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Abstract

Background: A striking characteristic of the past four influenza pandemic outbreaks in the United States has been the
multiple waves of infections. However, the mechanisms responsible for the multiple waves of influenza or other acute
infectious diseases are uncertain. Understanding these mechanisms could provide knowledge for health authorities to
develop and implement prevention and control strategies.

Materials and Methods: We exhibit five distinct mechanisms, each of which can generate two waves of infections for an
acute infectious disease. The first two mechanisms capture changes in virus transmissibility and behavioral changes. The
third mechanism involves population heterogeneity (e.g., demography, geography), where each wave spreads through one
sub-population. The fourth mechanism is virus mutation which causes delayed susceptibility of individuals. The fifth
mechanism is waning immunity. Each mechanism is incorporated into separate mathematical models, and outbreaks are
then simulated. We use the models to examine the effects of the initial number of infected individuals (e.g., border control
at the beginning of the outbreak) and the timing of and amount of available vaccinations.

Results: Four models, individually or in any combination, reproduce the two waves of the 2009 H1N1 pandemic in the
United States, both qualitatively and quantitatively. One model reproduces the two waves only qualitatively. All models
indicate that significantly reducing or delaying the initial numbers of infected individuals would have little impact on the
attack rate. Instead, this reduction or delay results in a single wave as opposed to two waves. Furthermore, four of these
models also indicate that a vaccination program started earlier than October 2009 (when the H1N1 vaccine was initially
distributed) could have eliminated the second wave of infection, while more vaccine available starting in October would not
have eliminated the second wave.
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Introduction

An influenza pandemic occurs when a new strain of the

influenza virus emerges, usually through antigenic shift, for which

there is little or no immunity in the human population. The

mutation is such that it is able to cause illness in a single individual

and then spreads person-to-person worldwide. In the 20th century,

the world experienced three influenza pandemics: the 1918 H1N1

"Spanish flu’’, the 1957 H2N2 "Asian flu’’, and the 1968 H3N2

"Hong Kong flu’’. The first influenza pandemic of the 21st century

occurred in 2009 and was caused by a swine-origin H1N1

influenza A virus [1].

During each of these four pandemics, the United States

experienced multiple waves of infections, where the numbers of

infections and deaths exhibited well-separated temporal peaks with

a separation time-scale of months [1]. For example, the first wave

of the 2009 pandemic in the United States began in March and

peaked in late June and early July. There were markedly fewer

cases throughout August, and the second larger wave peaked in

late October, early November (Figure 1, Table S1 in File S1).

While many countries such as the United States experienced at

least two waves of infections during the 2009 pandemic, other

countries such as China experienced only a single wave of

infection.

The underlying mechanisms leading to single or multiple waves

of acute infectious diseases are not well understood. In this paper,

we describe and explore several mechanisms that can produce

multiple waves.

For several infectious diseases, including influenza, the timing of

school vacations is thought to be a mechanism for multiple waves

because children have reduced transmission due to far fewer

contacts during vacations than when school is in session. Parts of

either the summer or winter school breaks occurred during the

gaps between the two waves of the past four influenza pandemics

in the United States. Evidence supporting this potential mecha-

nism for the second wave of the 2009 US H1N1 pandemic include

the surge in hospital outpatient visits for influenza-like illness

approximately two weeks after schools re-opened in the fall of

2009 [2]. However, school vacations clearly cannot be the sole

cause of multiple waves [2,3,4,5,6]. For instance, during the 1968

pandemic in the United States, the second wave began in

November, two months after school resumed. In addition, children
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have school vacations every year, while seasonal influenzas have

only single waves of infections.

Another possible mechanism for multiple waves is due to rapid

mutations of the H1N1 virus. Many RNA viruses, such as

influenza, quickly acquire genetic variants through random

mutations, some of which lead to non-synonymous mutations in

protein sequences. The more genetic variants that there are, the

higher the odds are that one of them carries a mutation upon

which selection can act. Through random mutation and subse-

quent selection, RNA viruses evolve into a form better adapted for

human-to-human transmission.

The protein sequence analyses for the 2009 H1N1 HA genes

showed the average number of mutations increased slightly from

April (2.7560.71, based on the comparison with the A/

California/07/2009 strain) to November of 2009 (4.2661.53).

The maximum number of mutations occurred in November 2009

(11 residues when compared with A/California/07/2009, versus

two residues when compared with the major strain circulating in

April 2009). Virus diversity, which we introduce in the next

section, quantifies the extent of the mutations.

