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SUMMARY
The concept of the ‘‘neurovascular unit,’’ emphasizing the interactions between neural and vascular components in the brain, raised the

notion that neural progenitor cell (NPC) transplantation therapy aimed at neural repair may be insufficient for the treatment of ischemic

stroke. Here, we demonstrate that enhanced neurovascular recovery via cotransplantation of NPCs and embryonic stem cell-derived

vascular progenitor cells (VPCs) in a rat strokemodel is correlated with improved functional recovery after stroke.We found that cotrans-

plantation promoted the survival, migration, differentiation, and maturation of neuronal and vascular cells derived from the cotrans-

planted progenitors. Furthermore, it triggered an increased generation of VEGF-, BDNF-, and IGF1-expressing neural cells derived

from the grafted NPCs. Consistently, compared with transplantation of NPCs alone, cotransplantation more effectively improved the

neurobehavioral deficits and attenuated the infarct volume. Thus, cotransplantation of NPCs and VPCs represents a more effective

therapeutic strategy for the treatment of stroke than transplantation of NPCs alone.
INTRODUCTION

Stroke is the third leading cause of death and disability in

developed countries (van der Worp and van Gijn, 2007).

Although immediate interventionwith tissue plasminogen

activator (TPA) can provide some benefits during the acute

phase of stroke, no other clinically effective treatments are

currently available for this disease (van der Worp and van

Gijn, 2007). Stem cell transplantation represents a poten-

tial therapeutic strategy for stroke (Liu et al., 2014). Previ-

ous studies on stem cell transplantation emphasized the

replacement of either neural or vascular components in

the brain; however, the poor survival and differentiation

of both the transplanted cells and their progenies in the

hostile environment of the infarcted cortex hamper the ef-

ficacy of treatment (Martino and Pluchino, 2006; Kaneko

et al., 2012).

The ‘‘neurovascular unit’’ of the brain provides a concept

to consider improving the vasculature and other micro-

environmental components to alleviate severe neural cell

death that occurs after stroke, brain injury, and neurode-

generation, and comprises neurons, glia (astrocytes, micro-

glia, and oligodendroglia), and vascular cells (endothelia,

pericytes and vascular smooth muscle cells) (Zlokovic,

2010). The neurovascular signaling that can modulate

various degrees of neuronal plasticity may be critically

important for functional neurological recovery after CNS
Ste
injury (Moskowitz et al., 2010). Consequently, it has been

suggested that therapeutic approaches should target both

neural and vascular cell types in order to protect their struc-

tural and functional integrity and their reciprocal interac-

tions (Zlokovic, 2010; Moskowitz et al., 2010). In this

regard, Nakagomi et al., (2009) reported that in a mouse

stroke model, cotransplantation of endothelial cells (ECs)

together with neural stem/progenitor cells enhanced the

survival, proliferation, and differentiation of the neural

stem/progenitor cells andpartly improved cortical function

(locomotion under the light condition). However, whether

cotransplantation of neural progenitor cells (NPCs) with

vascular progenitor cells (VPCs) that produce multiple

vascular elements, including pericytes/smoothmuscle cells

(SMAs), would yield a more effective functional recovery

after focal ischemic injury in the cortex compared with

transplantation of NPCs alone has not been determined.

