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Abstract: Zinc is an effective anti-inflammatory and antioxidant trace element. The aim of this study
was to analyse the protective effect of zinc and zinc–prolactin systems as additives of preservation
solutions in the prevention of nephron damage caused during ischemia. The study used a model
for storing isolated porcine kidneys in Biolasol®. The solution was modified with the addition of
Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin (PRL): 0.1 µg/L. After 2 h and 48 h of storage,
the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, sodium,
potassium, creatinine and total protein were determined. Zinc added to the Biolasol® composition at
a dose of 1 µg/L showed minor effectiveness in the protection of nephrons. In turn, Zn2+ added to
Biolasol + PRL (PRL: 0.1 µg/L) acted as a prolactin inhibitor. We do not recommend the addition of
Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL (0.1 µg/L) to the Biolasol solution.

Keywords: zinc; prolactin; Biolasol; perfusion; preservation; renal

1. Introduction

Zinc is a trace element that regulates many biochemical processes in the human body.
It affects proper development, participates in the synthesis of hormones (testosterone,
insulin), is a cofactor of active thymulin (ZnFTS, zinc-facteur-timique-serique) released
by thymic cells, and participates in the stabilization of cell membranes. It regulates the
functioning of the immune and nervous systems. In humans, 10% of proteins have zinc-
binding sites. In turn, 85–90% of Zn2+ in the body is closely related to proteins, including
metalloenzymes and metalloproteins. It is a component of enzymes, including DNA
and RNA polymerases. It is a part of superoxide dismutase, carbonic anhydrase, lactate
dehydrogenase, malate dehydrogenase and glutamate dehydrogenase. As a component of
superoxide dismutase, it reduces the production of reactive oxygen species and protects
against oxidative damage. In turn, being part of carbonic anhydrase, it affects the acid–
base balance, regulating it in the lungs and renal tubules [1–5]. Two mechanisms of zinc
antioxidant activity have been confirmed, i.e., protection of sulfhydryl groups of proteins
and inhibition of factors that intensify the production of oxygen free radicals. Zinc is
antagonistic to the transition metals copper and iron, which exhibit redox activity. It induces
the activity of metallothioneins (MTs, low molecular weight metal-binding proteins) in
the organs that remove oxidants [2,6]. Its normal concentration in the blood serum ranges
from 8.4 to 22.9 µmol/L; 50% of zinc is deposited in the cell cytoplasm, 30–40% in the
nucleus, and 10% in the cell membrane [7]. Zinc participates in the regulation of intra-
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and extracellular pathways involved in cell proliferation, differentiation, development,
apoptosis, and transformation [8].

The aim of this research was to analyse the protective effect of zinc as a component
of Biolasol in the prevention of nephron damage caused during ischemia. The solution
was modified with the addition of Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin
(PRL): 0.1 µg/L. These doses were chosen based on earlier studies and our pilot studies.
The introduction of PRL to the composition of the Biolasol solution was dictated by our
previous research experience. We confirmed that prolactin reduced markers that indicate
loss of quality of isolated porcine kidneys during perfusion, storage and reperfusion.
This hormone can enhance the antioxidant effect of zinc [9,10]. The components of the
preservation solutions can have cumulative effects and show a synergistic effect. Moreover,
zinc plays an important role in the structural integrity of PRL [11]. The study used a model
of storing isolated porcine kidneys in the Biolasol/modified Biolasol solution for static cold
storage, which is the standard method of organ preservation. Biolasol includes components
supporting the maintenance of structural and functional graft integrity [12,13].

