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Abstract

Background: Decoding neural activities associated with limb movements is the key
of motor prosthesis control. So far, most of these studies have been based on
invasive approaches. Nevertheless, a few researchers have decoded kinematic
parameters of single hand in non-invasive ways such as magnetoencephalogram
(MEG) and electroencephalogram (EEG). Regarding these EEG studies, center-out
reaching tasks have been employed. Yet whether hand velocity can be decoded
using EEG recorded during a self-routed drawing task is unclear.

Methods: Here we collected whole-scalp EEG data of five subjects during a
sequential 4-directional drawing task, and employed spatial filtering algorithms to
extract the amplitude and power features of EEG in multiple frequency bands. From
these features, we reconstructed hand movement velocity by Kalman filtering and a
smoothing algorithm.

Results: The average Pearson correlation coefficients between the measured and the
decoded velocities are 0.37 for the horizontal dimension and 0.24 for the vertical
dimension. The channels on motor, posterior parietal and occipital areas are most
involved for the decoding of hand velocity. By comparing the decoding performance
of the features from different frequency bands, we found that not only slow
potentials in 0.1-4 Hz band but also oscillatory rhythms in 24-28 Hz band may carry
the information of hand velocity.

Conclusions: These results provide another support to neural control of motor
prosthesis based on EEG signals and proper decoding methods.

Background
Brain-computer interface (BCI) is a system that translates brain signals reflecting user

intentions into commands and drives external devices [1,2]. In the past decades, var-

ious BCI systems have been developed for the purpose of rehabilitation and medical

care for the disabled patients [3-7]. Among them, researchers have particular interest

in neuromotor prosthesis that moves an artificial limb by the brain signals which con-

trol the equivalent movement of a corresponding body part such as an arm or a

hand [2]. To date, most progresses of these BCI systems have been based on invasive

approaches using neuronal firing patterns [4,8,9], local field potentials (LFPs) [10,11]

or electrocorticogram (ECoG) [12-14]. These signals inside head possess the advan-

tages of little noise, high topographical resolution and broad bandwidth.
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However, for applications on human being, invasive ways are seriously limited by

questions about the safety and durability of implanted channels [15]. Some recent stu-

dies have demonstrated that brain signals recorded by non-invasive approaches also

carry significant information of detailed limb movements. For instance, from magne-

toencephalogram (MEG) signals, hand movement directions have been decoded in the

discrete center-out reaching task [16]; hand positions have been decoded during the

continuous joystick movements [17]; and hand velocities have been decoded during

the discrete center-out drawing task [18], the target-to-target joystick movements [19]

and the continuous trackball movements [20]. It has been reported that low frequency

band (≤3 Hz or 2-5 Hz) MEG on motor-related areas is critically involved in represent-

ing limb movement direction and speed [16,20]. Moreover, long-distance coupling

between primary motor cortex and multiple brain areas in the low frequency band has

been found during a continuous visuomotor task [20]. And the neural mechanisms of

speed and tau in pointing hand movement from MEG have been revealed (tau is

defined as the ratio of the current distance-to-goal gap over the current instantaneous

speed towards the goal) [19].

Compared with MEG, electroencephalogram (EEG) has lower signal-to-noise ratio

and spatial resolution. It was generally thought that EEG could not extract sufficient

information to reconstruct limb movements. However, EEG is easily available and

more suitable for ambulatory prosthetic system [17,21]. Therefore, a few ambitious

researchers have extended the exploration to EEG signals. For example, hand direc-

tions have been inferred from EEG recorded in a center-out joystick operation [16].

The subjects were constrained to small finger and wrist movements. Another study has

been presented about the prediction of reaching target from EEG recorded in multi-

joint center-out movements [22]. Later, a movement delay paradigm was designed to

investigate brain activities in the human posterior parietal cortex (PPC) during the

planning of intended movements [23]. Newly, the positions, the velocities and the

accelerations of hand movement were modestly decoded during a 3-D center-out

reaching task [24,25]. As far as we know, most of these EEG studies employed a cen-

ter-out movement task which contained pre-specified point-to-point movements. Spe-

cifically, the starting and end points were fixed, and the length of each movement was

well constrained.

In our study, we designed a 2-D drawing task in which the subjects were required to

move a pen at their own pace along a zigzag route in each trial (refer to Figure 1).

This zigzag route was determined online by the subjects themselves. Specifically, this

task can be regarded as sequential point-to-point movements. At each point the sub-

jects selected one of the four directions, i.e., up, down, left and right. Moreover, the

numbers and the positions of these points, and the distance between two sequential

points were up to the subjects (not pre-specified). Thus the starting point, the end

point and the length of each point-to-point movement were less restricted compared

to the center-out task. During the experiment, multi-channel EEG activities from

whole scalp were recorded. Then, independent component analysis (ICA) [26] was

used to remove the effects of electrooculogram (EOG) and electromyogram (EMG)

activities. After that, discriminative spatial pattern (DSP) filtering [27] and common

spatial pattern (CSP) filtering [28] were employed to extract the amplitude features

and the power features from the retained independent components (ICs) in multiple
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frequency bands. Then Kalman filtering and a smoothing algorithm [29] were applied

to decode the hand movement velocity with these features. Furthermore, we investi-

gated the scalp areas most involved for the decoding and evaluated the decoding per-

formance of each frequency band.