NPCs derived from embryonic day 14 (E14) mice have

been shown to differentiate into both neuronal and glial

cells (Reynolds andWeiss, 1996) in vitro.Mouse embryonic

stem cell-derived VPCs (ESC-VPCs) can differentiate into

not only ECs but also vascular mural cells (pericytes/

SMAs) (Yamashita et al., 2000), an important cell type

that is involved in construction of the blood-brain barrier

(Dalkara et al., 2011). In this study, we cotransplanted fetal

NPCs and ESC-VPCs in a rat model of transient middle

cerebral artery occlusion (tMCAO), a clinically relevant
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Figure 1. The Progenitor Cell Properties
of NPCs and ESC-VPCs Were Maintained
Prior to Transplantation
(A) Neurospheres derived from the telen-
cephalon of E14 GFP transgenic mice.
(B and C) Dissociated cells in the neuro-
spheres on a monolayer culture at 70% (B)
or 95% (C) density were immunostained
against the embryonic NPC marker NESTIN.
(D) Schematic diagram illustrating the pro-
cedure for deriving VPCs from ESCs.
(E) mRNA expression of specific marker
genes in undifferentiated ESCs, FLK1+, and
FLK1� cell fractions in day 4 EBs. VE-cad, VE-
cadherin. All RT-PCR experiments were per-
formed in triplicate.
(F–I) ESCs maintained in an undifferenti-
ated state (F) were forced to form EBs (G).
After the EBs were cultured in suspension for
4 days, the FLK1+ cell fraction was selected
via FACS, seeded on mitomycin-C-irradiated
fibroblasts, and exposed to VEGF. On day 11,
the culture was immunostained against the
EC-specific marker CD31. Bright-field (H)
and fluorescence (I) images are shown.
Scale bars, 100 mm.
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model of focal cerebral ischemia. In addition, we used

NPCs and VPCs of mouse origins in a rat stroke model to

mimic interspecies cell transplantation. We found that

cotransplantation of NPCs and VPCs facilitated the sur-

vival, differentiation, and/or maturation of neuronal and

vascular cells derived from the cotransplanted progenitors.

This beneficial effect of cotransplantation correlated with

greater improvements in motor function of the affected

limb and reduced infarct volume compared with NPC

transplantation alone, providing evidence that fostering

both neural and vascular recovery could be more effective

than neural repair alone in promoting functional recovery

from stroke-induced impairments.
RESULTS

Characterization of NPCs and VPCs before

Transplantation

To generate NPCs that could be tracked after transplanta-

tion, we derived primary cells from the telencephalons of

E14 transgenic mice, which express a GFP reporter under

the control of a CMV promoter. A small proportion of the
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primary cells generated neurospheres by day 8 of the initial

culture (Figure 1A). After collecting and expanding the cells

in theneurospheresonfibronectin-coatedplates for twopas-

sages,we characterized the cells via immunostaining against

NESTIN, a marker of embryonic NPCs. As shown in Figures

1B and 1C, more than 97% of the GFP+ cells expressed

NESTIN, suggesting that the majority of the cells in the cul-

ture maintained a progenitor cell phenotype. The neuro-

sphere cells that were expanded on the fibronectin-coated

plates at passage 2 were then used for transplantation.

We employed an embryoid body (EB) approach to derive

VPCs frommouse ESCs according to a previously described

method (Li and Stuhlmann, 2012). After 4 days of culture as

EBs, the fetal liver kinase 1 (FLK1)+ cell fractionwas selected

from the EBs via fluorescence-activated cell sorting (FACS;

Figure 1D), and an aliquot of the FLK1+ cells was subjected

to a panel of tests to evaluate the expression of various

markers via RT-PCR (Figure 1E). These tests revealed that

FLK1+ cells lost expression of the undifferentiated ESC

marker Oct4, expressed the hemangioblast markers Scl/

Tal1 and Flk1, and did not express the EC marker VE-cad-

herin. In contrast, the FLK1� cell fraction did not express

any of the above markers, and the ESCs only expressed
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Oct4 (Figure 1E). These results suggest that the FLK1+ cells

derived from the day 4 EBs were hemangioblasts (Lugus

et al., 2009). To further elucidatewhether the FLK1+heman-

gioblasts were able to develop the vasculature in vitro, the

FLK1+ or FLK1� cells were placed on mitomycin-C treated

fibroblasts and exposed to VEGF (Figures 1F–1I). By day

11, the FLK1+ cells developedhighly branched vascular net-

works based on immunostaining against the EC marker

CD31 (Figures 1H and 1I). In sharp contrast, the FLK1� cells

did not form any vasculature under the same culture condi-

tions at the same time point. The FLK1+ hemangioblasts

were thus defined as VPCs and used for transplantation.

Cotransplantation of NPCs and VPCs Promoted Graft

Migration, Neural Graft Survival, Neuronal

Differentiation, and/or Maturation

To address whether cotransplantation of NPCs and

VPCs can promote graft migration, neural graft survival,

neuronal differentiation, and/or maturation, we injected

1 million NPCs and 0.5 million VPCs (25 ml/mice) into

the peri-infarct area of the injured rat brains (n = 6; Fig-

ure 2A). As controls, 1 million NPCs and 0.5 million

gamma-irradiated embryonic fibroblast cells (irrFCs; inac-

tive cells; 25 ml/mice) or 1 million NPCs alone (25 ml/mice)

were injected into the same site of injured brains (n = 6 for

each control group; Figure 2A). For lineage tracing, we used

the fluorescent vital dye Hoechst 33342 (Ho), which binds

DNA in live cells, to label VPCs and irrFCs prior to trans-

plantation in all the experiments.