2. Results

Nephrocyte cytolysis was determined by measuring the activity of aspartate amino-
transferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH)
(Figures 1–3). Ischemia-reperfusion injury occurred in all the study groups. After 2 h
of kidney preservation, high levels of markers were determined, which indicates disorders
in the proper functioning of cell membranes. After 48 h of storage (vs. 2 h), a decrease
in ALT activity was observed. The greatest decrease in this parameter (53%) was found
in the Biolasol + Zn group. ALT activity in the Biolasol + PRL (48 h) group was 21% less
than in Biolasol (48 h) (p < 0.05). On the other hand, the activity of ALT in the group
Biolasol + PRL + Zn (48 h) was lower by 13% compared to Biolasol (48 h) (p = ns). After
48 h, the AST activity decreased by 52% in the Biolasol + PRL vs. Biolasol group and by
51% in the Biolasol + Zn vs. Biolasol group (p < 0.05). LDH activity decreased by 62% in
the Biolasol + Zn group (vs. Biolasol) (p < 0.05).
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Figure 1. ALT activity in the collected perfusates and reperfusates in model of storing isolated
porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-way ANOVA
and Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control group (Biolasol).
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Figure 2. AST activity in the collected perfusates and reperfusates in model of storing isolated porcine
kidneys. The values are expressed as mean ± SEM. Data were analysed by one-way ANOVA and
Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control group (Biolasol).
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Figure 3. LDH activity in the collected perfusates and reperfusates in model of storing isolated
porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-way ANOVA
and Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control group (Biolasol).

A significant decrease in the activity of indicator enzymes in the individual groups
was found after 48 h 30 min of reperfusion, which suggests regression of damage and
a protective effect of the analysed solutions on the kidneys. After this time, the lowest
marker activity values were found in the Biolasol + PRL group (ALT: 14 ± 1 U/L; AST:
19 ± 2 U/L; LDH: 65 ± 11 (p < 0.05), and the highest in the Biolasol + Zn + PRL group
(ALT: 22 ± 2 U/L; AST: 41 ± 4 U/L, LDH: 175 ± 10 (p < 0.05).

Oxygen deficit inhibits the Na+/K+-ATPase ion pump in the cell membrane and
increases intracellular metabolic acidosis. Disruption of the transmembrane ion gradient
results in abnormal graft function. High concentrations of sodium ions were observed
in the perfusates/reperfusates of the Biolasol + Zn group (2 h/219 ± 6 mmol/L, 2 h
30 min/217 ± 8 mmol/L, 48 h/223 ± 14 mmol/L, 48 h 30 min/218 ± 10 mmol/L), which
were significantly higher compared to the Biolasol, Biolasol + PRL and Biolasol + Zn +
PRL groups (p < 0.01) (Figure 4). In turn, the lowest concentration of sodium ions was
determined in the samples collected in the Biolasol + Zn + PRL group (2 h/68 ± 3 mmol/L,
2 h 30 min/58 ± 5 mmol/L, 48 h/53 ± 5 mmol/L, 48 h 30 min/33 ± 9 mmol/L) (p < 0.05).
In the same group (Biolasol + Zn + PRL), the concentration of K+ ions was significantly
higher (2 h/25 ± 2 mmol/L, 2 h 30 min/22 ± 1 mmol/L, 48 h/26 ± 2 mmol/L, 48 h



Molecules 2021, 26, 3465 4 of 13

30 min/21 ± 1 mmol/L) (p < 0.05). The lowest K+ concentration was found in the Biolasol
+ PRL group after 48 h 30 min (15 ± 1 mmol/L). The lowest concentration of K+ after 48-h
graft storage was found in the Biolasol + Zn group (decrease by 25% vs. Biolasol/48 h)
(p < 0.05) (Figure 5).
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Figure 4. Sodium concentrations in the collected perfusates and reperfusates in model of storing
isolated porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-
way ANOVA and Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control
group (Biolasol).
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Figure 5. Potassium concentrations in the collected perfusates and reperfusates in model of storing
isolated porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-way
ANOVA and Bonferroni post hoc tests; n = 10; * p < 0.05 compared to the control group (Biolasol).

Figure 6 shows the effect of Biolasol/modified Biolasol on the biochemical parameters
(ALT, AST, LDH) in a renal tissue homogenate. Significant increases in ALT, AST and
LDH activity were found in the Biolasol + Zn group compared to the Biolasol, Biolasol
+ PRL and Biolasol + Zn + PRL groups (p < 0.01). Rinsing kidneys with Biolasol + Zn
increased the creatinine concentrations in the renal tissue homogenates (3.4 ± 0.2 mg/g
tissue, p < 0.01) (Figure 7). The protein concentration was 0.7 ± 0.2 mg/g tissue, p < 0.05).
Figures 1–3 show the activity of ALT, AST and LDH in the collected perfusates. Figure 6
shows the activities of the above enzymes, which were determined in the supernatants of
homogenates (cytoplasmic fraction). A clear increase in the activities of ALT, AST, LDH in
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the Biolasol + Zn group (Figure 6) indicates the activation of cell disruption processes after
48 h 30 min.
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Figure 6. Activity of biochemical markers in the kidney homogenates in model of storing isolated
porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-way ANOVA
and Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control group (Biolasol).

