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Cancer is a life-threatening disease resulting from a genetic disorder and a range of metabolic 
anomalies. In particular, lung and colon cancer (LCC) are among the major causes of death and disease 
in humans. The histopathological diagnoses are critical in detecting this kind of cancer. This diagnostic 
testing is a substantial part of the patient’s treatment. Thus, the recognition and classification of 
LCC are among the cutting-edge research regions, particularly in the biological healthcare and 
medical fields. Earlier disease diagnosis can significantly reduce the risk of fatality. Machine learning 
(ML) and deep learning (DL) models are used to hasten these cancer analyses, allowing researcher 
workers to analyze a considerable proportion of patients in a limited time and at a low price. This 
manuscript proposes the Predictive Analytics of Complex Healthcare Systems Using the DL-based 
Disease Diagnosis Model (PACHS-DLBDDM) method. The proposed PACHS-DLBDDM method majorly 
concentrates on the detection and classification of LCC. At the primary stage, the PACHS-DLBDDM 
methodology utilizes Gabor Filtering (GF) to preprocess the input imageries. Next, the PACHS-
DLBDDM methodology employs the Faster SqueezeNet to generate feature vectors. In addition, 
the convolutional neural network with long short-term memory (CNN-LSTM) approach is used to 
classify LCC. To optimize the hyperparameter values of the CNN-LSTM approach, the Chaotic Tunicate 
Swarm Algorithm (CTSA) approach was implemented to improve the accuracy of classifier results. The 
simulation values of the PACHS-DLBDDM approach are examined on a medical image dataset. The 
performance validation of the PACHS-DLBDDM model portrays the superior accuracy value of 99.54% 
over other DL models.
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The World Health Organization (WHO) states that cancer is the leading cause of death all around the globe1. 
After breast cancer, Lung and colorectal (both rectum and colon) cancers are the most general types globally, with 
incidence rates of 10% and 11.4%, correspondingly, in 2020. Despite all, the possibility of synchronic occurrence 
among LCC is less2. So, the exact analysis of these tumour sub-types is critical to determining the treatment 
process at an earlier stage of the illness3. However, reliable sub-types of these tumours are not possible with 
non-invasive constant and minimum invasive methods, namely histopathology, which is needed for accurate 
illness classification and to increase the treatment quality. Additionally, the physical grading of histopathological 
imageries might be annoying for pathologists4. Furthermore, the exact grading of the LCC sub-types needs 
experienced pathologists, where the physical grading will lead to fault. So, automatic image processing procedures 
for LCC sub-type screening are necessary to decrease the trouble for pathologists. Recently, several CAD systems 
have been launched to automatically check cancer growth symptoms in the colon5.
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Artificial intelligence (AI) is an effective method that helps the diagnostic system to identify cancer precisely; 
the general AI methods for the detection of cancer include recognition of colon cancer utilizing DL methods from 
the diagnosis of histopathological images (HIs) and recognition of colon cancer utilizing ML methods from the 
diagnosis of HIs6. At present, technical developments in image processing and medical imaging have provided 
many cost-effective CAD models. The older method’s aim is to perform pattern-recognition-associated methods 
for automatic cancer analysis7. This approach mines a normal set of handcrafted features from biology images 
and trained classifiers’ over-use features to classify the cancerous cells8. Nowadays, medical image processing has 
obtained everyone’s concern in deep neural networks (DNNs), which unites feature extraction and classification 
in a combined learning structure. DNN has effectively established outstanding tasks in object detection, image 
identification, and image segmentation9. Convolutional Neural Networks (CNNs) are DNN methods widely 
used in computer vision (CV) tasks due to their promising target classification and recognition achievement. 
The performance mainly depends on the depth of CNN. On the other hand, expanding the CNN depth may 
produce problems with vanishing gradient and saturated accuracy, which becomes a primary challenge for the 
network10.

This manuscript proposes the Predictive Analytics of Complex Healthcare Systems Using the DL-based Disease 
Diagnosis Model (PACHS-DLBDDM) method. The proposed PACHS-DLBDDM method majorly concentrates 
on the detection and classification of LCC. At the primary stage, the PACHS-DLBDDM methodology utilizes 
Gabor Filtering (GF) to preprocess the input imageries. Next, the PACHS-DLBDDM methodology employs 
the Faster SqueezeNet to generate feature vectors. In addition, the CNN with long short-term memory (CNN-
LSTM) approach is used to classify LCC. To optimize the hyperparameter values of the CNN-LSTM approach, 
the Chaotic Tunicate Swarm Algorithm (CTSA) approach was implemented to improve the accuracy of classifier 
results. The simulation values of the PACHS-DLBDDM approach are examined on a medical image dataset. The 
key contribution of the PACHS-DLBDDM approach is listed below.