By day 14, transplanted cells migrated from the peri-

infarct cortex into the infarct area in rats transplanted

with NPCs alone (Figures 2A and 2B), rats cotransplanted

with NPCs and irrFCs (Figure 2C), and rats cotrans-

planted with NPCs and VPCs (Figure 2D). To examine

whether cotransplantation of NPCs and VPCs affects the

migration of grafts, we measured the average vertical dis-

tance of the farthest migration. In the NPC and VPC

cotransplantation group, cells migrated 4.0-fold farther

than those in the NPC and irrFC cotransplantation group

(2,833.0 ± 763.8 mm versus 700.0 ± 150.0 mm; p < 0.01) or

5.7-fold farther than those in the NPC-alone transplanta-

tion group (2,833.0 ± 763.8 mm versus 500.0 ± 132.3 mm;

p < 0.01; Figure 2E).

To evaluate neural graft survival, we first performed a

TUNEL assay to detect dead GFP+ cells in the grafts. Less

than 0.01% of the GFP+ cells were TUNEL+ in all of the

groups examined on day 14 after transplantation (image

not shown). However, we found that the number of grafted

GFP+ cells out of the total number of injected GFP+ cells in

rats cotransplanted with NPCs and VPCs was significantly

higher than that in rats cotransplanted with NPCs and

irrFCs (�2.5% versus �1.1%; p < 0.01) or rats transplanted

with NPCs alone (�2.5% versus �1.0%; p < 0.01), suggest-
Ste
ing that cotransplantation of NPCs and VPCs promotes

neural graft survival (Figure 2F).

We then examined the differentiation ofGFP+ cells in the

infarct area via immunostaining against a panel of neural

markers, including NESTIN (a marker of neural stem cells),

doublecortin (DCX, a marker of neuronal precursors), glial

fibrillary acidic protein (GFAP, a marker of astroglial cells),

bIII-TUBULIN (a marker of neurons), and TAU1 (a marker

of mature neurons). We detected very few GFP+/NESTIN+

(<0.1%) or GFP+/DCX+ (<0.1%) cells in all of the three

groups on day 14 (data not shown). Surprisingly, themajor-

ity of the GFP+ cells expressed GFAP (Figures 2G–2K) and

only a small portion of the GFP+ cells expressed bIII-

TUBULIN (Figures 2L and 2M) in rats transplanted with

NPCs alone on day 14. A similar result was obtained for

rats cotransplanted with NPCs and irrFCs (Figure S1 avail-

able online).

In the rats cotransplanted with NPCs and VPCs, a large

number of GFP+ and Ho+ cells were detected in the infarct

cortex (Figures 3A and 3B). When we labeled the vessels us-

ing dye-conjugated LECTIN and immunostaining against

a-SMA, a marker of mural cells (Lopes et al., 2011), we

detected many mural cell-covered Ho+/LECTIN+ microves-

sels, some of which were surrounded by GFP+ cells in the

infarct area (Figure 3C). Immunostaining against neuronal

markers revealed a much higher percentage of GFP+/bIII-

TUBULIN+ neurons (�70% versus �23%; p < 0.001) and a

lower percentage of GFP+/GFAP+ astroglial cells (�30%

versus �76%; p < 0.001) in the rats cotransplanted with

NPCs and VPCs compared with those cotransplanted with

NPCs and irrFCs or those transplanted with NPCs alone

(Figure 3D).Additionally,whereasnoneof theGFP+ cells ex-

pressed the mature neuronal marker TAU1 in the two con-

trol groups (image not shown), an average of 12.3% ±

1.6%of theGFP+ cells expressed TAU1 in the group cotrans-

planted with NPCs and VPCs, suggesting much more

mature neuronal differentiation (Figure 3D).