Some of these mutations occurred in the receptor binding sites

of HA genes [7,8] and in other segments of the virus [9]. Some

mutations first appeared after the first wave ended (e.g., HA-

S220T NA-N248D in Japan) [10]. As the pandemic progressed,

the number of mutations at the receptor binding site position 222

increased around the world [7,11,12,13,14]. The mutation

D222G/N was observed in 90% of the blood samples of the A/

H1N1/2009 viremia cases [8,15,16,17,18]. The D222G mutation

has been shown to increase virulence and to increase the virus

transmissibility in animal models, as well in human airway

epithelial cell lines [19,20,21,22]. Other mutations in the receptor

binding sites of the HA gene [23,24], and other mutations at other

segments (e.g., PA, PB1-F2, PB2, NP, and NS1) have been found

in clinical isolates and have been shown to increase the replication

efficiency and pathogenesis in vitro in animal models. Increased

virulence and pathogenesis of such mutations is a mechanism that

may lead to a second wave of infection.

In this study, five mathematical models are formulated to

explore complementary mechanisms which can produce two

waves of acute infections. Four reproduce the two waves of the

2009 H1N1 influenza pandemic, quantitatively. The other

reproduces the waves qualitatively. The first two mechanisms

capture changing contact rates and changing (or evolving) virus

transmissibility. In these models, the changes manifest as a time

varying transmission rate. The transmission rate is the per capita

rate of infection given contact, and depends in a highly complex

way on both the contact rate between susceptible and infected

individuals and the transmissibility of the infection. The first

mechanism uses a periodic transmission rate to capture the

seasonal contact rate. The second mechanism incorporates all

sources of variability in contacts and transmissibility into the time-

dependent transmission rate.

The third mechanism incorporates a heterogeneous population

with individuals split into two weakly interacting sub-populations.

The split could be based on demographics, geography, or

variations in immunity, among others. The two populations only

very weakly interact, that is, the transmission between the two

groups is low. Two waves appear with each sub-population

experiencing only one wave of infection.

The fourth mechanism is virus mutation which causes delayed

susceptibility of some individuals. As the 2009 H1N1 pandemic

progressed in the United States, the virus mutated rapidly and

created new viable quasispecies. We hypothesize that some of

these mutations increased the transmissibility of the influenza virus

and that this increased viral transmissibility caused some

individuals who were not able to be infected during the first wave

to become infected during the second wave.

The fifth mechanism is waning immunity, where recovered

individuals lose immunity to the influenza virus at which point

they again become susceptible to infection. The second wave

Figure 2. Reproducing multiple waves using Model 1 with
periodic time-dependent transmission rate, bt. (A) The periodic
transmission rate, which is low during the summer break and higher
when school is in session. Summer is approximately June and July
(weeks 23–31 and days 161–217). (B) The model generated disease
prevalence, compared with the CDC data scaled for underreporting.
doi:10.1371/journal.pone.0060343.g002

Figure 1. The H1N1 positive tests reported to the CDC in the
United States from April 24, 2009 (week 17) to November 27,
2009 (week 48).
doi:10.1371/journal.pone.0060343.g001
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appears because some individuals become infected for a second

time.

The five mechanisms are incorporated into appropriate

extensions of the standard (Susceptible-Exposed-Infected-Re-

moved) transmission model [47]. Models 1–4 reproduce the two

waves during the 2009 pandemic in the United States, qualita-

tively and quantitatively. Model 5 reproduces the two waves

qualitatively.

Countries such as China implemented border control strategies

and experienced only a single wave of infections. We implement

border control in each model to determine whether the US could

also have experienced one wave with border control. In addition,

the US vaccination production and distribution data is incorpo-

rated into the models to test the effect of increasing vaccine

availability and altering the timing of the vaccination effort.

Results

Models 1 and 2: SEIR models with variable transmission
rate

Models 1 and 2 explore the ability of a variable transmission

rate to generate the multiple waves of infection in a homogenous

population. To do this we use a time-dependent, or variable,

transmission rate bt in a classical SEIR compartment transmission

model (see Supplementary Information in File S1, equations (S1)–

(S4)). We provide two strikingly different transmission rates, each

of which can reproduce the two waves. Model 1 exploits

seasonality. We demonstrate that the school year hypothesis of a

higher transmission rate during the school year and a lower rate

during the summer and school vacations can generate the two

waves. Clearly, this type of seasonality alone provides no insight

into why two waves occur only during pandemic years and not

every year; there must be additional factors driving the pandemic

waves. Therefore, we provide Model 2, also with a variable

transmission rate that captures the intricate interplay between the

contact rate and transmissibility of the infection.