Methods
Subjects and Recording System

Five right-handed healthy male subjects participated voluntarily in this study. Among

them, subject 1 had been well trained in the BCI experiments of hand motor imageries,

while the other subjects had less or never participated in any kind of BCI experiment

before. These five subjects were instructed to move a pen (using their right wrist only

and relaxing left hand on the lap) on the touch screen of a laptop in front of them.

Meanwhile, the pen tracks denoting the trajectories of hand movements were recorded

with a sampling rate of 64 Hz by the laptop. At the same time, a 40-channel EEG cap

LT37 from Compumetics was used to collect EEG signals from the subjects. And a

portable amplifier (NeuroScan NuAmps) amplified the analog EEG signals, digitalized

them with a sampling rate of 250 Hz. The laptop received the EEG data from the

amplifier through a USB port and sent synchronous stimulus code through parallel

port to the amplifier.

Experimental Paradigm

Our experiment contained 60 trials. Each trial started with a fixation cross shown on

the touch screen for 2 seconds. After that, a graphical user interface (GUI) was dis-

played. It was a 7 cm × 7 cm square in which a green ball denoting the starting point

was randomly initialized. Then, in the next 40-50 seconds, subjects were asked to

Figure 1 Drawing task paradigm. The example of movement trajectories (blue dotted lines) performed
by a subject. Movement directions are displayed as the red arrows. The starting point is represented as
green circle 1. It was randomly initialized by the laptop. The movement targets are denoted as circle 2 to
circle 7. The number and positions of the targets were determined online by the subjects.
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touch the green ball by a pen and move it to arbitrary points at their own pace in 4

directions (up, down, left and right). An example of the task is shown in Figure1. Actu-

ally, the pen track of each trial corresponded to a sequence of directional hand move-

ments. In this experiment, the subjects self-chose the number of point-to-point

movements during the drawing task. After the drawing time slot, this GUI disappeared

and the trial was ended. The time for rest between the trials was randomized in a

range from 8 s to 10 s to prevent subjects getting used to the timing of rest state to

drawing task. During the time for rest, subjects were periodically told which directions

were under-represented by the laptop for data balance. More detailed parameters of

this experiment are listed in Table 1.

EOG and EMG removal

During our drawing tasks, the recorded EEG signals were contaminated with various

artifacts such as EOG and EMG [30]. These artifacts may confound the EEG decoding

of hand movements [18]. To show an example, we collected the EOG of Subject 3 and

provided an off-line analysis in Appendix A1. The off-line analysis of EOG and the

decoding of hand velocity of Subject 3 were based on the same dataset. To remove

EOG and EMG, we employed ICA. It is a process that detects and isolates independent

components (ICs) of signals consisting of mixed sources. For each subject, 30 ICs were

decomposed from EEG signals by using the EEGLAB software [31], and about 12 ICs

regarded as EOG/EMG were removed by the following heuristics: (i) Eye movements

should project mainly to frontal sites with a low-pass time course; (ii) Eye blinks

should project to frontal sites and have large punctate activations; (iii) Temporal mus-

cle activities should project to temporal sites with a spectral peak in the band above 20

Hz [32]. An example of EOG and EMG removal is also given in Appendix A1.

Feature extraction

Since the direction was approximately fixed (up, down, left or right) in each point-to-

point movement in our study, the values of hand velocities have close relationship with

the directions. For example, when a subject performed a movement to the right, the

absolute value of hand velocity in y-dimension is small and the hand velocity in x-

Table 1 The detailed parameters of the drawing task

S1 S2 S3 S4 S5

TR(mm/s) 3.7 ± 2.1 11.3 ± 7.5 7.2 ± 3.2 5.9 ± 3.8 4.6 ± 2.2

DT_R(s) 10.9 ± 2.9 8.0 ± 1.9 9.4 ± 2.7 9.1 ± 3.1 9.4 ± 2.8

DT_U(s) 12.0 ± 2.4 8.6 ± 2.5 10.3 ± 2.5 12.0 ± 4.1 11.4 ± 3.6

DT_L(s) 11.9 ± 2.7 8.2 ± 1.8 8.2 ± 2.4 9.9 ± 3.6 10.2 ± 3.0

DT_D(s) 11.6 ± 2.8 8.7 ± 1.7 12.8 ± 2.3 11.4 ± 3.1 10.4 ± 3.3

MT(s) 8.2 ± 4.2 2.2 ± 1.5 4.6 ± 2.9 4.2 ± 3.7 7.3 ± 3.4

ML(mm) 31.6 ± 15.8 24.5 ± 17.6 33.3 ± 20.2 24.8 ± 21.0 33.8 ± 15.7

The mean ± standard deviation of the experiment parameters are shown for each subject. The abbreviations of these
parameters are listed below:

(1) TR: subject’s drawing speed during the entire time period of an experiment;

(2) DT_R: movement time in ‘right’ direction in a trial;

(3) DT_U: movement time in ‘up’ direction in a trial;

(4) DT_L: movement time in ‘left’ direction in a trial;

(5) DT_D: movement time in ‘down’ direction in a trial;

(6) MT: the time of a point-to-point movement;

(7) ML: the distance of a point-to-point movement.
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dimension is large. It may suggest that the brain components discriminative for differ-

ent directional movements were helpful for reconstructing the profiles of hand veloci-

ties. Therefore, supervised spatial filtering methods CSP and DSP were employed here

to extract the discriminative brain components. Specifically, after EOG and EMG were

removed, a filter bank was applied to filter the retained ICs into multiple bands (0.1-4

Hz, 4-8 Hz, 8-12 Hz, ..., 36-40 Hz). Then DSP was used to extract the amplitude fea-

tures of slow potentials within 0.1-4 Hz band of the ICs. And CSP was applied to

extract the power features of oscillatory rhythms from the other bands of the ICs. The

details of DSP and CSP methods can be found in Appendix A2.