Figure 7. Creatinine and protein concentrations in the kidney homogenates in model of storing
isolated porcine kidneys. The values are expressed as mean ± SEM. Data were analysed by one-
way ANOVA and Bonferroni post hoc tests; n = 10; * p < 0.05; ** p < 0.01 compared to the control
group (Biolasol).

3. Discussion

Biolasol is a solution developed in Poland for ex vivo perfusion and the preservation of
kidney, liver, pancreas and heart. The osmotic pressure of the fluid is 330 mOsm/L, pH = 7.4.
The total concentration of Na+ (105 mmol/L) and K+ (10 mmol/L) points to an extracellular
solution. Biolasol supports the structural and functional integrity of grafts and minimizes
ischemia–reperfusion injury. The solution contains electrolytes, osmotically and oncotically
active substances, buffering systems, substances preventing cellular acidosis, which are
a source of energy, and antioxidants. Dextran 70 kDa allows the fluid to be moved from
the interstitial space to the intravascular space, which minimizes cell swelling. In addition,
it improves the capillary circulation in the graft, preventing the aggregation of blood
cells. Glucose is a substrate for ATP resynthesis. Trisodium citrate binds calcium ions
that are involved in the blood coagulation process. In addition, it maintains the acid–base
balance of the intracellular environment. EDTA complexes cations of multivalent metals
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(including iron ions) minimizing free radical damage. Magnesium fumarate as a source
of Mg2+ ions affects the maintenance of the structural and functional integrity of the lipid
bilayer. Sodium bicarbonate acts as a buffer that maintains the acid–base balance of the
transplanted organ [14,15]. Budziński et al. [16] analysed the effectiveness of Biolasol in an
animal model of transgenic pigs with the transferred human gene: α1,2-fucosyltransferase
(group I and II), α-galactosidase (III), combined α1,2-fucosyltransferase/α-galactosidase
transgene (IV), and livers without modification (V). The isolated livers were perfused
and stored in Biolasol for 24 h. In the collected perfundates and homogenates, they
analysed IL-6 (interleukin-6) concentration. Based on the obtained results, they revealed
hepatoprotective effects of Biolasol. Cierpka’s team [11] compared the effectiveness of
Biolasol and UW in the animal model of perfusion and preservation of the isolated kidney of
the Polish Large White pig. They analysed changes in the concentration of enzyme markers
(ALT, AST, LDH) in the collected perfundates, specimens collected for histopathological
examinations and mean survival time of the recipient after autotransplantation. They
found non-inferiority of the effectiveness of Biolasol in relation to the reference solution,
i.e., UW. Dolińska et al. [13] compared the effectiveness of Biolasol and HTK in maintaining
normal homeostasis of stored porcine kidneys. The activity of released indicator enzymes
(ALT, AST, LDH) and concentrations of sodium, potassium and magnesium ions were
subjected to analysis. Biolasol and HTK protect kidneys against ischemic damage effectively.
However, Biolasol provided more optimal homeostasis, which may suggest its better
nephroprotective properties. Jóźwik et al. [17] transplanted 42 human kidneys, which
were previously stored by simple hypothermia in Biolasol and the reference solution—
UW. They found that delayed graft function occurred in both groups of patients (38%
of cases in the Biolasol group vs. 33% in the UW group, p = ns). Therefore, an average
of 2.25 patients whose kidneys were rinsed with Biolasol and 1.86 patients whose grafts
were rinsed with UW were subjected to hemodialysis. Creatinine concentration was
determined in patients after the transplantation, and it was found that after 7, 30 and
60 days, the value was 4.64 mg/dL, 1.75 mg/dL, 1.7 mg/dL (Biolasol group) and 3.2 mg/dL,
1.53 mg/dL, 1.62 mg/dL (UW group), respectively. The effectiveness of the used solutions
was comparable.