Model 1: Periodic transmission rate
Many experts believe that contacts between school age children

play a significant role in influenza transmission and in producing

pandemic waves. The contact rate is thought to be significantly

higher for school age children during school terms than during

school vacations [2,3,4,5,6]. The presumption is that the first wave

begins in the winter or early spring when school is in session and

wanes when the children have significantly reduced contact during

their summer breaks. The second wave begins soon after school

resumes in late summer or early fall, when the contact rate

increases.

To capture the seasonality of school contacts, the transmission

rate bt is set to be the periodic function (with period one year)

bt~b0zb1cos(2pt=365)

(Figure 2A), where there is higher transmission when students are

in school, and lower transmission over the summer months.

The resulting model was simulated using parameters from

Table S9 in File S1. Figure 2B shows the output of Model 1

superimposed on the derived CDC incidence data for the United

States in 2009. The model clearly captures the two waves of

infection.

Model 2: Derived time-dependent transmission rate
The transmission rate in this model captures all sources of

variability of the contact rate between susceptible and infected

individuals and the virus transmissibility. This variability could

occur because of public health interventions, seasonality, or the

evolution of the virus, among other factors.

The transmission rate bt is determined using a new algorithm

[25,26,27] that ensures the output I(t) of the model perfectly fits a

smooth interpolation of the reported cases by the Centers for

Disease Prevention and Control (CDC)[28]. There is no error

between the model output of I(t) and the data, and only the initial

value b0 needs to be specified.

The resulting model was simulated using the parameters in

Table S10 in File S1. Figure 3A shows the output of Model 2

superimposed on the derived CDC incidence data for the United

States in 2009. Recall that the near perfect agreement was ensured

by our choice of bt. Errors in the simulation are due to the

accumulation of small numerical errors.

Figure 3A was generated using b0 = 0.63, however any b0 in the

range 0.54#b0#1.03 will produce the same model output. Any b0

outside of this range produces unrealistic outputs. Since bt depends

on b0 in a complicated way, in Figure 3B we show representative

graphs of bt across a range of values for b0.

In conclusion, Model 2 reproduces the data, and thus the two

waves of infection. The mechanism of Model 2 is the construction

of a time dependent transmission rate bt, capturing all of the

fluxuations in transmission due to changing contact rates, virus

Figure 3. Reproducing multiple waves using Model 2 with
extracted transmission rate, bt. (A) The model generated disease
prevalence generated for the entire range 0.54 #b0#1.03, compared
with the CDC data scaled for underreporting. (B) The extracted
transmission rates recovered for three b0 values. Top green curve
b0 = 0.73; middle blue curve b0 = 0.63; bottom red curve b0 = 0.54.
doi:10.1371/journal.pone.0060343.g003
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transmissibility, environment, and so on. The resulting transmis-

sion function indicates that the second wave cannot be explained

as simply a drop in contacts due to school closures. A drop in

contact rate due to school closures would appear as a

corresponding drop in bt. However, no such drop is seen in the

transmission function during the summer months.

Model 3: Two weakly interacting sub-populations
For this model, we hypothesize that the population is split into

two groups with minimal interaction. Each group experiences one

wave of infection resulting in two waves for the entire population.

In Model 3, the total population is split into two sub-

populations; population 1 is 22% of the total and the rest are in

population 2. The SEIR model (Supplementary Information

equations (S1)–(S4) in File S1) is extended to eight equations, one

S, E, I, and R equation for each sub-population. The sub-

populations weakly interact, meaning that the transmission rate

between populations is small. This model has three constant

transmission rates: b1 for the transmission among sub-population

1, b2 for the transmission among sub-population 2, and b3 for the

transmission between the two sub-populations. This model

assumes that only sub-population 1 is initially infected and sub-

population 2 does not acquire the infection until some time during

the summer at which point some infected individuals appear

(perhaps arrive home from traveling) who are infected.

Model 3 was simulated using the parameters in Table S11 in

File S1. Model 3 reproduced the two waves qualitatively

(Figure 4B), with each sub-population experiencing only one wave

(Figure 4A). Its attack rate is just below that of the 2009 pandemic

H1N1 (20.08% compared with the CDC estimate of 25%). These

simulations verify that two weakly interacting populations can

experience two waves.

Model 4: Virus mutation and delayed susceptibility
During the course of the 2009 influenza pandemic, the genetic

diversity of the virus in both the United States and around the

world increased significantly. For this model, we hypothesize that

the increase in genetic diversity results in strains with higher

transmissibility in the human population. This hypothesis supports

the notion that some individuals who were not susceptible to the

virus during the first wave become susceptible when new strains

with greater transmissibility emerge as the pandemic progresses.