In DSP and CSP training procedure, we cut hand movement trajectories into seg-

ments with a sliding window (1s wide and 0.5s overlap) to obtain the directions in the

drawing task. It was expected that the trajectory in each segment only exhibits one

movement direction. However, in practice, the trajectories of some segments may not

be straight lines or not extend enough in a direction. The ICs of these segments were

not used into DSP or CSP training. Note that DSP and CSP were originally proposed

to deal with binary classification problems. As far as our 4-direction hand movements

are concerned, DSP and CSP need to be extended to multiclass paradigms. In this

study, they were computed between each pair of directions [33], and the number of

the pairs was C4
2 6= .

After CSP/DSP filter training was completed, regarding each pair of directions, 2

most discriminating filters of DSP and 4 most discriminating filters of CSP were

obtained (see Appendix A2). Then they were used to filter the multi-band ICs into

time series. In each frequency band, the combination of ICA and DSP/CSP can be for-

mulated as:

i i i= W UXT( ) (1)

where Xi Î RC×T is the recorded EEG signal in the ith frequency band, i = 1,2,...,10,

C is the number of channels, T is the number of sample points covering the entire

time period of an experiment, U Î Rm×C is the ‘unmixing’ matrix of ICA, m is the

number of retained ICs, Wi
m lR i∈ × is the filtering matrix of DSP or CSP in the ith

frequency band, li is the number of the selected filters (l1 = 12, l2 = l3 =...= l10 = 24),

 i
l TR i∈ × is the filtered data.

At last, we extracted the features from the filtered data ξi every 200 ms without over-

lap, i.e., ξi = [ψi1, ψi2,..., ψiN], where N is the number of 200 ms bins. Within each 200

ms bin, the average amplitudes of 0.1-4 Hz signals were calculated as

z1 1, ,( ) ( )j j
qq means= ¨ , where ¨ 1, j

q is the qth row of ψ1,j, j = 1,2,..., N, q = 1,2,...,12.

The variances of the other frequency band signals were computed, normalized and

log-transformed as z i j i j
p

i j
p

p
p, , ,( ) log var( ) var( )= { }=∑¨ ¨

1

24
, where ¨ i j

p
, is the pth

row of ψ1,j, i = 2,3,...,10, p = 1,2,...,24. Before decoding, these features were normalized

to zero mean and unit variance. They were denoted as zj = [z1,j, z2,j, ..., z10,j], z Î RD×N,

where D = 228 is the dimension of features. Moreover, in this paper, x-velocity and y-

velocity of the hand movement were measured as the displacements of pen track on

horizontal dimension and vertical dimension within each 200 ms bin, respectively.
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Decoding Algorithms

The decoding algorithm presented in this paper consists of a standard Kalman filter

and a smoother. The Kalman filter is a real-time processing algorithm in which the

state estimate is updated immediately after a new observation is available. On the

other hand, the smoother optimally combines the Kalman filter with a reverse-time

information filter. The result is a minimum variance estimate based on past, present

and future information [34].

(1) Kalman filter

Kalman filter considers a discrete filtering model [29], of which the system and obser-

vation models are:

v A v nj j j j+ = +1 (2)

z H v qj j j j= + (3)

In this paper, the state vector is denoted by vj = [vx, j, vy, j]
T with vx, j and vy, j repre-

senting the horizontal and the vertical velocities respectively at time step j; Aj Î R2×2

is the state transition matrix, and nj ~ N (0,Nj) is the noise term, where Nj Î R2×2.

The observation vector zj Î RD is made up of the extracted features, Hj Î RD×2 is the

observation matrix, and qj ~ N(0,Qj) is the noise term of observation, where Qj Î
RD×D, D = 228, j = 1,2,..., Mk, and Mk is the number of time steps in the kth trial. Here

Aj, Hj, Nj and Qj are simplified as constant matrices. The matrices A and H can be

obtained from training data by using least squares estimation:

arg min

arg min

, ,

, ,

A

H

v Av

z Hv

k j k j
j

M

k Tr

k j k j
j

M

k

k

k

+=

−

∈

=

−

−

∑∑
∑

1
2

1

1

2

1∈∈∑ Tr

where Tr is the set of training trials. For the estimated A and H, the noise covariance

matrices N and Q can be obtained by equation (2) and (3). The prediction and update

equations of Kalman filter for test can be written as follows [29]:

Prediction j j

j j

: v Av

P AP A N

−
−

−
−

=

= +
1

1
T

Update j j
T

j j j

j j j j j

j j

:

( )

S HP H Q

K P H S

v v K z Hv

P P

= +

=

= + −

= −

−

− −

− −

−

T 1

KK S Kj j j
T

where v̂ j
− and P j

− are the predicted mean and covariance of the state before seeing

zj; Sj is the prediction covariance of the observation; v̂ j and Pj are the estimated

mean and covariance of the state after seeing zj, Kj is the filter gain.
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(1) Smoother

The smoother is calculated from the results of Kalman filter by recursions [34]:

C P A AP A N

v v C v Av

P P C P

j j j

j
s

j j j
s

j

j
s

j j j

= +⎡
⎣

⎤
⎦

= + −

= +

−

+

+

T T 1

1

1

ˆ ˆ [ ˆ ˆ ]

[ ss
j j− −AP A N CT T]

where Cj is the smoother gain; v̂ j and Pj are the filter estimates for the state mean

and state covariance; v̂ j
s and P j

s are the smoother estimates for the state mean and

state covariance. The recursions start from the last time step.