Zinc is a stable divalent cation that does not directly undergo redox reactions. The
flow of zinc ions into and out of the cell is possible owing to the presence of its importers,
exporters and metallothioneins. The most important zinc transporters include proteins from
the ZnT (SLC30, Soluble Carrier 30) and Zip (SLC39, Soluble Carrier 39) families, which
show the opposite effect [18]. The kidneys are the organs most involved in maintaining
zinc homeostasis. Zn2+ balance is achieved by renal reabsorption. The filtered zinc ions are
reabsorbed along the nephron, near the proximal renal tubules [19]. ZnT1 facilitates zinc
reabsorption in the renal epithelial cells. ZnT2 and ZnT4 transport the excess of cytosolic
zinc to the secretory vesicles [7,19].

The conducted research suggests that zinc influences the ischemia–reperfusion injury
(IRI) of kidneys in an animal model. Moslemi et al. [20] investigated the effect of this
trace element on IRI-induced renal failure in rats. The rodents were administered zinc
sulphate at a dose of 10 mg/kg/day for 5 days and it was found that Zn2+ ions improved
renal function. Abdallah et al. [21] observed the effect of Zn2+ supplementation (dose of
50 mg/kg; 24 h and 30 min before IRI) on modulation of endoplasmic reticulum (ER) stress,
reduced inflammation, and low expression of the autophagy-related proteins Beclin 1 and
LAMP-2 (lysosome-associated membrane protein 2) after IRI. The research was carried out
in a model of bilateral renal ischemia in rats with subsequent reperfusion. Zinc supplemen-
tation (10 mg/kg/day; 3 weeks) also improved renal function in the ischemia/reperfusion
injury model in ovariectomized rats. An improvement in serum blood urea nitrogen and
creatinine concentrations was found [22]. O’Kane et al. [23] investigated the renoprotective
effect of Zn2+ (doses of 0.1, 0.5, 1.0, 2.5, 10.0 mg/kg) preconditioning in a clinically relevant
sheep model of IRI. Zinc upregulates hypoxia-inducible factor proteins. Mazaheri et al. [24]
found that zinc (30 mg/kg) reduced creatinine concentrations and minimized damage
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to kidney tissue in IRI-induced rats. Hegenauer et al. [25] also showed that intravenous
administration of Zn2+ (5 mg ZnCl2/kg) 30 min before the period of warm ischemia signifi-
cantly improved renal function in a rabbit. In turn, administration of ZnCl2 at a dose of
10 mg/kg 60 min before IRI in a rat model decreased creatinine and urea concentrations
and the activity of histological markers [26].

The activation of anaerobic cell metabolism and ATP hydrolysis under hypoxic con-
ditions causes a significant decrease in the cytoplasmic pH, activation of the Na+/H+

antiporter and an increase in the Na+ concentration. Mechanisms counteracting the exces-
sive accumulation of hydrogen ions in the cytoplasm are activated. This is mainly done via
the Na+/H+ pump. Na+/H+ antiporters remove hydrogen ions from inside the cell, while
taking sodium ions [27]. Rinsing the isolated porcine kidneys with Biolasol + Zn + PRL had
the greatest impact on the development of hyponatremia (Figure 4). There was probably
the influx of Na+ ions and the Zn2+ complex with prolactin inside the cell, according to
the sodium/amino acid cotransport mechanism [28]. Coupling to amino acid uptake is
an important mechanism for Na+ entry into cells [29]. Zn2+ ions form strong bonds with
sulphur ligands contained in the amino acid protein sequence, including prolactin [30].
The ability of histidine, contained in the PRL structure, to bind Zn2+ ions (potential binding
sites: H27A, H30A and H180A) was confirmed [12,31]. The association constant of Zn2+

ion binding to bovine PRL is 2 × 105 M−1 at pH 6.5 [12]. In turn, rinsing the kidneys with
Biolasol + Zn resulted in the occurrence of hypernatremia, which suggests that Zn2+ can
influence the activity of ion channels in intracellular acidosis. Activation of the channels
increased the Na+ concentration outside the cell as a result of cell depolarization with
simultaneous Zn2+ influx into the cell [32]. Zinc acts contrary to sodium [33]. Is sug-
gested that a sodium-dependent mechanism may control renal tubular reabsorption of
zinc [34]. Dünkelberg et al. [33] found that sodium may influence the zinc concentration by
upregulation of ZIP10 expression.