We incorporate this idea into the standard SEIR model (with

constant transmission rate b) by including a reserved class N

consisting of individuals who are initially non-susceptible (see

equations (S5)–(S9) in the Supplementary Information, File S1).

These individuals become susceptible as the viral genetic diversity

increases at a rate that is proportional to the time-dependent

genetic diversity d(t).

Genetic diversity of virus quasispecies is defined as the mean of

pairwise genetic distances among the genomes of the viruses

isolated in one month. In bioinformatics there are various

measures of genetic diversity. Here, genetic diversity was measured

using three distances: the p-distance, the patristic, and the CCV

distance between nucleotide sequences. These distances were

normalized to attain values between 0 and 1, and the genetic

diversity function was generated assuming that the diversity was

constant throughout the entire month. In the United States data

both of these genetic diversities increased slowly during the first

wave and dramatically during the second (Figure 5, Tables S2, S3,

S4, S5, S6, S7, and S8 in File S1).

Model 4 reproduced the two waves using all three distances

(Figure 6), using the parameters in Table S12 in File S1. Here, we

construct the genetic diversity function as a step function of order

0. However, Model 4 will also reproduce the second wave using

linear, quadratic, etc., interpolations of the monthly distance data.

Thus, the model is robust in terms of the distance measure used

and the way that these distance measurements are combined to

determine the diversity function d(t).

In conclusion, Model 4 qualitatively reproduces the US

incidence data and quantitatively reproduces the attack rate for

the 2009 pandemic H1N1. This model lends support to the

supposition that virus mutations can drive the second wave

through the addition of susceptible individuals who were not

susceptible to previous virus quasispecies. The unknown factor of

Model 4 is the initial fraction of reserve non-susceptible

individuals.

Here the value N(0) = 0.35 was chosen so that the simulation

recreated the data.

Model 5: Waning immunity
A fifth mechanism is known to produce two waves of infection –

waning immunity [8],[36]. We incorporate waning immunity to

the H1N1 virus with an SEIR model where individuals in the

removed class lose immunity at a constant rate and rejoin the

susceptible class (see Supplementary Information equations (S10)–

(S13), in File S1).

This model was simulated using the parameters in Table S13 in

File S1. It qualitatively reproduces the two waves, but always

(necessarily) with a smaller amplitude second wave (Figure 7).

Figure 4. Reproducing multiple waves using Model 3 with two
weakly interacting sub-populations. (A) Infection wave of sub-
population 1 (blue) and infection wave of sub-population 2 (black). (B)
The model generated disease prevalence compared with the CDC data
scaled for underreporting.
doi:10.1371/journal.pone.0060343.g004
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The effect of initial infections on the second wave
The models were used to investigate the consequences of a

smaller number of initially infected individuals in the United States

and to identify factors that may affect the on-set of waves.

We assumed that an early intervention, e.g., border control,

would have reduced the initial number of imported cases from

Mexico. We included this in our models by reducing the initial

fraction of infected individuals, I(0). For Model 3, we reduce the

number of individuals of both sub-population 1 and 2. The

simulation outputs (Figure 8) illustrate the result of two different

intervention levels. The first plot for each model shows the

resulting number of infected individuals, assuming that interven-

tions reduced the initial number of infected individuals by 25% of

the reported value adjusted for underreporting, while the second

plot corresponds to a simulation output that reduced the number

of individuals initially infected by 90%.

A value, called the attack rate (Itotal), was computed for all

models. The attack rate is the total fraction of individuals who

become infected during the disease outbreak. With no interven-

tion, the attack rate is Itotal = 0.2457, 0.2258, 0.2008, and 0.2307

for Models 1, 2, 3, and 4, respectively. The attack rate barely

changes with the addition of interventions, even strong interven-

Figure 5. Dynamics of genetic diversity of the HA gene of 2009
H1N1 pandemic virus in the United States. Genetic diversity is
defined as the mean of pairwise genetic distances among the genomes
of the viruses isolated in one month. The distances were normalized to
attain values between 0 and 1. Two genetic distances were measured:
(A) p-distance, (B) patristic distance, (C) CCV distance. The genetic
diversity of NA gene and other internal genes are shown in Tables S1,
S2, S3, S4, S5, S6, and S7 in File S1.
doi:10.1371/journal.pone.0060343.g005