•	 The PACHS-DLBDDM technique improves the detection and classification of lung cancer cells (LCC) by 
incorporating advanced models, resulting in precise and effectual disease detection. It optimizes detecting 
and classifying cancerous cells, paving the way to more reliable diagnoses. This methodology enhances the 
precision and efficiency of lung cancer detection.

•	 The GF approach implements the PACHS-DLBDDM approach for robust image preprocessing, substantially 
enhancing data quality and relevance before evaluation. This phase improves the accuracy of subsequent 
processing phases. Refining the input images confirms more reliable and precise outcomes in subsequent 
evaluation.

•	 phases.
•	 Utilizing the Faster SqueezeNet technique for producing feature vectors improves the approach’s capability for 

extracting and depicting crucial behaviours of cancer cells. This method enhances the accuracy of the feature 
extraction procedure, paving the way to more precise and informative representations of the data.

•	 By incorporating CNN-LSTM for classification and CTSA for hyperparameter tuning, the technique optimiz-
es the accuracy of classifying lung cancer cells and the effectiveness of parameter adjustment. This integrated 
model improves the overall performance and precision of the predictive model.

•	 The PACHS-DLBDDM model incorporates GF, Faster SqueezeNet, CNN-LSTM, and CTSA methods into 
a unified framework, which enhances the accuracy and effectualness of cancer cell classification. By incor-
porating these advanced methods, it presents an overall model for preprocessing, feature extraction, and 
hyperparameter optimization. This innovative incorporation improves both the efficiency and precision of 
cancer cell evaluation.

Review of literature
Seth and Kaushik11 proposed a technique for identifying LCC with the DL method. The presented method 
contains three stages. In the first stage, HIs are gathered and preprocessed. For preprocessing, it is essential to 
utilize an MF. The swim transformers are employed to segment the data. These segment portions are provided 
in the enhanced cascade CNN (EC2N2) methodology to categorize the image as tumorous or normal. The 
hyperparameter was optimally chosen using the Adaptive Tasmanian Devil Optimizer (ATDO) technique. In12, 
DL methods implement, evaluate, and design a diagnostic aid system for non-small cell lung cancer recognition. 
The classification development is based on AI methods, getting automated classifier outcomes among squamous 
cell carcinoma adenocarcinoma, and healthy these are delivered as HIs from lung tissue. Additionally, a report 
method based on Understandable DL methods provides the pathologist data regarding the image areas employed 
to identify the model. Xiao et al.13 introduced a predictive method utilizing morphologic features of cells in the 
cancer spot. The feature is extracted initially by the software CellProfiler from the cancer area by selecting the 
Eff-Unet DL method. Features of various regions are average for every patient as their representation, and the 
Lasso-Cox method is employed to choose the prognosis-related feature. The prognostic forecast method was 
finally built by the selected prognosis-related feature and is estimated using cross-validation and KM estimates. 
Hu et al.14 presented a multilevel threshold image segmentation (MIS) technique based on an improved particle 
swarm method for splitting COAD imageries. First, this presents a multi-strategy hybrid PSO (DRPSO) by 
replacement method. The population reorganization framework incorporates MGO to improve people’s diversity 
and efficiently prevent the method from stagnating prematurely. Next, by uniting the 2D Renyi entropy and non-
local mean 2D histogram, this article presents a DRPSO method-based MIS technique that is effectively applied 
to the sections of the COAD pathology image issue.

Stephen and Sain15 introduced a neural structural search method. This technique utilizes a Bayesian CNN 
structural search method with Gaussian methods to offer an effective neural network structure for effective lung 
and colon tumour recognition and classification. The presented method learns through the Gaussian methods 
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to evaluate the essential optimum structural value by selecting a group of parameters over the development of 
the expected improvement (EI) rates. In16, the authors aim to use a CAD technique to identify histopathological 
pictures of lung tissues. For the validation and creation of CAD, the method utilized a publicly accessible database. 
Multilevel processing is used to mine image features. Last, the comparative survey was created based on seven 
pre-trained CNN methods for identifying lung tumours. Mohamed et al.17 proposed an advanced technique 
that leverages AI, especially CNN and Fishier Mantis Optimization. The deployment of DL methods, especially 
CNN, allows the mining of complex features from medicinal imaging data, offering an efficient and robust 
analytic method. Moreover, the Fishier Mantis Optimization, a bio-inspired optimizer method encouraged by 
the searching performance of mantis shrimp, has been used to modify the parameters of the CNN, improving its 
performance and merging speed. Several CNN designs, like RESNET50 and GoogLeNet, are also used.