The optimal electrolyte balance was achieved by rinsing the kidneys with Biolasol +
PRL. This confirms the thesis of Ibarra et al. [35] that prolactin is a natriuretic hormone
that interacts with the renal dopamine system. PRL inhibits the activity of Na+/K+-
ATPase of proximal tubules. The high structural stability of PRL was confirmed at pH of
approximately 6.5 [12].

ALT is present in the cytosolic fraction and its high activity in perfusates/reperfusates
indicates damage to the plasma membranes. AST is found in the cytosol and in the mi-
tochondrial fraction. Its high activity indicates disruption of the internal cell structures.
LDH, in turn, is a marker of the threshold of anaerobic changes, especially anaerobic
glycolysis. Their release into the extracellular space indicates a violation of the structural
integrity of cell membranes. We compared the activities of ALT, AST and LDH in the
perfundates and homogenates of the analysed groups. Biolasol reduced kidney injury
more effectively on its own without additives. Biolasol significantly inhibits the cytolysis
of kidney cells. Biolasol solution modified with Zn2+ reduced kidney injury concerning
AST, ALT and LDH release after 48 h cold ischemic. The use of Biolasol + Zn did not
inhibit the activity of indicator enzymes in the renal tissue homogenates. It also increased
the creatinine content in cells compared to the Biolasol, Biolasol + PRL, Biolasol + Zn +
PRL groups. The lowest protein content in cells was observed in the kidney homogenates
washed with Biolasol + PRL. It can be assumed that 0.1 µg/L PRL improves the behaviour
of metabolic pathways and reduces the cell/tissue demand for energy [10,36]. Other
studies also confirm the protective effect of sex hormones on nephrons in the period of
ischemia [37–40]. The addition of 1 µg/L Zn2+ to the modified Biolasol + PRL solu-
tion (group B3) caused a significant increase in the activity of enzymes in the kidney
homogenates. We suggest, like Brandão et al. [41], that zinc is an inhibitor of prolactin,
reduces its activity and removes its protective effect. Zinc plays an important role in the
in vivo regulation of prolactin release. Treatment with zinc (50 mg/day) lowers serum
prolactin concentration in hemodialysis uremic patients [42].
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We found a minor protective effect of zinc added to Biolasol at a dose of 1 µg/L
on nephrons. This is probably because the high intracellular Zn2+ concentration induces
its pro-oxidative properties and influences the conditions of oxidative stress [43]. Free
intracellular zinc may cause changes in the permeability of the mitochondrial membrane
and the release of cytochrome c [5]. It was concluded that zinc is a potent inducer of heat
shock protein (HSP70) activator, during liver cold preservation in rats [44] and may induce
cell apoptosis [45]. Oxidative stress and HSP70 can promote the activate of MMPs/zinc-
containing enzymes, which are part of the mechanism of injury of preserved organs. MMPs
do play a role in damage mitochondrial DNA and increasing mitochondrial membrane per-
meability, leading in turn to mitochondrial dysfunction and ROS generation [46]. The low
effectiveness of Zn2+ was confirmed by Ogawa and Mimura’s research [47]. Rats were ad-
ministered the trace element by intraperitoneal injection (dose of 20 mg/kg) 24 h before the
ischemia-reperfusion procedure. Zinc showed antioxidant activity due to metallothionein
induction, which had little effect on nephron protection.

So far, only one study has been carried out on the effectiveness of zinc as a component
of a renal perfusion and preservation solution. Singh et al. [48] examined the protective
effect of the University of Wisconsin (UW) solution modified with zinc-N-acetylcysteine
chelate (0.3 mM/19.6 mg–30 mM/1.96 g Zn) on kidneys in NRK-52E cells. Zinc has been
delivered intracellularly using NAC as a chelator. They found that the ZnNAC system
(max. effect 1 mM/65.4 mg −10 mM/0.654 g Zn) was a strong antioxidant and DNase
I endonuclease inhibitor. Its presence in the UW solution composition decreased the
activity of caspase-3 and the expression of EndoG (endonuclease G). Authors suggest
that ZnNAC may act by inhibiting ROS, at the caspases, by acting on endonucleases and
mechanisms of endonuclease interactions. The results of these studies indicate that caspase
inhibitors provide partial protection from ischemic injury during kidney preservation.
When analysing our results and those obtained by other authors, it can be assumed that the
mechanism of zinc action in kidneys is more complex and dose-dependent [19,49,50]. It has
also been suggested that different zinc effectiveness may be due to its use in various animal
species. According to the international guidelines, the cytoprotective efficacy of drugs
found in small animals (mice, rats, rabbits) should be confirmed in large animals [51]. We
based our research on the therapeutic efficacy of zinc as a component of the preservation
solution intended for the abdominal parenchymal organs in an isolated porcine kidney
model, which had not been tested before.