Figure 6. Reproducing multiple waves using Model 4 with virus
mutation causing delayed susceptibility of some individuals.
The model generated disease prevalence using the (A) p-distance, with
c = 0.11, (B) patristic distance, with c = 0.09, (C) CCV distance, with
c = 0.08, compared with the CDC data scaled for underreporting.
doi:10.1371/journal.pone.0060343.g006
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tions. For example, with a 90% effective intervention, the attack

rate is Itotal = 0.2379, 0.2324, 0.1978, and 0.2132 for Models 1, 2,

3, and 4, respectively. In addition, in the simulations of Models 1,

2, and 4, interventions of over 80% result in a loss of the second

wave. For Model 5, individuals may lose immunity to the disease

and become infected a second time. Thus the notion of attack rate

is not as well defined. We compute instead the total number of

individuals who become infected once throughout the outbreak as

0.7395, and 0.7361 with 90% effective intervention.

The effect of vaccinations on the second wave
The models were used to investigate the consequences of a

vaccination program started earlier or with an increased

availability of vaccine in the United States on the outbreak

progression. We assumed that vaccination would have reduced the

number of susceptible (and reserve non-susceptible) individuals by

the number of available vaccines, with a vaccine efficacy of 90%

[29]. We have accounted for individuals receiving the vaccine

according to the dates and amounts of distributed vaccine, along

with a two week delay [30]. During the delay the immune system

is generating antibodies and is still vulnerable to infection. We

investigated both the scenarios of earlier available vaccine (0–5

months earlier) and the scenarios of more available vaccine (1–5

times as much available). Figure 9 illustrates the result of different

vaccination efforts for the models.

Earlier vaccinations can both eliminate the second wave of

infections and significantly reduce the attack rate. Simulations

indicate that vaccinations must be distributed approximately 2

months prior to the actual distribution dates to eliminate the

second wave in Models 1, 2, 4, and 5. A larger availability of

vaccine can only reduce the attack rate when combined with

earlier vaccination. For example, with the original amount of

vaccine distributed in October 2009, the attack rate is

Itotal = 0.2142, 0.2072, 0.1931, and 0.2143 for Models 1, 2, 3,

and 4, respectively, while with five times the original amount

distributed at the same time, the attack rate is Itotal = 0.1788,

0.1845, 0.1689, and 0.1931 for Models 1, 2, 3, and 4, respectively.

For Model 5, the total number who are infected once with the

original vaccine distribution is 0.6951, while it is 0.6670 with five

times the original amount distributed with the original timing.

Table 1 provides a summary of the five models, including the

number of peaks of infection resulting from border control and

vaccination, the attack rate with border control, and a reference

for the model, if available.

Discussion

We study five mechanisms that can produce two waves of

infection, and may explain the two waves experienced in the

United States during the 2009 pandemic H1N1. These mecha-

nisms are implemented and explored in mathematical models.

Four models perform well, recreating the two waves (Figures 2, 3,

5 and 7) qualitatively and quantitatively, while one recreates the

two waves only qualitatively. The two waves can be reproduced

using the models individually or in any combination.

Two novel mechanisms (Models 2 and 4) are proposed. Models

1 and 2 incorporate a variable transmission rate, which was

assumed constant in Models 3, 4 and 5. Model 4 explicitly

incorporates the genetic diversity of the influenza quasispecies. We

deem these models (2 and 4) complementary since changes in the

transmission rate and transmission patterns among sub-popula-

tions could have been due, in part, to the emergence of more

transmissible H1N1 mutants, which increases the genetic diversity

of the quasispecies.

Model 1 is an SEIR component model of transmission with a

time-dependent transmission rate reflecting the contact rate of

school age children. It produces two waves with realistic parameter

values, but provides no insight into why two waves of infection

appear only with pandemics and not every year.

Model 2 is an SEIR model of transmission with a time-

dependent transmission rate. Such a time-dependent transmission

rate can account for temporal changes in virulence, seasonality,

and contact rates, among others. The transmission rate is obtained

from an algorithm that guarantees that the model output perfectly

agrees with the infection data, even if the assumptions of the model

do not apply. Thus one must be careful applying this algorithm

and not over fit the data. We do not use our models to predict

numbers of infections; we use them to exhibit possible mechanisms

for two waves. In addition, we believe that the assumptions of a

time-dependent transmission rate along with the structure of an

SEIR model are reasonable for influenza, thus the potential

weakness of over fitting is avoided.

