 8 that the average classification
and recognition rate of EEG data in the first 2 s (0th–2nd s)
is the highest. The average classification and recognition rate
of EEG data in the last 4 s (2–6 s) is low. Explain that at
the beginning of the experiment, the subject users focused on
the motor imagination experiment. However, as time goes by,
the concentration of the tested users decreases, which affects
the quality of EEG data and ultimately leads to a decrease in
the recognition rate. Therefore, according to the above analysis
results, the original input data dimension is selected as 32 × 64,
convolution and pooling 3-layer network, and the EEG data
from 0 to 2 s after the start of motor imagination is selected for
classification prediction.

Performance Comparison With Several Comparison
Algorithms on Public Datasets
In order to verify the superiority of the deep convolutional
network proposed in this paper in EEG signal recognition, this
paper reproduced three other analysis methods based on the
mixed motor imagery data set [Literature (Lawhern et al., 2018;
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Wei et al., 2019; Li, 2020)]. And get its evaluation index on the
test set as shown in Table 1.

It can be seen from Table 1 that the accuracy index of
the method proposed in this paper is 0.9324, which is higher
than the literature (Lawhern et al., 2018) 0.0189, literature (Li,
2020) 0.0392, and literature (Wei et al., 2019) 0.0503. In terms
of accuracy indicators, the improved CNN network is 0.0442,
0.0677, and 0.0821 higher than the comparison algorithm. As
for the sensitivity index, the method proposed in this paper
is not outstanding compared with the comparison algorithm,
which is 0.005 lower than that in the literature (Lawhern et al.,
2018). The fundamental reason is that the improved deep
convolutional network has a deeper network depth, so that EEG
signal recognition can guarantee higher accuracy during training
and testing. But through the continuous learning and training
of the deep network, this reduces the sensitivity of the network
model to a certain extent. For the specificity index and AUC
index, the methods proposed in this paper are 0.9243 and 0.9464,
respectively, which are 0.0311 and 0.0332 higher than those in the
literature (Lawhern et al., 2018).

CONCLUSION

Motor imaging EEG signal recognition is an important and
challenging research problem in human-computer interaction.
Facing the accuracy and precision requirements of emotion
recognition, this paper combines neural network and proposes
a motor imagery EEG signal recognition method based on
deep convolutional network. This method first uses short-time
Fourier transform and continuous Morlet wavelet transform
to preprocess the collected experimental data sets, so as to
provide high-quality EEG signals for subsequent network models.
Then, based on the improved CNN network model, the
processed EEG signals are efficiently identified. Improve the
quality of EEG signal feature acquisition and ensure the high
accuracy and precision of EEG signal recognition. According
to the analysis of the experimental results, the proposed
method has an accuracy of 0.9324, an accuracy of 0.9653,

and an AUC of 0.9464 for EEG signal recognition, and it
has a good EEG signal recognition performance. The focus of
future research will be to explore the platformization of the
proposed method and strive to realize the commercialization
of the proposed method. The focus of future research
will be to explore the platformization of the proposed
method and strive to realize the commercialization of the
proposed method.
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