Results
To study the fidelity of the drawing movement decoding and the characteristics of the

associated EEG signals, we will show the accuracy of the hand velocity decoding,

demonstrate the scalp areas most involved for the decoding and present the frequency

bands that carried information of hand velocity. 5-fold cross-validation was employed

in the evaluation, i.e., each subject’s data were divided into 5 parts, among them 4

parts were used for training, and the retained part was adopted for test. This procedure

was repeated 5 times. In each time, a different part was used as the test set. The results

of these evaluations are described below.

Decoding accuracy of drawing movement

Table 2 shows three performance indexes to assess the decoding accuracy, including (i)

Pearson correlation coefficient (r-value), abbreviated as CC, between the measured and

the decoded hand velocities; (ii) p-value for testing the null hypothesis that the mea-

sured and the decoded hand velocities are uncorrelated by Student’s t-test; (iii) signal-

to-noise ratio (SNR), where SNR E v E v v= −10 10
2 2log [( ( ) / ( ) ] , v denotes the mea-

sured hand velocity, v̂ represents the decoded hand velocity.

From Table 2, we can find that, except the result of Subject 1 in y-dimension, the

small p-values indicate that the CCs are significant. On average, the modest CCs and

Table 2 Decoding performance of hand velocity using ICA-cleaned EEG

S1 S2 S3 S4 S5 Avg.

CCx 0.62 ± 0.05 0.29 ± 0.03 0.50 ± 0.03 0.29 ± 0.03 0.16 ± 0.01 0.37 ± 0.08

CCy 0.04 ± 0.02 0.17 ± 0.02 0.39 ± 0.03 0.28 ± 0.03 0.30 ± 0.02 0.24 ± 0.06

px 0 0 0 0 1.84 × 10-9 -

py 0.08 1.17 × 10-7 0 0 0 -

SNRx(dB) 2.14 ± 0.41 0.30 ± 0.12 1.19 ± 0.13 0.35 ± 0.08 0.09 ± 0.02 0.81 ± 0.38

SNRy(dB) -0.06 ± 0.03 0.05 ± 0.08 0.66 ± 0.09 0.34 ± 0.06 0.36 ± 0.04 0.27 ± 0.13

Pearson correlation coefficients (CCs), p-values and signal-to-noise ratios (SNRs) between measured and decoded hand
velocities in x-dimension and y-dimension are listed. Top group: the mean ± stand error of the mean (SEM) of CCs is
given for each subject and dimension across all 5 folds. The average of CCs across subjects is also given. Middle group:
the mean of p-values is provided for each subject and dimension across all 5 folds. Button group: the SNRs are recorded
for each subject and dimension across all 5 folds. The average of SNRs across subjects is also given. Before computing
CC, p-value and SNR, the measured and decoded hand velocities were smoothed with a zero-phase, fourth-order,
lowpass Butterworth filter with a cut-off frequency of 1 Hz.
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SNRs demonstrate that it is possible to infer information about hand velocities in

drawing task by EEG. For most subjects, the hand velocities in horizontal dimension,

x, were better decoded than those in vertical dimension, y. Similar disparity in the

MEG decoding between dimensions of hand movement has been discussed in [35].

Because the subjects were asked to draw on the vertical touch screen, gravitational

force may impact the drawing action of subjects and degrade the decoding in y-dimen-

sion [35]. Although we only presented the results for one parameter setting (1s seg-

ment length for CSP/DSP filter training and 200 ms step size for Kalman smoother

decoding), it was also found that these parameters could be chosen in a wide range.

For instance, we also tried other parameter settings (segment length for CSP/DSP filter

training: 0.5s and 2s; decoding step size: 100 ms and 300 ms), and obtained compar-

able results. These results are not included in this paper due to limited page space.

Some examples of measured and decoded hand velocities in x-dimension and y-

dimension are displayed in Figure 2. It can be seen that, in y-dimension, the decoded

velocities hardly reflect the trends of the measured ones, while in x-dimension, gener-

ally, the decoded velocities match the measured ones better. Meanwhile, the measured

velocities roughly consist of sequential bell shapes. Each bell shape indicates a relative

straight trajectory made by a subject in a certain direction. Note that most bell shapes

are irregular, which may be caused by two facts (i) the variable friction exists between

the pen and the touch screen; (ii) visual guided point-to-point movements are not

implemented in a purely feed-forward manner [19].