The extracted transmission rate for Model 2 seems to be at odds

with the common belief that summer affords fewer interactions

amongst children [2,3,4,5,6] and therefore causes a drop in the

transmission rate. For all graphs in Figure 3B, there was no

significant drop in bt after the school year ended; the transmission

rate fluctuated around a nearly constant level in the first wave

from mid-May through the end of August. It increased when the

fall school term and the second wave began. Although at first

surprising, there is no contradiction with a decrease in the number

of infected individuals and a (basically) constant transmission rate,

as is seen over the summer months. A constant transmission rate

implies that the ratio of new infections to the number of susceptible

individuals remains constant, which happens over the summer

when both the numbers of new infections and of susceptible

individuals are decreasing.

From days 150 to 250, the transmission rate bt oscillated with

mean period 19.9. These oscillations appear more rapid than the

contact rate and environmental factors can account for. We do not

see how this oscillation can be a manifestation of reporting

conventions. However, these oscillations seem essential to repro-

duce the reported data. Figure S1A in File S1 shows a 21-day

Gaussian filtered (smoothed) bt function, and the corresponding

model simulation (Figure S1B in File S1), which is a substantially

lower quality fit to the data. All attempts at smoothing the

oscillations using different types of filters resulted in a worse fit to

the data. Presumably, smoothing the data would eliminate these

oscillations, but this goes in a very different direction.

Figure 7. Reproducing multiple waves using Model 5 with
waning immunity. The model generated disease prevalence,
compared with the CDC data scaled for underreporting.
doi:10.1371/journal.pone.0060343.g007
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Model 3 consists of two weakly coupled SEIR models of

transmission, with a constant transmission rate. We have found

that this model is the least robust, since it is the most sensitive to

changes in the model parameter values. By construction, the

model will always exhibit two waves regardless of the initial

number of infected individuals (e.g., with a strong border control).

Model 4 involves virus mutation causing delayed susceptibility

of some individuals. This new mechanism posits that as the genetic

structure of the influenza virus changed during the pandemic,

more of the general population became susceptible to infection.

Such a dynamic of transmissibility of influenza A virus has been

hypothesized to generate the second wave [31]. Model 4 assumes

that the initially non-susceptible individuals become susceptible at

a rate proportional to the genetic diversity of the flu quasispecies.

The effects of vaccination and border control are considered for

Model 4 (Figure 8D, Figure 9D) using the CCV distance,

and similar results hold for both the p-distance and the patristic

distance.

Model 5 incorporates waning immunity to the influenza virus

causing some individuals to become infected again. This model

qualitatively reproduces the two waves of the 2009 H1N1

pandemic in the US; however, the first wave will always be larger

than the second. In addition, waning immunity requires an

unrealistically short period of immunity (six months) to accurately

reproduce the timing of the two waves of the 2009 H1N1

pandemic. For these reasons, we believe that this mechanism

played at most a minor role in the second wave.

While all combinations of all five models will generate the two

waves, it is impossible to determine the actual mechanism(s) from

any model. This is a fundamental limitation of mathematical

modeling. Models can suggest plausible mechanisms, but they

cannot prove them. There is so little data from other countries and

other pandemics that any type of statistical investigation trying to

narrow down the true explanation is impossible.

Although age structure probably plays a role in flu transmission,

our models do not explicitly include such structure and they do not

need to. We are able to illustrate that all five mechanisms can

reproduce two waves without explicit age structure in the model.

We point out that the two populations in Model 3 could be two

age groups, though other groups are also possible.

The transmission rate during the summer school
vacation

For all graphs in Figure 3B, there was no significant drop in bt

after the school year ended; the transmission rate fluxuated around

a nearly constant level in the first wave from mid-May through the

end of August. It increased when the fall school term and the

second wave began. Although at first surprising, there is no

contradiction with a decrease in the number of infected individuals

and a (basically) constant transmission rate, as is seen over the

summer months. A constant transmission rate implies that the

ratio of new infections to the number of susceptible individuals

remains constant, which happens over the summer when both the

numbers of new infections and of susceptible individuals are

decreasing.

The effects of border control
During the 2009 H1N1 pandemic, countries including China,

Japan, Hong Kong, Singapore, and Australia implemented

various border control strategies to prevent arriving airline

passengers from infecting the countries’ citizens [32,33,34,35].

Health authorities screened arriving passengers for flu-like

symptoms using thermal scanners. In China, passengers suspected

of being infected, along with passengers seated nearby, were

placed into quarantine for seven days. China’s border control

began when the first cases of H1N1 were confirmed in California;

China continued screening passengers for more than two months.

There has been debate as to whether the United States should

have implemented some form of border control with Mexico after

the first novel influenza cases appeared. The results from

simulations indicate that strong intervention at the beginning of

the outbreak would have had negligible impact on the attack rate

in the United States, but it could have resulted in a single wave of

infections. Our simulations imply that by significantly decreasing

the initial number of infected individuals, the two waves would

collapse into a single wave of infections, and the peak number of

infections would occur slightly earlier with one wave. This suggests

that China’s strong border control could be a potential mechanism

explaining their one wave of infection.