To further examine whether the engrafted neurons

matured into specific neuronal subtypes, we stained the

brain sections againstg-aminobutyric acid (GABA), amarker

of GABAergic neurons, or glutamate vesicular transporter

(VGLUT1), a marker of glutamatergic neurons. None of the

GFP+ cells stained positively for VGLUT1 in any of the three

groups examined, andnoGFP+/GABA+cellsweredetected in

the two control groups. However, some GFP+ cells stained

positively for GABA in the lower middle part of the cortex

from the transplantation site (rectangular purple area in Fig-

ure 3A), which constituted 22.8% ± 3.6% of the engrafted

GFP+ cells in the rats cotransplanted with NPCs and VPCs

(Figure 3E). Next, we performed double immunostaining

against GABA and VGLUT1 to examine whether these

cells received synaptic inputs. Double immunostaining re-

vealed robust VGLUT1 staining onGFP+/GABA+ cell bodies,
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Figure 2. Cotransplantation of NPCs and VPCs Promoted Graft Migration and Neural Graft Survival
(A) Diagram illustrating the tour of cell migration in an injured brain. The infarct area is denoted in gray, the transplants are denoted in
green aggregates, the arrow indicates the direction of migration, and the vertical distance away from the edge of transplants is labeled.
(B–D) Low-magnification images of transplants in rat brains in the group transplanted with NPCs alone (B), the group cotransplanted with
NPCs and irrFCs (C), and the group cotransplanted with NPCs and VPCs (D) on day 14 after transplantation. Merged: merge of bright-field
and fluorescence images.
(E) The average vertical distance of the farthest migration in rats cotransplanted with NPCs and VPCs was compared with that in rats
cotransplanted with NPCs and irrFCs or rats transplanted with NPCs alone on day 14 after transplantation.
(F) The number of grafted GFP+ cells out of the total number of injected GFP+ cells in rats cotransplanted with NPCs and VPCs was compared
with that in rats cotransplanted with NPCs and irrFCs or rats transplanted with NPCs alone on day 14 after transplantation.
(G) Diagram illustrating the injection (black box) and migration (green boxes) sites of neural transplants in a rat brain. The infarct area is
denoted in gray.
(H) Low-magnification image of grafted GFP+ cells in a rat brain transplanted with NPCs alone on day 14 after transplantation.
(I) Enlarged image of the boxed region in (H).
(J and K) The GFP+ cells in the region marked by * in (I) were immunostained using antibodies against GFAP.
(L and M) The GFP+ cells in the region marked by ** in (I) were immunostained using antibodies against bIII-TUBULIN.
The data are presented as means ± SD (**p < 0.01; one-way ANOVA and Tukey’s post hoc). Scale bars, 2 mm in (B) and 100 mm otherwise.
See also Figure S1.
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suggesting that thegraftedGABAergicneurons receivegluta-

matergic inputs (Figure 3E).

Cotransplantation of NPCs and VPCs Enhanced the

Vascular Graft Survival, Differentiation, Formation,

and Maturation of Microvessels

To determine whether cotransplantation of NPCs and

VPCs can promote vascular graft survival and the differ-
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entiation, formation, and maturation of blood vessels,

rats (n = 6) were transplanted with 0.5 million VPCs

alone (25 ml/mice) and compared with rats (n = 6) cotrans-

planted with 1 million NPCs and 0.5 million VPCs (25 ml/

mice). There were clusters of Ho+ cells in both the rats

transplanted with VPCs alone and the rats cotransplanted

with NPCs and VPCs on day 14 (Figures 4A and 4B).