Jaisakthi et al.18 introduced a DL-based pipeline for multi-class classifications of lung cancer type. The Pseg 
pipeline was developed to mine the nuclear region with the WSHI patch by an Xception-style UNet-based 
NN, and these divided areas are classified into cancer types utilizing the similar downstream DCNN structure. 
Ahamed et al.19 propose a model to anticipate cardiovascular diseases at an early stage utilizing ML approaches 
and cloud-based storage, focusing on incorporating IoT for real-time prediction through medical sensors. 
Ahamed, Mir, and Chishti20 develop a prediction model by employing ML methods comprising decision tree 
(DT), random forest (RF), k-nearest neighbours (kNN), support vector machine (SVM), logistic regression (LR), 
AdaBoost, and gradient boosting (GB)—improved by hyperparameter optimization and ensemble techniques 
for enhanced accuracy and mitigated overfitting and underfitting. Mathivanan et al.21 propose an ensemble DL 
technique by integrating LSTM and CNN models for remote patient monitoring (RPM) in IoT applications, 
concentrating on early health issue diagnosis and precise real-time data analysis with wearable devices. Shafqat et 
al.22 introduce a Louvain Mani-Hierarchical Fold Learning healthcare analytics, a hybrid DL method. Ankolekar 
et al.23 introduce a technique by implementing AI and predictive modelling to improve Learning Health Systems 
(LHS) by utilizing knowledge, data, and practice. Motwani, Shukla, and Pawar24 propose the Smart Patient 
Monitoring and Recommendation (SPMR) framework, which utilizes DL and cloud-based analytics for real-
time health monitoring and prediction. Kaliappan et al.25 present the HybridNet-NDM methodology to advance 
neurodegenerative disease prediction and management by incorporating CNNs, LSTMs, and GCNs techniques 
for detailed evaluation of medical imaging improved by an attention mechanism for enhanced accuracy.

The existing studies encounter several limitations, such as difficulty with computational intensity and real-
time implementation due to convolutional hyperparameter tuning and network models. Variability in cancer 
images and the reliability of feature extraction quality can affect performance. Multilevel image segmentation 
models may face high computational costs and issues with noisy data. Network structures might only sometimes 
be optimum, and feature extraction accuracy can be challenging despite utilizing pre-trained techniques. Some 
methodologies may need to be more effective with smaller datasets or lower-quality images. Sensor inaccuracies 
in IoT-based techniques can affect data integration issues and real-time prediction accuracy. Managing real-
time data processing and incorporating diverse ML approaches can pave the way to an enhanced computational 
overhead. Practical implementation and scalability threats are also common, impacting adaptability to various 
patient conditions and large-scale applications. Present cancer detection and patient monitoring techniques often 
encounter difficulties associated with computational effectualness, real-time data integration, and adaptability to 
diverse and noisy data. More robust models that balance accuracy with scalability and real-time performance are 
needed, specifically in handling large-scale and heterogeneous datasets.

Methodology
This article introduces the PACHS-DLBDDM methodology. The proposed methodology focuses mainly on the 
recognition and classification of LCC. It comprises GF, Faster SqueezeNet, CNN-LSTM, and CTSA techniques 
for preprocessing, feature vector generation, classification, and hyperparameter tuning processes. Figure  1 
depicts the entire flow of the PACHS-DLBDDM technique.

Image preprocessing
At the primary stage, the PACHS-DLBDDM technique employs GF to preprocess the input images26. The 
GF model is utilized for its efficiency in capturing texture and spatial frequency data, which is significant 
for evaluating medical images where subtle patterns are crucial. GF method outperforms edge detection and 
texture characterization, allowing it to accentuate significant features in complex images like those employed 
for cancer detection. Its capability to filter images with several orientations and scales makes it proficient in 
discriminating between fine details and noise. This capability safeguards robust preprocessing, improving 
the accuracy of subsequent feature extraction and classification steps. Furthermore, GF’s well-established 
mathematical foundation and ease of implementation contribute to its dependable performance across diverse 
imaging modalities. Figure 2 demonstrates the structure of the GF model.

GF is a popular image preprocessing method applied in medical imaging for LCC recognition. It includes 
applications of GF to emphasize specific characteristics in medical images, including edge and texture 
information. GF improves the visibility of tumour structure by filtering images at varying orientations and 
scales, making detecting malignant areas simple. This technique optimizes the performance of succeeding image 
analysis and classification methods. The ability of GF to highlight pertinent features assists in earlier detection 
and treatment planning for LCC patients.

Faster SqueezeNet model
Next, the PACHS-DLBDDM approach employs the Faster SqueezeNet to generate feature vectors27. Faster 
SqueezeNet is selected for feature vector generation due to its efficient balance between model size and 
performance. Its compact architecture safeguards fast processing and low computational cost, making it ideal 
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for real-time applications with substantial rapid feature extraction. Despite its small size, SqueezeNet maintains 
high accuracy in capturing relevant features, which is crucial for precise classification and evaluation. The 
reduced memory footprint of the technique allows for deployment on devices with limited resources, improving 
its practical usability. Furthermore, Faster SqueezeNet’s pre-trained models present robust feature extraction 
capabilities, utilizing extensive training on large datasets to enhance generalization across diverse tasks.