Scalp areas most involved for hand velocity decoding

Note that the brain components were generated by applying ICA and CSP/DSP to EEG

signals. We rewrite equation (1) as

i i i= B X

where B W Ui i= T , B i
l CR i∈ × , li is the number of selected filters in the ith frequency

band, i = 1,2,...,10, C is the number of channels. Each row of Bi gives a weight vector

for channels to construct a brain component. Regarding velocity decoding by Kalman

model, the observation is consisted of the features extracted from these brain compo-

nents. Thus Bi partly reflects the importance of the channels for velocity decoding. To

investigate which channels were more involved for the velocity decoding in the ith fre-

quency band, we average the rows of Bi as follows:

I Bi
i

i
q

q

l

l

i=
=∑1
1

where B i
q is the qth row of Bi, B Ii

q
i

CR, ∈ , |·| is an element-wise absolute operator.

Figure 3 shows the scalp topographies of I1 and ( Iii
/ 9

2

10

=∑ ) corresponding to the fre-

quency bands 0.1-4 Hz and 4-40 Hz respectively.

Figure 3(A) presents the average scalp topographies across the 5 subjects. Generally,

the contralateral and ipsilateral channels in motor, posterior parietal and occipital

areas have greater weights, and the contralateral dominance is demonstrated. Specifi-

cally, for amplitude features in low frequency band (0.1-4 Hz), the channels over
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premotor, posterior parietal and occipital areas get greater weights; for power features

in 4-40 Hz, the channels over posterior parietal and occipital areas get greater weights.

These findings suggest the widespread involvement of brain areas with hand kine-

matics during the drawing task. The results are approximately in accordance with the

following studies: Wang et al. demonstrated that intended movement directions can be

predicted by recording EEG from posterior parietal areas [23]; Bradberry et al. showed

that the sensorimotor area is important for hand velocity decoding [24]; And Vaillan-

court DE et al. presented that the parietal and premotor cortex are associated with

visuomotor processes [36].

Figure 3(B) displays the scalp topographies separately for each subject. On the whole,

the channels on motor, posterior parietal and occipital areas get greater weights both

in 0.1-4 Hz band and in 4-40 Hz band for all the subjects, although the weights of

these areas are subject-dependent. As an exception, for Subject 4, the channels on pre-

frontal area also get greater weights. It may have been caused by some artifacts.

Figure 2 Decoding examples. Examples of smoothed and standardized measured (blue) and decoded
(red) hand velocities. The left column is for x-dimension, and the right column is for simultaneous y-
dimension. Each row contains data for one subject. The Pearson correlation coefficient (CC) between
measured and decoded velocities is listed for each subplot.

Lv et al. BioMedical Engineering OnLine 2010, 9:64
http://www.biomedical-engineering-online.com/content/9/1/64

Page 9 of 21



Decoding performance of different frequency bands

In order to explore which frequency bands carry information about hand velocity, we

studied the decoding performance of each band, and show them in Figure 4. It can be

seen that the frequency distribution for decoding is highly subject-dependent. For

example, for Subject 1, the CC value of low frequency band (0.1-4 Hz) is significantly

inferior to those of the other frequency bands in x-dimension (p < 0.05, paired left-

tailed Student’s t-test). However, for Subject 3, the CC value of low frequency band

(0.1-4 Hz) is significantly superior to those of the other frequency bands in x-dimen-

sion (p < 0.05, paired right-tailed Student’s t-test). Moreover, the CC values for Subject

1 are essentially zero in y-dimension for all the frequency bands and about 0.5 in

x-dimension above 8 Hz. This may be due to the following fact. Subject 1 has been

well trained for cursor control in a BCI system through left and right hand movement

imageries. His voluntary power modulation of 8-40 Hz rhythms has been reinforced.

The drawing task performed by right hand may have activated this power modulation

in x-dimension which masks the information about hand movement in y-dimension.

Figure 3 Scalp topographies of channel weights according to the feature extraction for velocity
decoding. (A) This figure shows the averaged scalp topographies of channel weights across five subjects
in 0.1-4 Hz (left) and 4-40 Hz (right), respectively; (B) This figure shows the scalp topographies of channel
weights for the five subjects in 0.1-4 Hz (upper row) and 4-40 Hz (lower row), respectively.
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For Subject 2, the poor CC values of the frequency bands beyond 4 Hz indicated that,

for certain people, the information about limb kinematics may not be inferred from

the EEG above 4 Hz. The study of Waldert et al. provided similar results [16]. Regard-

ing the average across all the subjects, there is no significant difference between the

CC values of the low frequency band (0.1-4 Hz) and those of the other frequency

bands in x-dimension (p > 0.40, paired two-tailed Student’s t-test); however, the CC

values of the frequency band from 24 Hz to 28 Hz are significantly higher than those

of the low frequency band (0.1-4 Hz) in y-dimension (p < 0.05, paired right-tailed

Student’s t-test). These findings imply that, besides the slow potentials from 0.1 Hz to

4 Hz, the oscillatory rhythms from 24 Hz to 28 Hz may also carry notable information

about hand movement velocity.

Comparison on decoding performance with ICA-cleaned data and non-ICA-cleaned data

Here we list the decoding performance (CC) with non-ICA-cleaned data in Table 3.

Comparing the CCs in Table 2 and Table 3, we can find that non-ICA-cleaned data

Figure 4 Decoding performance of different bands. By using the features from different frequency
bands respectively, we show the mean and SEM of the Pearson correlation coefficients (CCs) between
measured and decoded hand velocities across cross-validation folds for each subject in x-dimension (blue)
and y-dimension (red). Stars indicate the bars with significant CCs (p < 0.05 for no correlation hypothesis,
Student’s t-test). The average CCs across subjects for each band feature are also given.
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result in remarkably higher decoding accuracies in x-dimension and in y-dimension (p

< 0.05, paired right-tailed Student’s t-test). It indicates that the components removed

by ICA could offer considerable contribution to hand velocity decoding. Although

most of these components are EOG and EMG (see Appendix A1), these removed com-

ponents may contain EEG signals which carry the information of hand velocity to

some degree.