TUNEL staining revealed that <0.01% of the Ho+ cells



Figure 3. Cotransplantation of NPCs and VPCs Promoted the Differentiation and/or Maturation of Neuronal Cells Derived from
Engrafted NPCs
(A) Left: diagram illustrating the injection (black box) and migration (orange box) sites of cotransplantation in a rat brain. The infarct area
is denoted in gray. Right: low-magnification image of grafted GFP+ and Ho+ cells in a rat brain cotransplanted with NPCs and VPCs on day 14
after transplantation.
(B) Top: enlarged view of the white-boxed region in (A). Bottom: enlarged view of the white-boxed region in the upper panel.
(C) Rat brains were perfused with LECTIN before dissection. The sections were then immunostained using antibodies against a-SMA. Left: a
representative image of a LECTIN+/a-SMA+ microvessel generated by the Ho+ cells in (B) (arrow). Right: a representative image of a
LECTIN+/a-SMA+ microvessel that is surrounded by GFP+ cells and was generated by the Ho+ cells in (B) (arrowhead). The x-z and y-z planes
of the three-dimensional view of merge images are shown on the right and below, respectively.
(D) Left: the GFP+ cells in (B) were immunostained using antibodies against GFAP, bIII-TUBULIN, or TAU1. Below is an enlarged view of the
arrow-highlighted cells in the upper panel. Right: the numbers of GFP+/GFAP+, GFP+/bIII-TUBULIN+, and GFP+/TAU1+ cells out of the total
number of grafted GFP+ cells in the infarct area in the group cotransplanted with NPCs and VPCs were compared with those in the group
cotransplanted with NPCs and irrFCs or the group transplanted with NPCs alone. bIII-TUB, bIII-TUBULIN.
(E) Left: the GFP+ cells in (B) were immunostained using antibodies against GABA or coimmunostained using antibodies against GABA and
VGLUT1. Insets show the enlarged view of the boxed region. Right: the numbers of GFP+/GABA+ or GFP+/VGLUT1+ cells out of the total
number of grafted GFP+ cells in the infarct area in the group cotransplanted with NPCs and VPCs were compared with those in the group
cotransplanted with NPCs and irrFCs or the group transplanted with NPCs alone.
The data are presented as means ± SD (***p < 0.001; Kruskal-Wallis test and Dunnett’s post hoc). Scale bars, 2 mm in (A), 100 mm in (B)
and (C), 20 mm in (D), and 40 mm in (E). See also Figure S1.
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were TUNEL+ in the grafts in both groups (image not

shown). However, the number of grafted Ho+ cells out

of the total number of injected Ho+ cells was �2-fold

higher in rats cotransplanted with NPCs and VPCs than

in those transplanted with VPCs alone (�38.2% versus

�17.3%; p < 0.01; Figure 4C), suggesting that cotransplan-
Ste
tation of NPCs and VPCs enhanced the vascular graft

survival.

To compare the vascular differentiation capacity of

grafted VPCs, we used LECTIN to label the vessels and

quantified the number of Ho+ nuclei within the LECTIN-

perfused vessels out of the grafted Ho+ nuclei (Figure 4D).
m Cell Reports j Vol. 3 j 101–114 j July 8, 2014 j ª2014 The Authors 105



Figure 4. Cotransplantation of NPCs and
VPCs Promoted Vascular Graft Survival
and the Differentiation, Formation, and
Maturation of Microvessels
(A and B) Low-magnification image of
transplanted Ho+ cells in rat brains in the
group transplanted with VPCs alone (A) or
the group cotransplanted with NPCs and
VPCs (B) on day 14 after transplantation.
Merge: merge of bright-field images with
fluorescence images.
(C) The number of grafted Ho+ cells out of
the total number of injected Ho+ cells in the
group cotransplanted with NPCs and VPCs
was compared with that in the group
transplanted with VPCs alone on day 14 after
transplantation.
(D) Representative image of LECTIN-
perfused vessels derived from the Ho+ VPCs.
(E) The number of Ho+ nuclei within the
LECTIN-perfused vessels relative to the
number of grafted Ho+ nuclei in the group
cotransplanted with NPCs and VPCs was
compared with that in the group trans-
planted with VPCs alone on day 14 after
transplantation.
(F and G) High-magnification images of
the Ho+/LECTIN+ or Ho+/LECTIN+/a-SMA+

microvessels in (D).
(H and I) Magnified images of the arrow-
marked microvessels in (F) and (G). The x-z
andy-zplanesof three-dimensional views are
shown on the right and below, respectively.
(J) The numbers of Ho+/LECTIN+ or Ho+/
LECTIN+/a-SMA+ microvessels in the infarct
area in the group cotransplanted with NPCs
and VPCs were compared with those in the
group transplanted with VPCs alone on day
14 after transplantation.
The data are presented as means ± SD (**p <
0.01, ***p < 0.001; Kruskal-Wallis test and
Dunnett’s post hoc). Scale bars, 2 mm in (B),
200 mm in (D), and 50 mm otherwise.
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The proportion of Ho+/LECTIN+ nuclei in the rats cotrans-

plantedwithNPCs andVPCswas�7.5-fold (�30.7%versus

�4.1%; p < 0.001) greater than in the rats transplanted

with VPCs alone (Figure 4E), suggesting a significant

improvement in the vascular differentiation capacity of

grafted VPCs.