The SqueezeNet architecture was introduced, which has fewer parameters while retaining the performance 
since AlexNet and VGGNet parameters are ever-increasing. The primary foundation in SqueezeNet is the Fire 
model. This is broken down into Squeeze and Expand models. Squeeze comprises S1× 1 convolutional kernels. 
The Expand layer has 1x 1 and 3x 3 convolutional layers. E1× 1 and E3× 3 are the number of 1× 1 and the count 
of 3× 3 convolutional layers  This method should satisfy S < (E1× 1 + E3× 3).

Fig. 2.  Overall structure of GF technique.

 

Fig. 1.  Overall flow of PACHS-DLBDDM methodology.
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The Min uses an MLP rather than the linear convolutional layer to improve the network performance. 
The MLP corresponds to the cascaded cross-channel parametric pooling layer, accomplishing an information 
integration and linear combination of feature maps.

Once the input and output channels are larger, the convolution layer develops superiorly. A 1x 1 convolutional 
layer has been added to the inception module, reducing the number of input channels and decreasing the 
operation complexity and convolution layer. Finally, a 1x 1 convolutional layer is added to enhance feature 
extraction and increase the number of channels.

SqueezeNet is used to replace 3× 3 with 1× 1 convolutional kernels to reduce the parameter. Once the 
sampling reduction function is delayed, the convolutional is given a large activation graph; however, the large 
activation preserves further details, providing a high classifier performance.

Fast SqueezeNet is introduced to improve performance. Residual and BatchNorm designs are included to 
avoid overfitting. It is the same as DenseNet.

Faster SqueezeNet includes four convolution layers, a global pooling layer, 1 BatchNorm layer, and three 
block layers.

Fast SqueezeNet is given as follows:

	(1)	� It is derived from the DenseNet architecture, and a connection method has been developed to improve data 
flow between layers. This includes a pooling layer and a fire module. Lastly, the two concat layers are linked 
to the next convolution layer. The current layer obtains the mapping feature of the previous layer and applies 
x0, . . . , and xl−1 as input.

	 xl = Hl ([x0, x1, . . . , xl−1])� (1)

In Eq. (1), [x0, x1, . . . , xl−1] denotes the feature map connection at 0,1, . . . , l − 1 and Hl concatenate 
various inputs. x0 is the max-pooling layer, x1 is the Fire layer, and xl denotes the concat layer.

	(2)	� It is learned from the ResNet design, which includes a fire module and pooling layer to ensure better con-
vergence. Finally, it is connected to the next layer after the two layers are summed.

In ResNet, the shortcut connection applies an identity map directly, signifying that the convolution input has 
been added straightaway to the output. H (x) denotes the desired underlying mapping. A stacked non-linear 
layer fits an alternative mapping of F (x) := H (x)− x. A novel mapping is changed into F (x) + x. The 
shortcut connection skips multiple layers. As a result, the ResNet model is used to resolve the degradation and 
vanishing gradient problems without increasing the network parameter.

Classification method using CNN-LSTM
During this stage, the CNN-LSTM approach has been used for LCC classification28. Assuming the spatial 
feature extractor benefits of the convolution (Conv) layer of CNN and the time-based forming benefits of the 
LSTM method, this research develops CNN-LSTM that can depict the local feature and retain the long-term 
dependencies. The CNN-LSTM technique is selected for LCC classification due to its prevailing integration of 
spatial and temporal feature extraction abilities. The CNN technique outperforms in precisely detecting spatial 
patterns and textures within images, making them appropriate for extracting detailed features from lung cancer 
cell images. By incorporating the LSTM networks, which are proficient at capturing temporal dependencies 
and sequential patterns, the technique can efficiently manage and analyze time-series data or sequential image 
features, enhancing the accuracy of the classification. This hybrid technique employs the proficiency of the CNN 
model in feature extraction and the strength of LSTM in sequence learning, giving an overall examination of the 
cancer cells. It improves the capability of the technique to detect complex patterns and discrepancies over time, 
paving the way to more precise and reliable LCC classification.

On input to the CNN-LSTM method, which consecutively crosses over Conv block1 and Conv block2, it 
results in output sizes of (64, 26, 26) for Conv block1 and (128, 13, 13) for Conv block2. Every Conv block has 
a batch normalization (BN) layer, a Conv layer, ReLU, a dropout layer, and a pooling layer. The BN layer hastens 
the training and recovers the generality capability of the method. The ReLU relates non-linearity and sparsity 
to configuration and averts the gradient from vanishing. The ReLU activation function calculation is as follows:

	
f (x) = Max (0, x) =

{
0x ≤ 0

xx > 0
� (2)

The pooling layer used the largest size of 2x2, efficiently decreasing the parameter of model and memory desires; 
the dropout layer with a definite prospect throughout the system training procedure improves the model’s 
generality skill. Subsequently, the related features removed by CNN are served into the dual-layer LSTM model 
to get every time-based feature. The 1st layer LSTM contains 100 HLs, and the 2nd layer LSTM contains 50 HLs. 
The three gates are accessible in every LSTM framework, with forget, input, and output gates. Figure 3 illustrates 
the structure of CNN-LSTM.