In summary: zinc added to the Biolasol composition at a dose of 1 µg/L showed minor
effectiveness in the protection of nephrons. In turn, Zn2+ added to Biolasol + PRL (PRL:
0.1 µg/L) acted as a prolactin inhibitor. The research on modifying the Biolasol solution
should be continued. More research is essential to elucidating the role relating to zinc (his
dose) in the efficiency of preservative solution.

4. Materials and Methods
4.1. Preservation Solution

We used Biolasol solution (“FZNP” Biochefa, Sosnowiec, Poland). The composition
and functions of the individual components are shown in Table 1. Ringer solution was from
Baxter Sp. z o.o, Poland (sodium chloride 8.6 g/L, potassium chloride 0.3 g/L, calcium
chloride 0.33 g/L). Zinc acetate [Zn(CH3COO)2] was from POCh S.A Gliwice, Poland. Pig
prolactin was from “FZNP” Biochefa, Sosnowiec, Poland. All substances used in the study
were of analytical grade.
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Table 1. The composition and functions of the individual components of Biolasol solution.

Component Effect

K+ 10 mmol/L Electrolytes
Na+ 105 mmol/L Electrolytes
Ca2+ 0.5 mmol/L Electrolytes
Mg2+ 5 mmol/L Electrolytes
Cl− 10.5 mmol/L Electrolytes

Dextran 70 0.7 g/L Colloids

HCO3
− 5 mmol/L Buffers

Citrate
Glucose

30 mmol/L
167 mmol/L

Impermeant
Impermeant

Energy substrates

Di-sodium edetate
Fumarate

5 mmol/L
5 mmol/L

Additives
Additives

Ascorbic acid 0.5 mmol/L Antioxidant

pH 7.4

Viscosity (cP) 2.90

Osmolality
(mOsm/kg H2O) 330

4.2. Animals

Forty kidneys from 20 Polish Large White pigs, weighing 90–110 kg, aged 175–
180 days, were included in the study. The animals were slaughtered at the Meat Plant
H.A.M in Radzionków/Poland in a special room using 220 V electricity.

4.3. Ethical Issues

The research was conducted with the consent of the II Local Ethics Commission for
Animal Experiments in Cracow (No. 1046/2013) and in accordance with the European
Union regulations (Directive 86/609 CEE) on the protection of animals during slaughter
or killing.

4.4. Kidney Procurement and Experimental Groups

The kidneys were collected according to the previously described procedure [52]. The
grafts were randomly assigned to 4 groups and preserved by static cold storage.

4.4.1. Group A, Control

Perfusion, preservation and * reperfusion of kidneys in the Biolasol solution/control;
n = 10 kidneys;

4.4.2. Group B1

Perfusion, preservation and * reperfusion of kidneys in the Biolasol solution modified
with PRL (0.1 µg/L); n = 10 kidneys;

4.4.3. Group B2

Perfusion, preservation and * reperfusion of kidneys in the Biolasol solution modified
with Zn2+ (1 µg/L/elemental zinc); n = 10 kidneys;

4.4.4. Group B3

Perfusion, preservation and * reperfusion of kidneys in the Biolasol solution modified
with Zn2+ (1 µg/L/elemental zinc) and PRL (0.1 µg/L); n = 10 kidneys.
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4.4.5. Group C

Perfusion, preservation and * reperfusion of kidneys in the Ringer’s solution/sham;
n = 10 kidneys.

* reperfusion—flushing the graft after 48 h of preservation with the same solution that
was used for previous perfusion and preservation.