Comparison on decoding performance of linear filter, Kalman filter and Kalman

smoother

Until now, many decoding algorithms have been used to reconstruct hand velocities,

such as linear filter in the study of Bradberry et al. [24] and Kalman filter in the

research of Wu et al. [37]. As discussed in [37], compared with linear filter, Kalman fil-

ter possesses the advantages of a clear probabilistic foundation and a model of the

temporal hand kinematics. Based on the work of Wu et al. [37], here we employed the

smoothing method to integrate not only past and present information but also future

information of hand velocities into Kalman model. With different lag time, the average

decoding performance across five subjects for linear filter, Kalman filter and Kalman

smoother are shown in Figure 5. Paired Student’s t-test is employed to compare the

decoding performance of the three methods. The results are listed in Table 4. From

Figure 5 and Table 4, we find that with different lag times, the CCs and SNRs of Kal-

man smoother are significantly better than those of the linear filter and Kalman filter

(p < 0.05, right-tailed), except in y-dimension where the SNRs of Kalman smoother are

not significantly superior to those of Kalman filter (p > 0.05, right-tailed). Considering

the Kalman smoother in this paper being an off-line algorithm, we plan to modify it

and extrapolate this work to an online system in the future.

Discussion
Comparison with other related studies

In this paper, the average CC across the five subjects over x-dimension and y-dimen-

sion is 0.30. As the most related work, hand velocity was reconstructed from EEG

during a 3-D center-out reaching task, and a very close CC (0.29) was obtained [24].

In addition, MEG signals also reflect the activities of large neuronal populations. From

MEG, hand velocities were predicted during a 2-D center-out drawing task, and a

higher CC (0.4) was gained without EOG or EMG removal [18]. Therefore, the decod-

ing accuracy of our work is within the range of those achieved in the studies

mentioned above. Moreover, we would like to compare the experimental paradigms in

this paper and that in [24] as below:

(i) In [24], the center-out task is a 3D reaching movement, in which the subject

moved his hand from a fixed starting point (center) to one of the 8 stationary targets,

and then moved his hand back to the center. In this paper, the task is a 2D self-routed

Table 3 Decoding performance of hand velocity using non-ICA-cleaned EEG

S1 S2 S3 S4 S5 Avg.

CCx 0.62 ± 0.05 0.35 ± 0.02 0.51 ± 0.03 0.49 ± 0.02 0.30 ± 0.03 0.46 ± 0.06

CCy 0.07 ± 0.03 0.22 ± 0.03 0.46 ± 0.03 0.38 ± 0.02 0.35 ± 0.05 0.30 ± 0.07

This table shows the mean ± SEM of CCs between measured and decoded hand movement velocities across five
subjects based on non-ICA-cleaned data, in horizontal and vertical dimension respectively.

Lv et al. BioMedical Engineering OnLine 2010, 9:64
http://www.biomedical-engineering-online.com/content/9/1/64

Page 12 of 21



drawing movement, in which the subject was required to move a pen at his own pace

along a zigzag route in each trial. This task can be regarded as sequential point-to-

point movements. At each point the subject selected one of the four directions. More-

over, the numbers and positions of these points, and the distance between two sequen-

tial points were up to the subject. Therefore, compared to [24], the starting point, the

end point and the length of each point-to-point movement in our experiments were

less constrained. The subjects can perform the movements with higher variability. It

has been reported in [24] that the variabilities of movement time and movement length

Figure 5 Comparison on decoding performance of linear filter, Kalman filter and Kalman smoother.
This figure shows the mean (bar) with SEM (error bar) of CC (the first row) and SNR (the second row)
across the 5 subjects with different lag time using linear filter, Kalman filter and Kalman smoother. In the
calculation of SNR, decoding error and measured hand velocity are considered as noise and signal
respectively.
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are negatively correlated with the accuracy of hand velocity decoding. From this view-

point, the hand velocity of our drawing movement could be harder to decode than

that of the center-out movement task.

(ii) In [24], subjects were asked to perform multi-joint movements of the upper limb.

In our work, the subjects were instructed to make movements only with their hands and

wrists, while keeping their shoulders and arms at rest. We studied hand movements not

only because of the interesting work on hand movement direction decoding [16], but

also because hand is relatively far from the EEG cap, therefore reduces EMG conta-

mination to the EEG signals. Since our drawing task needs the coordination of eye and

hand, EOG and EMG may confound the EEG decoding. Thus we employed ICA to

remove EOG and EMG artifacts.