The LSTM defends and handles the cell state over three gates, recognizing the forgetting, long-term 
remembering, and state upgrading. The interior processing of LSTM has been calculated as below:

	 ft = σ (Wfhht−1 +Wfxxt + bf)� (3)

	 it = σ (Wihht−1 +Wixxt + bi)� (4)
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∼
ct = tanh

(
W∼

ch
ht−1 +W∼

cx
xt + b∼

c

)
� (5)

	 ct = ft.ct−1 + it.
∼
ct� (6)

	 ot = σ (Wohht−1 +Woxxt + bo)� (7)

	 ht = ot · tanh (ct)� (8)

Whereas ft, it, and ot signify the gates of forgetting, input and output, correspondingly; ct refers to the 
internal state, which removed from 0 ∼ t time denotes the transporter of long-term memory; bf , bi, bo
, and bC  denotes the biases; ht signifies the long and short-term memory output at the moment t; 
[Wfx, Wfh] , [Wix, W ih] , [Wox, Woh], and 

[
W∼

cx
, W∼

ch

]
 represents the weights of forget, input, output gates, 

and the unitary input, correspondingly; and σ  indicates an activation function of sigmoid.

Fine-tuning the DL model
As a final point, the CTSA approach is performed to enhance the hyperparameter value of the CNN-LSTM 
model. TSA denotes a novel meta-heuristic technique stimulated by swarm intelligence (SI)29. The CTSA is 
selected for its greater performance in hyperparameter tuning and optimization due to its capability to escape 
local optima and explore the solution space more thoroughly. Unlike conventional techniques, the CTSA model 
utilizes chaotic sequences to improve randomness and avoid premature convergence, which is significant for 
complex models with high-dimensional parameter spaces. This paves the way for more precise parameter 
settings and enhanced model performance. Furthermore, CTSA’s integration of swarm intelligence and chaotic 
behaviour results in improved convergence rates and robustness compared to other optimization methods, 
making it highly efficient for fine-tuning the classification procedure in cancer detection systems. Its adaptability 
and efficiency are crucial in optimizing complex techniques and attaining high classification accuracy.

Tunicate is a horde that mainly hunts for its food resources in the ocean. SI and Jet propulsion are the dual 
dissimilar conducts of tunicate. The 3 phases of the jet propulsion performance are described below. At first, they 
evade crashes among the hunting agents. Then, they travel to the optimal search agent location. At last, they stay 
nearer to the optimal searching agent. It upgrades the other searching agents to a superior solution.

The 
−→
A  vector is employed to compute the upgraded position of searching agents to avoid crashes among 

search agents:

	

−→
A =

−→
G
−→
M

� (9)

	
−→
G = c2 + c3 −

−→
F � (10)

	
−→
F = 2 · c1� (11)

Here, the water movement advection is denoted by 
−→
F , and 

−→
G  represents the gravity force. c1, c2 and c3 signify 

the variables within the range of [0,1] .
−→
M  indicates the social force among the search agents as given below:

	
−→
M = ⌊Pmin + c1Pmax − Pmin⌋� (12)

Fig. 3.  Architecture of CNN-LSTM.
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Pmax and Pmin represent the first and second velocities for creating social communication, respectively. The 1 and 
4 are fixed values. Figure 4 depicts the architecture of the CTSA model.

The searching agent moves to the finest neighbour way after avoiding the crash among adjoining locals. The 
mathematical calculation of this method is given below:

	
P
−→
D =

∣∣∣F−→
S − rand.

−→
X (t)

∣∣∣� (13)

Fig. 4.  Architecture of CTSA model.
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Where
−→
P D indicates the distance between the source of food and the search agent, viz., tunicate, F

−→
S  epitomizes 

the position of the food source. 
−→
Xi (t) signifies the position of the tunicate, and rand denotes the random 

integer in the range of [0 and 1].
The agents uphold the position near the optimal searching agents is stated as below:

	

−→
Xi (t) =

{
F
−→
S +

−→
A.

−→
P D, if rand ≥ 0.5

F
−→
S −

−→
A.

−→
P D, if rand < 05

� (14)

In Eq.  (14), 
−→
X (t) displays the tunicate position after upgrading the F

−→
S  position. The initial dual optimal 

solutions are kept and upgraded with other searching agents depending upon the optimal searching agent’s place 
to demonstrate the tunicate’s group behaviours arithmetically.