In practice, the efficacy of such border control measures to

reduce transmission is uncertain. These screenings will miss

asymptomatic individuals [35], and in particular infected individ-

uals with no fever. However border control has been shown to

delay the local community transmission [32,33,34], which may

allow sufficient time for health interventions, such as vaccinations.

On the other hand, border control may only delay transmission

and could still result in a second wave, as seen in the simulations.

The effects of vaccination
The first doses of 2009 H1N1 vaccine were available in the

United States in early October 2009, which was just before the

peak of the 2009 H1N1 pandemic. Conventional wisdom is that

this vaccination had little effect on the course of the disease spread.

Though we were unable to find any empirical evidence in the

literature, our simulations support this idea. Simulations of all

models indicate that the actual vaccine schedule did not

significantly reduce the total number of infections and even a

significantly larger amount of vaccine available in October would

have little effect on the attack rate. However, an earlier

vaccination program would significantly decrease the attack rate

and can eliminate the second wave of infections. Simulations show

that the attack rate would be significantly reduced had the vaccine

been distributed two months earlier than it was (with the same

availability).

Recall that by design, Model 3 will produce two waves.

Extremely strict border control (99.9% control) can prevent the

second wave; however starting the vaccination program five

months earlier with the original amount of vaccine cannot prevent

the second wave.

Figure 8. Effects of reduced and delayed initial infected individuals on influenza prevalence using (A) Model 1 with periodic
transmission rate (B) Model 2 with extracted transmission rate, bt (C) Model 3 with two weakly interacting sub-populations (D)
Model 4 with virus mutation causing delayed susceptibility of some individuals (E) Model 5 with waning immunity. The model
generated disease prevalence with the control strength indicated, compared with the CDC data scaled for underreporting, where 25% strength of
control means that the initial fraction of infected individuals is 75% of the adjusted reported fraction.
doi:10.1371/journal.pone.0060343.g008
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Materials and Methods

Data sets
The epidemiologic dataset of 2009 weekly H1N1 positive tests

reported to the CDC was downloaded from the CDC online

weekly reports (www.cdc.gov/flu/). Clearly, these weekly numbers

are highly affected by the testing efforts. An estimated 25% of the

U.S. population was infected with the pandemic H1N1 through-

out the two waves [36]. Using this along with the CDC compiled

data, the influenza confirmed case data was adjusted to reflect

underreporting by a scale factor of 700:1. The authors are aware

that a team of investigators estimated an underreporting scale

factor of 79:1 at the beginning (April through July) of the

pandemic [32]. This is not a contradiction, since, very quickly,

many physicians and hospitals stopped testing and the underre-

porting factor skyrocketed. Since we could find so little

information about the underreporting rate during the entire

pandemic in the U.S., we chose a uniform scaling factor.

The genomic sequence dataset was downloaded from the

Influenza Virus Resource Database [37], which was updated on

November 16, 2011. This dataset includes 1,502 HA genes of

2009 pH1N1 pandemic influenza viruses (229 were isolated in

April of 2009; 273 in May; 247 in June; 74 in July; 46 in August;

119 in September; 195 in October; 214 in November; and 105 in

December). All HA genes were fully or nearly fully sequenced, and

only a single HA sequence for the same strain was selected.

Measurement of genetic distance and genetic diversity
The genetic diversity of the influenza virus quasispecies is

defined as the mean of the pairwise genetic distances among the

genes of the virus. We employ three notions of genetic distance:

the p-distance, the patristic distance, and the CCV distance

[38,39]. P-distance measures the proportion of nucleotide sites

between two sequences. This is the simplest measure and does not

take into consideration multiple substitutions at the same site,

substitution rate biases, or differences in the evolutionary rates

among sites [40]. The p-distances were measured using the

software package MEGAN [41]. The patristic distance encodes

the total amount of genetic change that exists between genetic

sequences by summing the lengths of branches in the phylogenetic

tree between the two viruses. The patristic distances were

calculated using PATRISTIC [42] using the maximum likelihood

phylogenetic trees constructed by GARLI [43]. CCV is a method

for measuring genetic distance based on the probability of strings

[Wan et al. 2007], and this method has been shown to be effective

in measuring the genetic distance between influenza genes [Wan et

al. 2007b; Wan et al. 2008a; Wan et al. 2008b; Long et al. 2012].

