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Abstract
Neuroimaging techniques, particularly magnetic resonance imaging, yield increasingly sophisticated markers of brain structure
and function. Combined with ongoing developments in machine learning, these methods refine our abilities to detect subtle
epileptogenic lesions and develop reliable prognostics.
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Hardware and Acquisition Techniques

The reliability of any imaging diagnostic technique depends on

the type and quality of the input. This is particularly relevant

for drug-resistant epilepsy, as the identification of a structural

lesion on magnetic resonance imaging (MRI) is associated with

favorable seizure outcome after surgery. Consequently, the

most recent recommendations of the International League

Against Epilepsy endorse the use of the Harmonized Neuroi-

maging of Epilepsy Structural Sequences protocol, with

high-resolution 3-dimensional (3D) T1-weighted MRI, 3D

fluid-attenuated inversion recovery, and 2-dimesional coronal

T2-weighted MRI at its core.1 These sequences yield best

image quality at 3 T, particularly when combined with multiple

phased arrays allowing parallel imaging, which shortens scan-

ning time in addition to increasing signal- and contrast-to-noise

ratios. Reduced acquisition time allows adding quantitative

contrasts to the epilepsy protocol for a more in-depth analysis

of tissue microstructural properties and function.

Diffusion-weighted MRI and its analytical extension diffu-

sion tensor imaging (DTI) are widely used to image the white

matter.2 One of the main limitations of DTI, however, resides

in its inability to resolve distinct populations of crossing fibers;

moreover, DTI-derived metrics lack specificity as they may be

affected by multiple features.3 The potential, however, contin-

ues to grow with advanced techniques based on multicompart-

ment compartmental models describing diffusion within

distinct microstructural constituents. Thus, besides helping the

interpretation of conventional diffusion metrics, such models

offer more sensitive markers of the microstructural environ-

ment of epileptogenic lesions,4 which may ultimately refine

their detection. Among them, high angular resolution diffusion

imaging5 based on sampling of a large number of diffusion

sensitization directions is arguably the most efficient sequence

to resolve crossing fibers. Techniques such as diffusion kurto-

sis imaging have gained popularity for their ability to quantify

intravoxel tissue properties.6 In temporal lobe epilepsy (TLE),

in addition to revealing altered diffusion profiles along white

matter fibers ipsilateral to the seizure focus,7-9 these techniques

have shown abnormalities in both the gray and white matter

extending to regions not detected by conventional DTI.8 Sim-

ilar findings were obtained with fixel-based analysis, a recon-

struction technique which combines measurements of fiber

cross-sectional area and density, thereby providing a sensitive

marker of intra-axonal volume.10,11 Neurite orientation disper-

sion and density imaging, commonly referred to as NODDI, is
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another reconstruction technique based on a multishell acqui-

sition protocol that estimates intra- and extracellular volume

fractions of neurites (ie, dendrites and axons), both in the gray

and white matter.12,13

Unlike conventional “weighted” contrasts that combine

multiple tissue parameters, quantitative contrasts reflect actual

quantities biophysically linked to tissue microstructure. Among

them, T1 mapping has been suggested to reflect myelin.14 In

TLE, T1 mapping along the cortical mantle and hippocampal

subfield surfaces revealed altered myelin content in ipsilateral

temporal and frontal limbic regions. Anomalies remained con-

sistent after correcting for cortical thickness and cortical inter-

face gradient supporting a role for T1 mapping to assess

intracortical structural integrity independently from morphol-

ogy and intensity.15 Multiparametric MRI fingerprinting

(MRF) is a relatively new technique that quantifies several

contrasts (eg, T1, T2, and proton density)16 in a single acquisi-

tion, thus providing a comprehensive description of multiple

tissue properties. In particular, fast 3D MRF delivers high-

resolution (1.2 mm isotropic) whole-brain quantitative maps

in a clinically plausible acquisition time.17 Preliminary evi-

dence suggests increased sensitivity of MRF compared to

visual evaluation.17,18 In particular, partial volume estimation

can be applied to separately examine the gray and white mat-

ter,17 which may be beneficial to assess anomalies at their

interface, such as those in the temporal pole in TLE or mal-

formations of cortical development affecting other neocortical

regions. Notably, the flexible nature of the MRF allows incor-

porating additional contrasts, such as diffusion, perfusion, and

susceptibility. Multiparametric imaging combining anatomical,

functional, and metabolic data can also be obtained using

hybrid Positron emission tomography-MRI systems, which

may be informative when conventional radiology is nega-

tive.19,20 Notwithstanding the practical advantages of multi-

parametric imaging, considering the high-level technical

competences required, the added clinical value compared to

traditional coregistration remains to be established.