	
−→
X (t + 1) =

−→
X (t) +

−→
X (t)

2 + c1
� (15)

Initialization of population is crucial in meta-heuristic techniques since the excellence of solution and velocity 
of convergence are influenced by it. So, the initialization of the population is produced at random because there 
is no preceding knowledge accessible for the solution, and it is frequently used in meta-heuristic techniques. 
Likewise, TSA exploits the early arbitrary population of X  utilizing normal distribution as set below:

	 xij (t) = xmin + (xmax − xmin)× r� (16)

In Eq. (16), xij (t) denotes the jth module of ith individual solution at th iteration  The search region’s upper 
and lower limits are xmax and xmṁ, respectively. r signifies the random value in the range of [ 0,1].

If the initialization of the population is nearer to the global targets, the rate of convergence turns fast, and 
it can achieve improved solutions; however, the early population is less frequently the finest randomly. The 
chaotic-based method enhances efficiency and improves the variety of the population.

	 xij (t) = xmin + (xmax − xmin)× chij � (17)

In Eq. (17), chij  denotes the value of chaotic that is formed by the logistic chaotic mapping:

	 ck+1 = 4ck (1− ck)� (18)

The OBL technique computes the reverse solution X̌  of Xi. The n best solutions were selected from [X, x] as 
per the fitness value. Eventually, the technique drives to the phase of jumping.

The CTSA model develops an FF to improve the classifier’s effectiveness. It designates an optimistic numeral 
to signify the candidate solution’s amended performance. In this paper, the reduction of the classifier’s rate of 
error is measured as FF, which is shown in Eq. (19).

	
fitness (xi) = ClassifierErrorRate (xi) =

no. of misclassified samples

Total no. of samples
× 100� (19)

Experimental analysis and results
In this section, the experimental validation results of the PACHS-DLBDDM model are examined utilizing 
the LC25000 dataset30. The dataset covers 25,000 samples with five classes, as delivered in Table  1. Figure  5 
establishes the sample imageries of lung and colon cancers.

Figure 6 establishes the confusion matrices formed by the PACHS-DLBDDM technique under 80:20 and 
70:30 of TRAP/TESP. The results indicate that the PACHS-DLBDDM approach efficiently detects and precisely 
identifies all five class labels.

Table  2; Fig.  7 indicate the overall cancer detection results of the PACHS-DLBDDM technique under 
80%TRAP and 20%TESP. The results inferred that the PACHS-DLBDDM technique properly recognized five 
different classes. With 80% TRAP, the PACHS-DLBDDM model delivers an average accuy, precn, recal, Fscore, 
and AUCscore of 99.40%, 98.50%, 98.50%, 98.50%, and 99.06%, correspondingly. Also, with 20% TESP, the 

Classes Description No. of instances

C1 “Colon Adenocarcinoma” 5000

C2 “Colon Benign Tissue” 5000

C3 “Lung Adenocarcinoma” 5000

C4 “Lung Benign Tissue” 5000

C5 “Lung Squamous Cell Carcinoma” 5000

Total No. of Samples 25,000

Table 1.  Details on dataset.
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PACHS-DLBDDM approach delivers average accuy, precn, recal, Fscore, and AUCscore of 99.54%, 98.84%, 
98.85%, 98.85%, and 99.28%, correspondingly.

Figure  8 demonstrates the training and validation accuracy outcomes of the PACHS-DLBDDM method 
under 80%TRAP and 20%TESP. The accuracy values are calculated over a range of 0–25 epochs. The outcome 
highlighted that the training and validation accuracy values have a rising tendency, which advises the aptitude 
of the PACHS-DLBDDM technique with enhanced performance over many iterations. Also, the training and 
validation accuracy remains nearer over the epochs, which specifies low least overfitting and shows improved 
performance of the PACHS-DLBDDM technique, guaranteeing consistent forecasts on hidden samples.

Figure  9 displays the training and validation loss graph of the PACHS-DLBDDM methodology under 
80%TRAP and 20%TESP. The loss values are computed over a range of 0–25 epochs. The training and validation 
accuracy values demonstrate a declining tendency, notifying the PACHS-DLBDDM methodology’s ability to 
balance a trade-off between data fitting and generalization. The frequent reduction in loss values also guarantees 
the boosted performance of the PACHS-DLBDDM approach and tunes the prediction outcomes over time.

Fig. 5.  Sample Images of (a) Lung cancer and (b) Colon cancer.
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In Fig. 10, the precision-recall (PR) curve analysis of the PACHS-DLBDDM method under 80%TRAP and 
20%TESP provides interpretation into its performance by plotting Precision against Recall for every class. 
The figure displays that the PACHS-DLBDDM method continuously completes upgraded PR values across 
dissimilar class labels, demonstrating its ability to uphold a significant part of true positive predictions between 
every positive prediction (precision) while taking a large ratio of actual positives (recall). The secure rise in PR 
outcomes between every class depicts the efficiency of the PACHS-DLBDDM approach in the classification 
procedure.