4.5. Experimental Protocol

The isolated porcine kidneys were placed in 500 mL of Biolasol (Group A), Ringer
(Group C) or modified Biolasol (Groups B1, B2, B3) chilled to 4 ◦C and transported in
thermostable containers (4–6 ◦C) to the Biochefa FZNP laboratory. The grafts were stored
under simple hypothermia for 2 h. The kidneys were then cannulated (catheter Nelaton
CH08, ConvaTec, Deeside, United Kingdom) and perfused (pressure of 73.5 mmHg H2O)
ensuring a continuous flow of solution stream. Perfusate samples were collected into
Eppendorf tubes from the renal vein at two time points: 0 and 30 min of perfusion. After
30 min, the kidneys were stored under simple hypothermia for 48 h (acceptable cold
ischemic time for the kidney). After this time, renal reperfusion was performed. The test
samples were taken at 0 and 30 min of reperfusion. The collected samples (after perfusion
and reperfusion) were centrifuged at 3000 rpm for 15 min at T = 4 ◦C and stored at
T = −20 ◦C until the tests were completed. Then, the biochemical markers of renal function
were determined. Diagnostic tests were applied, allowing for indirect assessment of renal
function [10,52–54]. The graft samples for biochemical analysis in kidney homogenates
were collected after 48 h 30 min.

4.6. Determination of Alanine Aminotransferase

The activity of alanine aminotransferase (ALT) was determined using reagent kits
(bioMérieux, Lyon, France) at 340 nm (linearity: 0–500 U/L) and expressed as U/L. The
analyses were performed in accordance with the manufacturer’s instructions.

4.7. Determination of Aspartate Aminotransferase

The activity of aspartate aminotransferase (AST) was determined using reagent kits
(bioMérieux, Lyon, France) at 340 nm (linearity: 0–500 U/L) and expressed as U/L. The
analyses were performed in accordance with the manufacturer’s instructions.

4.8. Determination of Lactate Dehydrogenase Activity

The activity of lactate dehydrogenase (LDH) was determined using reagent kits
(bioMérieux, Lyon, France) at 340 nm (linearity: 1000 U/L) and expressed as U/L. The
analyses were performed in accordance with the manufacturer’s instructions.

4.9. Determination of Sodium Concentration

Sodium concentration was determined using reagent kits (Pointe Scientific INC, Mar-
seille, France) at 405 nm (linearity: 0–300 mmol/L) and expressed as mmol/L. The analyses
were performed in accordance with the manufacturer’s instructions.

4.10. Determination of Potassium Concentration

Potassium concentration was determined using reagent kits (Pointe Scientific INC,
Marseille, France) at 600 nm (linearity: 0–50 mmol/L) and expressed as mmol/L. The
analyses were performed in accordance with the manufacturer’s instructions.

4.11. Determination of Creatinine Concentration

Creatinine concentration was determined using reagent kits (Pointe Scientific INC,
Marseille, France) at 490 nm (linearity: 0–25 mg/dL) and expressed as mg/dL. The analyses
were performed in accordance with the manufacturer’s instructions.
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4.12. Determination of Total Protein Concentration

Total protein concentration was determined using reagent kits (Pointe Scientific INC,
Marseille, France) at 540 nm (linearity: 1 to 15 mg/dL) and expressed as mg/dL. The
analyses were performed in accordance with the manufacturer’s instructions.

4.13. Apparatus

A Marcel S330 spectrophotometer (Marcel, Poland) was used for biochemical tests.
The photometric accuracy of the spectrophotometer was ±0.005 Abs.

4.14. Biochemical Analysis in Kidney Homogenates

Kidney samples were collected after completion of reperfusion (48 h 30 min). The
samples were homogenized in chilled 0.1 M phosphate buffer (pH = 7). Biochemical
determinations were performed in supernatants obtained by centrifuging the homogenates
at 15,000 rpm for 3 min. The renal tissue supernatant was used to evaluate the activity of
ALT, AST, LDH, as well as creatinine and protein concentrations.

4.15. Statistical Analysis

The test results are shown as mean ± SEM (standard error mean). The parameters
between the groups were compared by one-way analysis of variance (ANOVA) followed
by post hoc Bonferroni test for means comparison (n = 10 for each group) [55]. STATIS-
TICA software version 13.1 (StatSoft, Cracow, Poland) was used. Values of p < 0.05 were
considered statistically significant.

5. Conclusions

We do not recommend the addition of Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL
(0.1 µg/L) to the Biolasol solution.
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