Decoding hand kinematics in different frequency bands

Which frequency band of neural signal carries most information about limb kinematics

is an important issue discussed in the existing studies. For example, Ball et al. summar-

ized the decoding accuracies of arm movement direction with different band ECoG,

and indicated that highest decoding accuracy can be obtained from slow movement-

related potentials (MRPs) (<2 Hz) [38]. Jerbi et al. reported the notable phase locking

between 2-5 Hz MEG oscillatory activity in the contralateral primary motor cortex and

time-varying hand speed [20]. Regarding EEG recording, Waldert et al. discovered that

low frequency band (≤3 Hz) EEG of the sensors located in the motor-related area have

close relationship with movement directions [16]. In addition, it is well known that the

planning and execution of movement leads to significant power modulation in 8-30 Hz

EEG, i.e., event-related synchronization/desynchroniza- tion (ERS/ERD) [39,40]. Such

characteristic changes in EEG rhythms have been used to classify brain states related

to the planning/imagery of different types of limb movement [41]. Newly, Han et al.

reported that EEG activities in the alpha (8-12 Hz) and beta (18-28 Hz) frequency

bands were correlated with the speed of imagery clenching [42]. In our study, we have

shown that displacement velocity can be represented by the MRP in 0.1-4 Hz band

and the ERD/ERS in 24-28 Hz band. Further more, we analyzed the relevance of

decoding results from different frequency bands (see Appendix A3), and found that the

decoding results of MRPs from low frequency band (0.1-4 Hz) are little correlated with

those of oscillation rhythms from higher frequency bands (4-40 Hz). It indicates that

Table 4 Comparison on decoding performance of Kalman smoother and the other
methods

Lag = 0 ms Lag = 200 ms Lag = 400 ms Lag = 600 ms

Kalman smoother X-D: p = 0.0163 X-D: p = 0.0163 X-D: p = 0.0209 X-D: p = 0.0163

vs. Kalman filter Y-D: p = 0.0257 Y-D: p = 0.0257 Y-D: p = 0.0120 Y-D: p = 0.0314

Kalman smoother X-D: p = 0.0061 X-D: p = 0.0037 X-D: p = 0.0024 X-D: p = 0.0027

vs. Linear filter Y-D: p = 0.0122 Y-D: p = 0.0074 Y-D: p = 0.0098 Y-D: p = 0.0163

Kalman smoother X-D: p = 0.0107 X-D: p = 0.0096 X-D: p = 0.0133 X-D: p = 0.0258

vs. Kalman filter Y-D: p = 0.0542 Y-D: p = 0.0544 Y-D: p = 0.0791 Y-D: p = 0.1230

Kalman smoother X-D: p = 0.0022 X-D: p = 0.0018 X-D: p = 0.0012 X-D: p = 0.0007

vs. Linear filter Y-D: p = 0.0034 Y-D: p = 0.0017 Y-D: p = 0.0013 Y-D: p = 0.0011

Top group: comparison on CCs using paired right-tailed Student’s t-test. Button group: comparison on SNRs using paired
right-tailed Student’s t-test.
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the potential shifts in the low frequency band and the power modulations in the higher

frequency bands reflect different aspects of brain activities related to hand movement

velocity. Furthermore, from the scalp map in Figure 3 (A), we find that in the low fre-

quency band, the channels in the motor, posterior parietal and occipital areas get

greater weights. This demonstrates that the features in the low frequency bands cap-

ture the neural signature. The finding is in accordance with the ECoG study of Schalk

et al. which also focused on decoding kinematic parameters of hand movement [14].

Conclusions
Decoding limb kinematics from brain signals in non-invasive ways may realize safe and

convenient control of motor prosthesis. In this paper, we demonstrated that EEG sig-

nals can be used to decode hand velocity during a sequential drawing task. The scalp

areas over motor cortex, posterior parietal cortex and occipital areas were most

involved for the decoding. Furthermore, we show that not only slow potentials in 0.1-4

Hz band, but also oscillatory rhythms in 24-28 Hz band may carry information about

hand velocity.

Appendix
A1. EOG and EMG removal based on ICA

In our study, we recorded Subject 3’s EOG activity with a bipolar sensor montage with

sensors attached superior and inferior to the orbital fossa of the right eye for vertical

eye movements and to the external canthi for horizontal eye movements. Firstly, we

computed Pearson correlation coefficient (CC) and p-value (for no correlation hypoth-

esis, Student’s t-test) between the EOG signal and the measured hand velocity. The

results are listed in Table 5. It is found that the correlation between the horizontal

EOG activity and the horizontal hand velocity is significant (p < 0.001).

Next, we removed EOG and EMG artifacts using ICA method. ICA removes artifacts

from EEG records by eliminating the contributions of artifact sources to the scalp sen-

sors. Using the data from Subject 3, we provided the regularized scalp maps of all the

ICs in Figure 6.

From Figure 6, we can find that the projection strengths of IC5, IC6 and IC14 were

concentrated on Fp1 or Fp2. These ICs were removed as the eye movement artifacts

[31]. To demonstrate the validity of ICA for EOG removal in our study, we have com-

puted the CCs between the independent components (ICs) and the recorded EOG

activities. The results are shown in Figure 7, where we can observe that, except IC5,

IC6 and IC14, all the components are not obviously correlated with EOG activities.

On the other hand, from Figure 6, we can find the projection strengths of IC10 and

IC29 are concentrated on the temporal sites. Their power spectrums are shown in Fig-

ure 8, which demonstrates high power at frequencies above 20 Hz. Here, IC10, IC29

were removed as the EMG artifacts [31]. In our study, some ICs partially exhibit the

Table 5 Correlation between EOG activity and hand velocity

Vertical EOG Horizontal EOG

Horizontal hand velocity CC = 0.04 (p = 0.16) CC = 0.14 (p = 1.12 × 10-6)

Vertical hand velocity CC = 0.01 (p = 0.73) CC = 0.03 (p = 0.30)

This table shows the CCs and p-values between EOG activity and hand velocity covering the entire time period of an
experiment, in horizontal and vertical dimension respectively.
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characters of EOG/EMG, such as IC1, IC7, IC13, IC15, IC21, IC22, IC25, IC26 and

IC27. They were also removed.