In Fig. 11, the ROC curve of the PACHS-DLBDDM approach under 80%TRAP and 20%TESP is studied. The 
results indicate that the PACHS-DLBDDM approach attains higher ROC results over each class, representing 
a significant skill in discerning the classes. This reliable trend of amended ROC values over numerous classes 
indicates the proficient performance of the PACHS-DLBDDM method in predicting classes, highlighting the 
strong nature of the classification method.

Fig. 6.  Confusion matrices of PACHS-DLBDDM technique (a,b) 80%TRAP and 20%TESP and (c,d) 
70%TRAP and 30%TESP.
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Table 3; Fig. 12 indicate the overall cancer recognition results of the PACHS-DLBDDM technique under 
70%TRAP and 30%TESP. The results inferred that the PACHS-DLBDDM technique properly recognized five 
different classes. With 70%TRAP, the PACHS-DLBDDM model delivers an average accuy, precn, recal, Fscore

, and AUCscore of 99.20%, 98.01%, 98.01%, 98.01%, and 98.76%, correspondingly. Also, with 30% TESP, the 
PACHS-DLBDDM model delivers average accuy, precn, recal, Fscore, and AUCscore of 99.26%, 98.15%, 
98.14%, 98.14%, and 98.84%, correspondingly.

Fig. 7.  Average of PACHS-DLBDDM technique under 80%TRAP and 20%TESP.

 

Class labels Accuy Precn Recal Fscore AUCscore

TRAP (80%)

C1 99.44 98.82 98.38 98.60 99.04

C2 99.55 98.55 99.23 98.89 99.43

C3 99.27 98.23 98.08 98.15 98.82

C4 99.47 98.41 98.95 98.68 99.27

C5 99.28 98.52 97.88 98.20 98.75

Average 99.40 98.50 98.50 98.50 99.06

TESP (20%)

C1 99.56 98.89 98.89 98.89 99.31

C2 99.70 98.76 99.69 99.22 99.70

C3 99.36 98.66 98.28 98.47 98.96

C4 99.64 98.91 99.30 99.11 99.51

C5 99.42 98.98 98.09 98.53 98.92

Average 99.54 98.84 98.85 98.85 99.28

Table 2.  Cancer detection outcome of PACHS-DLBDDM technique under 80%TRAP and 20%TESP.
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Fig. 9.  Loss curve of PACHS-DLBDDM technique under 80%TRAP and 20%TESP.

 

Fig. 8.  Accuy curve of PACHS-DLBDDM technique under 80%TRAP and 20%TESP
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Figure 13 demonstrates the training and validation accuracy results of the PACHS-DLBDDM model under 
70%TRAP and 30%TESP. The accuracy values are computed throughout 0–25 epochs. The outcome highlighted 
that the training and validation accuracy values display a rising trend, which informed the skill of the PACHS-
DLBDDM model and improved performance over several iterations. Moreover, the training and validation 
accuracy stays closer over the epochs, which specifies low minimum overfitting and reveals the superior 
performance of the PACHS-DLBDDM technique, guaranteeing steady prediction on unseen samples.

Figure  14 presents the training and validation loss graph of the PACHS-DLBDDM methodology under 
70%TRAP and 30%TESP. The loss values are calculated throughout 0–25 epochs. The training and validation 
accuracy values demonstrate a reducing tendency, notifying the PACHS-DLBDDM methodology’s ability to 
balance a trade-off between data fitting and generalization. The continual reduction in loss values assures the 
PACHS-DLBDDM technique’s higher performance and tunes the prediction outcomes over time.

In Fig.  15, the PR curve analysis of the PACHS-DLBDDM approach under 70%TRAP and 30%TESP 
interprets its performance by plotting Precision against Recall for every class. The outcome displays that the 
PACHS-DLBDDM approach continuously accomplishes enhanced PR values across diverse classes, representing 
its ability to preserve a significant part of true positive predictions among every positive prediction (precision) 
while capturing a huge amount of actual positives (recall). The stable rise in PR results among all classes depicts 
the efficiency of the PACHS-DLBDDM technique in the classification manner.

In Fig. 16, the ROC curve of the PACHS-DLBDDM approach under 70%TRAP and 30%TESP is studied. 
The results imply that the PACHS-DLBDDM approach reaches enhanced ROC outcomes over every class, 
demonstrating its significant capability of discriminating classes. This reliable trend of improved ROC values 
over numerous classes indicates the proficient performance of the PACHS-DLBDDM method in forecasting 
classes, highlighting its robust nature under the classification model.

To demonstrate the proficiency of the PACHS-DLBDDM method, a detailed comparison study of the 
PACHS-DLBDDM technique with present methods is made in Table 4; Fig. 1731. The outcomes specify that the 
m-SRC model has shown ineffective performance. The RESNET50, CNN, and DAEL-GNN models have also 
exhibited slightly boosted results. Meanwhile, the Faster RCNN, MPA-DLLC3, and BERTLHI-ALCC methods 
have demonstrated moderately closer results. However, the PACHS-DLBDDM approach outperforms the other 
methodologies with an increased accuy of 99.54%, precn of 98.84%, recal of 98.85%, and Fscore of 98.85%.