Gains in signal- and contrast-to-noise ratio provided by the

shift from 1.5 T to 3 T scanners have significantly improved

our ability to appraise epileptogenic lesions.21 The potential of

7 T to resolve the cortical laminar structure will likely push

detection capabilities a step further.22 The best example so far

has been the improved visualization of hippocampal sub-

fields23 and cortical dysplasias,24 particularly when combined

with postprocessing.25 However, so far it has been infrequent to

see cortical dysplasia at 7 T that is completely invisible at

3 T.26,27 Better visualization of lesional boundaries, neverthe-

less, may help refine the surgical resection and improve

outcome.28-30 Perhaps even more relevant is the possibility to

perform molecular imaging of neurotransmitters that are diffi-

cult to evaluate at 3 T, such as g-aminobutyric acid and gluta-

mate.31 In relation to functional MRI (fMRI), improvements in

signal-to-noise ratio and connectivity coefficients are likely to

reveal previously unresolved microscopic features, including

laminar functional organization.32 Disadvantages of ultra-high

field imaging include far greater signal inhomogeneities and

higher energy deposition in tissue, particularly in the anteroin-

ferior temporal and frontal lobes.22 As strategies such as adia-

batic pulses and parallel transmission emerge to address these

challenges, the case for clinical adoption of this technology

becomes more straightforward.22

Lesion Detection and Disease Biotyping
Techniques

The pivotal role of the lesion in the surgical management of

drug-resistant epilepsy has motivated the development of

increasingly sophisticated detection methods. In TLE, medial

surface models sampling multiparametric features of hippo-

campal sclerosis along the central path of subfields lateralize

the focus and predict pathological grading.33,34 Surface-based

Laplacian in vivo models of the neocortex and subcortical

white matter profiling focal cortical dysplasia (FCD) improve

the identification of subtle lesions that escape conventional

radiological analysis. Notwithstanding these advances, detec-

tion algorithms have relied on limited set of features designed

by human experts, which may not capture the full complexity

of pathology. Alternatively, deep learning, a data-driven

method incorporating feature engineering into the learning

step, alleviates the challenge of handcrafting pathological fea-

tures. Initial evidence suggests high sensitivity in detecting

MRI-negative FCD. Generalizability across cohorts with vari-

able age, hardware and sequence parameters promise potential

for broad clinical translation.35

Data-driven, unsupervised machine learning also offers

novel perspectives on the understanding of disease neurobiol-

ogy. In TLE, MRI morphometry combined with clustering

identified subgroups of patients with distinct patterns of mesio-

temporal atrophy that did not spatially overlap.36 Leveraging

individual variability, these techniques may further refine clin-

ical predictors, such as cognitive profiles37,38 and postsurgical

seizure outcome.36 In FCD type II, recent data identified tissue

classes with distinct structural, functional, and histopathologi-

cal profiles within lesions and across patients.39 Addressing the

full spectrum of developmental cortical malformations may

play a key role in establishing genotype–phenotype associa-

tions, opening opportunities to inform novel personalized treat-

ments so far hindered by the lack of phenotypes linked to

somatic variants.

Network science is expanding and offers unprecedented

opportunities to appraise system-level features of epilepsy. In

parallel to a large body of descriptive studies, initial evidence

suggests that combining connectivity metrics with machine

learning may identify salient features from high-dimensional

imaging data sets. In TLE, a series of reports demonstrated

the utility of the structural connectome as well as measures of

intrinsic brain function to predict seizure outcome.40-42 In

FCD, lesion-based functional connectivity models (ie, con-

nectivity from dysplastic tissue to the rest of the cortex) have

demonstrated that network dysfunction can dissociate

patients with favorable from those with suboptimal postsur-

gical seizure outcomes.43 Network pathology is also relevant
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for the understanding of multidomain cognitive dysfunction;

for example, structural connectome metrics outperform hip-

pocampal volumetry and tractography of large association

fibers to predict memory and language impairment in

TLE.44,45 Other recent work has shown the ability of preo-

perative resting state fMRI and white matter connectome

markers to predict postoperative cognition, particularly in

relation to language.46

Conclusion

The integration of increasingly complex imaging techniques

into routine clinical practice remains a challenge. Success is

contingent to continued efforts in education and training of

epileptologists, ultimately fostering close collaborations with

research scientists. In this context, Open Science47 collabora-

tive efforts are expected to catalyze translation of advanced

analytic methods. A leading example is the ENIGMA-

Epilepsy consortium,48 which has used meta- and mega-

analyses to assess group-level morphology,49 microstructure,

and network models50 of structural compromise across thou-

sands of patients. Knowledge derived from these large-scale

studies is expected to set the basis of novel, clinically applica-

ble individualized disease biomarkers.
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