A2. Details of DSP and CSP algorithms

Both DSP and CSP are linear projection methods [27,28]. They have the same data

model as Y = WT X , where Y Î RC×T denotes the source component, W Î RC×C is

the projection matrix and X Î RC×T represents the EEG segment, with C denoting the

number of channels, and T denoting the number of samples in the time interval of

interest.

However, the goals of DSP and CSP are different. For DSP, W is sought for the pur-

pose of extracting the amplitude of slow non-oscillatory source. It projects EEG seg-

ments to the linear subspace where the between-class separation is maximized while

the within-class separation is minimized. The projection vector achieving the largest

ratio of between-class separation and within-class separation is defined as the most

Figure 6 Regularized Scalp maps of all the independent components (ICs). This figure shows the
scalp maps of all the ICs based on the data of Subject 3.
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Figure 7 Correlation coefficients between EOG activities and independent components (ICs). This
figure shows the correlation coefficients (CCs) between the ICs and EOG in horizontal and vertical
direction respectively.

Figure 8 Power spectrums of EMG independent components. This figure shows the power spectrums
of IC10 (A) and IC29 (B). The corresponding scalp maps are shown in Figure 6.
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discriminative filter. Let Sb, Sw denote the between-class and the within-class scatter

matrices of EEG segments, respectively.

S M M M Mb j
j

K

j jn= − −
=∑ 1

( )( )T (A1)

S X M X Mw j j j j
i

n

j

K
i i

j= − −
== ∑∑ ( ( ) )( ( ) )T

11
(A2)

where Xj (i) represents the ith EEG segment of class j, K is the number of classes, nj
is the number of EEG segments for class j, Mj is the average of EEG segments for class

j, M is the average of all the EEG segments. Then the objective function of DSP can be

written as [27]:

max ( )J DSP
b

w

W
W S W

W S W
=

T

T
(A3)

(A3) is in the form of Rayleigh quotient. The solution can be obtained by solving the

following generalized eigenvalue problem:

S w S wb q q w q=  (A4)

where q = 1,2,..., C, gq is an eigenvalue and wq is the corresponding eigenvector.

Assuming these eigenvalues are sorted in a descending order, only a few eigenvectors

W* = [w1,...,wd] associated with the largest eigenvalues are chosen as the most discri-

minative spatial filters, where d <<C. Then each EEG segment is projected as Y* =

W*T X, Y* Î Rd×T. To obtain the amplitude features of slow potential shifts, we calcu-

late the mean of Y* as f meanDSP
r

r= ( )*y , where r = 1, ..., d, y r
* is the rth row of Y*.

In our work, d = 2.

For CSP, W is optimized to obtain the band power of oscillatory source. It maps

EEG segments to the linear subspace where the variance of one class is maximized

while the variance of the other class is minimized. The projection vectors achieving

the largest and smallest ratios of the variances of the two classes are defined as the

most discriminative filters. Assuming R denotes the normalized covariance matrix of

EEG segment, i.e., R = XXT/trace (XXT), then the objective function of CSP can be

formulated as [28]:

max ( )JCSP W
W R W

W R W
=

T

T

1

2

(A5)

where R1 and R2 represents the average of the covariance matrices from EEG seg-

ments within class 1 and class 2 respectively. Similar to (A3), (A5) is also in the form

of Rayleigh quotient. The solution can be obtained by solving the generalized eigenva-

lue problem:

R w R w1 2q q q=  (A6)
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where q = 1,2,..., C, bq is an eigenvalue and wq is the corresponding eigenvector. Sup-

pose these eigenvalues are sorted in a descending order, the eigenvectors associated

with the largest and smallest m eigenvalues are chosen as the most discriminative spa-

tial filters, i.e., W* = [w1,...,wm, wC-m+1,...,wC], where m <<C. Then each EEG segment

is projected as Y* = W*T X, Y* Î R2m×T. To extract the power features, we calculated

the logarithm transformation, normalized the variance of Y* by rows

fCSP
r

r rr

m= { }=∑log var( ) var( )* *y y
1

2
. In this paper, m = 2. The logarithm transforma-

tion is performed to normalize the distribution of the elements in fCSP
r .

A3. Relevance of decoding results from different frequency bands

The absolute correlation coefficient matrices of the decoded hand velocities from dif-

ferent frequency bands are shown in Figure 9. Figure 9(A) illustrates the average of the

matrices of the 5 subjects. The decoding result from low frequency band (0.1-4 Hz) is

little correlated with those from the frequency bands above 4 Hz in x-dimension and

in y-dimension (|cc|<0.05). When we consider the patterns for individual subjects, we

obtain similar results as above. Figure 9(B)-(F) show the matrices for the five subjects

respectively. For all the 5 subjects, the decoding result from low frequency band (0.1-4

Hz) is not significantly correlated with those from the frequency bands above 4 Hz in

x-dimension and in y-dimension (|cc|<0.07, p > 0.05 for testing the hypothesis of no

correlation).

Figure 9 The absolute correlation coefficient matrices of decoded hand velocities from different
frequency bands.
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