Figure 18 depicts a comparison computation time (CT) study of the PACHS-DLBDDM method with present 
methods. The outcomes showed that the PACHS-DLBDDM technique attains a minimal CT of 35s. On the other 
hand, the BERTLHI-ALCC, MPA-DLLC3, m-SRC, Faster RCNN, DAEL-GNN, RESNET50, and CNN models 
obtain increased CT values of 45s, 55s, 65s, 60s, 57s, 62s, and 55s, correspondingly. Thus, the PACHS-DLBDDM 
technique can be employed to identify LCC.

Fig. 10.  PR curve PACHS-DLBDDM technique under 80%TRAP and 20%TESP.

 

Scientific Reports |        (2024) 14:27497 13| https://doi.org/10.1038/s41598-024-78015-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion
In this work, the PACHS-DLBDDM approach is proposed. The projected PACHS-DLBDDM approach mainly 
focuses on the identification of LCC. At the primary stage, the PACHS-DLBDDM technique applies GF to 
preprocess the input images. Next, the PACHS-DLBDDM technique utilizes the Faster SqueezeNet to generate 
a feature vector. In addition, the CNN-LSTM approach is employed for LCC classification. The CTSA approach 
was executed to optimize the hyperparameter value of the CNN-LSTM approach so that the classifier outcomes 
could be improved. The experimentation outcome analysis of the PACHS-DLBDDM approach is verified on a 
medical imaging dataset. The performance validation of the PACHS-DLBDDM model portrays the superior 
accuracy value of 99.54% over other DL models. The PACHS-DLBDDM model, while efficiently detecting 
and classifying LCC using GF, Faster SqueezeNet, CNN-LSTM, and CTSA methods, encounters limitations 

Classes Accuy Precn Recal Fscore AUCscore

TRAP (70%)

C1 99.38 98.18 98.72 98.45 99.13

C2 98.91 97.81 96.76 97.28 98.11

C3 99.27 98.25 98.11 98.18 98.84

C4 99.05 97.49 97.74 97.61 98.56

C5 99.41 98.32 98.74 98.53 99.16

Average 99.20 98.01 98.01 98.01 98.76

TESP (30%)

C1 99.36 98.33 98.46 98.40 99.02

C2 99.04 98.23 96.90 97.56 98.24

C3 99.24 97.82 98.40 98.11 98.93

C4 99.17 98.13 97.74 97.93 98.64

C5 99.48 98.23 99.21 98.71 99.38

Average 99.26 98.15 98.14 98.14 98.84

Table 3.  Cancer detection outcome of PACHS-DLBDDM technique under 70%TRAP and 30%TESP.

 

Fig. 11.  ROC curve of PACHS-DLBDDM technique under 80%TRAP and 20%TESP.
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in handling highly variable or noisy data and may need help with real-time processing. Furthermore, the 
performance of the model could be affected by the quality and diversity of input data. Future studies should 
improve the technique’s robustness to diverse data sources, enhance real-time processing capabilities, and 
incorporate more advanced models for dynamic adaptation and scalability to confirm broader applicability and 
efficiency. Future work should also explore the incorporation of transfer learning and domain adaptation models 
to improve the performance of the approach across diverse datasets and conditions, enabling more precise 
classification and detection of LCC in various clinical scenarios.

Fig. 12.  Average of PACHS-DLBDDM technique under 70%TRAP and 30% TESP.
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Fig. 13.  Accuy curve of PACHS-DLBDDM technique under 70%TRAP and 30%TESP
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Fig. 14.  Loss curve of PACHS-DLBDDM method under 70%TRAP and 30%TESP.
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Fig. 15.  PR curve PACHS-DLBDDM technique under 70%TRAP and 30%TESP.
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Models Accuy Precn Recal Fscore CT (s)

PACHS-DLBDDM 99.54 98.84 98.85 98.85 35

BERTLHI-ALCC 99.25 98.10 98.07 98.07 48

MPA-DLLC3 99.13 98.04 97.24 97.10 55

m-SRC 88.24 85.23 91.79 86.80 65

Faster RCNN 98.82 96.56 97.65 97.36 60

DAEL-GNN 98.75 97.97 96.41 96.84 57

RESNET50 93.68 96.14 97.53 96.98 62

CNN 97.14 97.11 97.48 97.63 55

Table 4.  Comparative outcome of PACHS-DLBDDM technique with other models31.

 

Fig. 16.  ROC curve of PACHS-DLBDDM technique under 70%TRAP and 30%TESP.
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Fig. 17.  Comparative outcome of PACHS-DLBDDM technique with other models.
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Fig. 18.  CT outcome of PACHS-DLBDDM technique with existing models.
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Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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