To determine whether cotransplantation of NPCs and

VPCs can promote the formation of functional vessels

derived from grafted VPCs, we counted the Ho+/LECTIN+

microvessels (Figures 4F and 4G) or mural cell-covered

Ho+/LECTIN+ microvessels (Figures 4H and 4I) in the

infarct area in both groups. We found �5.4-fold more
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Ho+/LECTIN+ microvessels in the infarct area of rats co-

transplanted with NPCs and VPCs compared with those

transplanted with VPCs alone (17,287.0 ± 3,286.0 versus

3,198.0 ± 1,410.0, respectively; p < 0.001; Figure 4J).

Similarly, immunostaining against a-SMA revealed that

the number of Ho+/LECTIN+/a-SMA+ microvessels in the

infarct area of rats cotransplanted with NPCs and VPCs

was �10.8-fold greater (5,031.0 ± 909.6 versus 466.0 ±

355.0; p < 0.001; Figure 4J) than in rats transplanted with

VPCs alone. It should be noted that we did not detect

LECTIN+ microvessels derived from the host in the infarct

area in any of the groups examined.



Figure 5. Cotransplantation of NPCs and
VPCs More Effectively Improved the Neu-
robehavioral Deficits
(A) Diagram illustrating the experimental
procedures used to evaluate neural behav-
ioral performance and infarct volume
changes in rats after various treatments.
Sites of injection shown in sagittal planes
and coronal planes are depicted on the left
and right. OB, olfactory bulb; Ctx, cortex;
LV, lateral ventricle; Hp, hippocampus. The
infarct area is denoted in gray.
(B–D) The average rotarod performance (B),
right-biased swing % (C), and mNSS (D) of
rats in the group cotransplanted with NPCs
and VPCs were compared with those in the
group cotransplanted with NPCs and irrFCs,
the group transplantedwith irrFCs alone, and
thegroup sham injectedwith PBSprior to cell
transplantation (pre) and on days 3, 7, and
14 after cell transplantation (n = 18 for each
group). The data are presented asmeans± SD
( *p < 0.05; **p < 0.01; ***p < 0.001; B, one-
way ANOVA and Tukey’s post hoc; C and D,
Kruskal-Wallis test and Dunnett’s post hoc).
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Cotransplantation of NPCs and VPCs More Effectively

Improves Functional Neurological Deficits

To determine whether cotransplantation of NPCs and

VPCs can promote functional recovery more effectively

than transplantation of NPCs alone, we examined neuro-

behavioral parameters using the accelerating rotarod test,

elevated body swing test (EBST), andmodified neurological

severity score (mNSS) test. For these tests, rats (n = 18) co-

transplanted with 1 million NPCs and 0.5 million VPCs

(25 ml/mice) were compared with rats (n = 18) transplanted

with 1 million NPCs and 0.5 million irrFCs (25 ml/mice),

rats (n = 18) transplanted with 1.5 million irrFCs alone

(25 ml/mice), or rats (n = 18) sham injected with PBS

(25 ml/mice; Figure 5A). The accelerating rotarod test pro-

vides an index of forelimb and hindlimb motor coordina-

tion and balance (Hamm et al., 1994). The rats displayed

a significantly shorter duration of remaining on the accel-

erating rotarod on day 1 after stroke compared with before

the stroke (17.4 ± 7.4 s versus 145.6 ± 29.0 s; p < 0.001; Fig-

ure 5B). On day 7, although the duration of remaining on

the rotarod was significantly longer in rats cotransplanted

with NPCs and irrFCs (59.1 ± 17.6 s) than in rats trans-

planted with irrFCs alone (35.2 ± 6.6 s; p < 0.01) or rats

sham injected with PBS (31.6 ± 6.9 s; p < 0.001; Figure 5B),

cotransplantation of NPCs and VPCs prolonged the dura-

tion of remaining on the rotarod more effectively than co-

transplantation of NPCs and irrFCs at this time point

(79.2 ± 13.2 s; p < 0.05; Figure 5B). On day 14, the rats

cotransplanted with NPCs and VPCs still exhibited a
Ste
significantly longer duration of remaining on the rotarod

(105.5 ± 16.2 s) compared with rats cotransplanted with

NPCs and irrFCs (70.2 ± 19.7 s; p < 0.01), transplanted

with irrFCs alone (45.2 ± 7.4 s; p < 0.001), or sham injected

with PBS (51.6 ± 9.4 s; p < 0.001; Figure 5B). In contrast, no

difference was observed among the other three groups at

this time point (Figure 5B).