Model parameter selection
Every model parameter value is consistent with the range

commonly found in the literature. Within the common ranges,

parameters for Models 1–4 were found that quantitatively and

qualitatively reproduce the two waves of the 2009 H1N1

pandemic in the US. For Model 5, no parameters were found

from the common ranges that reproduce the two waves

quantitatively.

The incubation period for influenza can range between one and

four days. We follow modeling convention and use a one day

incubation period in all models. Adults shed influenza virus for up

to 11 days; however, the amount shed is significantly lower after

the first 3 to 5 days. Several previous modeling studies of pandemic

H1N1 have assumed the infectivity period (1/v) is the lower bound

of 3 days, as is done in all models here.

The transmission rate b (or the initial transmission rate for

Models 1 and 2) is chosen to ensure that the basic reproduction

number R0 is in the allowable range for influenza. The basic

reproduction number is the average number of secondary cases

caused by one infected individual into an entirely susceptible

population. However, it is well known that approximately 20% of

the US population had prior immunity to the pandemic influenza.

Therefore, it is unreasonable to compute R0 assuming that the

entire population was susceptible. We use instead the standard

definition where it is not assumed that all individuals are initially

susceptible. For the 2009 H1N1 influenza, R0 is estimated to be in

the range 1.2–2.25 [44]. For Model 1, the transmission rate at the

start of the outbreak (t = 140) is 0.5267, resulting in an R0 of 1.58.

For Model 2, simulations restrict b0 to the range 0.54 to 1.03.

Figure 3 shows b0 in the range 0.54 to 0.74, which gives a basic

reproduction number in the range 1.39 to 1.88. For Model 3, at

the beginning of the infection b1 = 2.1, which gives a basic

Figure 9. Effects of timing and amount of available vaccine on influenza prevalence using (A) Model 1 with periodic transmission
rate (B) Model 2 with extracted transmission rate, bt (C) Model 3 with two weakly interacting sub-populations (D) Model 4 with
virus mutation causing delayed susceptibility of some individuals (E) Model 5 with waning immunity. The model generated disease
prevalence with the vaccination strategy indicated, compared with the CDC data scaled for underreporting. Here original timing begins vaccination
on October 14, 2009, and one month earlier begins vaccination thirty days prior; original amount available is the daily amount of shipped vaccine
with 90% efficacy, and twice as much available is twice the shipped amount with 90% efficacy.
doi:10.1371/journal.pone.0060343.g009

Table 1. Summary of border control and vaccination on multiple waves of 2009 H1N1 influenza pandemics.

Model Description
Result of Border
Control (90%)

Attack Rate with Border
Control (CDC est 25%
with no Border Control)

Result of Vaccinating
Two Months Earlier Reference

1 Periodic transmission rate One wave 24% One wave [46]

2 Extracted transmission rate One wave 23% One wave

3 Two weakly interacting populations One wave (BC 99.9%) 20% Two waves [47]

4 Genetic diversity of flu quasispecies One wave 23% One wave

5 Waning immunity Two waves 73% One wave [8]

doi:10.1371/journal.pone.0060343.t001
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reproduction number of R0 = 1.386, and for the second wave,

b2 = 0.565, which gives a basic reproduction number of

R0 = 1.322. For Model 4, b= 0.9, and so the basic reproduction

number is R0 = 1.20. For Model 5, b= 0.63, and so the basic

reproduction number is R0 = 1.89.

For Models 1, 3, 4, and 5, the initial fraction of infected

individuals, I(0) (I1(0) for Model 3) is set by the US incidence data

and the initial fraction of exposed individuals E(0) is set to be 0.

For Models 1, 4 and 5, the initial fraction of removed individuals

R(0) is set to 0.2, corresponding to elderly individuals with

acquired immunity [45]; in Model 3, this value is set to 0. For

Model 3, the infection in sub-population 2 begins at day t = 210

and I2(210) is the US incidence data scaled by 0.06.

For Model 2, the initial values S(0), E(0), I(0), and R(0) are

determined by the algorithm which computes the time-dependent

transmission rate bt. Therefore the choice of b0 determines all four

of the initial values. For b0 = 0.63 the initial conditions agree

reasonably well with the initial conditions of the other models.

For Model 4, N(0) was chosen to ensure that the basic

reproduction rate R0 was within the known bounds. With b0 = 0.9,

the value of N(0) can range from 0 to 0.35. In addition, model

simulations show that to generate two waves, the value of N(0)

must be larger than 0.25. With the chosen value of N(0) = 0.35 the

value of S(0) is forced to be 0.44.
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