In addition to the rotarod test, we performed the EBST

to evaluate asymmetrical motor behavior (Borlongan and

Sanberg, 1995). The rats exhibited a 100% tendency to

turn toward the right side (contralateral to the lesion) on

day 1 after stroke (Figure 5C). No difference was detected

among the groups during the first 7 days (Figure 5C). On

day 14, the percentage of right-biased swinging in rats co-

transplanted with NPCs and VPCs (35.0% ± 15.7%) was

significantly lower than that in rats cotransplanted with

NPCs and irrFCs (69.2% ± 20.6%; p < 0.01), transplanted

with irrFCs alone (84.0% ± 11.4%; p < 0.001), or sham in-

jected with PBS (88.8% ± 16.4%; p < 0.001; Figure 5C). In

contrast, no difference was observed among the other three

groups at this time point (Figure 5C).

Finally, we used themNSS test (14 points) to evaluate the

motor abilities, reflexes, and balance of the rats (Boltze

et al., 2006). On day 1 after stroke, all of the rats displayed

a high mNSS (9.2 ± 1.0). On day 7, the rats cotransplanted

with NPCs and VPCs displayed a significantly lower mNSS

(3.2 ± 1.0) than the rats cotransplanted with NPCs

and irrFCs (5.6 ± 1.3; p < 0.01), transplanted with irrFCs

alone (6.8 ± 0.8; p < 0.001), or sham injected with PBS
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(7.4 ± 2.0; p < 0.001; Figure 5D). By day 14, cotransplanta-

tion of NPCs and VPCs further reduced the mNSS. The

mNSS of rats cotransplanted with NPCs and VPCs (1.0 ±

0.9) was significantly lower than that of rats cotransplanted

with NPCs and irrFCs (3.9 ± 1.7; p < 0.05), trans-

planted with irrFCs alone (5.6 ± 1.1; p < 0.01), or sham in-

jectedwith PBS (6.8 ± 2.3; p < 0.001; Figure 5D). In contrast,

no difference was observed among the other three groups

throughout the 14-day period (Figure 5D).

Cotransplantation of NPCs and VPCs More Effectively

Attenuates the Infarct Volume

It was previously reported that T2-weighted MRI hyperin-

tensity reflects vasogenic edema and cortical infarction,

which constitute the total infarct volume during subacute

stages from 24 hr to 2 weeks after stroke (Schiemanck

et al., 2005). To assess whether cotransplantation of NPCs

and VPCs could be more effective for attenuating infarct

volume than transplantation of NPCs alone from day 1

to day 14 after stroke, we used T2-weighted MRI to detect

the infarct volume in groups in which we had examined

neurobehavioral parameters. Based on the T2 hyperinten-

sity, the infarct volume was between 44% and 45% of the

contralateral brain for all of the rats on day 1 after stroke

(Figure 6A). After transplantation, the infarct volume (per-

centage of the contralateral hemisphere) of the rats co-

transplanted with NPCs and VPCs (31.5% ± 2.5%) was

significantly smaller than that of rats either transplanted

with irrFCs alone (41.8% ± 5.9%; p < 0.05) or sham injected

with PBS (40.9% ± 5.2%; p < 0.01) on day 7 (Figure 6B). No

difference was detected between the rats cotransplanted

with NPCs and VPCs and the rats cotransplanted with

NPCs and irrFCs at this time point (Figure 6B). By day 14,

the infarct volume of the rats cotransplanted with NPCs

and VPCs (23.7% ± 1.2%) was significantly smaller than

that of rats cotransplanted with NPCs and irrFCs

(32.5% ± 5.2%; p < 0.05), transplanted with irrFCs alone

(35.1% ± 5.4%; p < 0.05), or sham injected with PBS

(36.9% ± 3.8%; p < 0.001; Figure 6B). In contrast, no differ-

ence was observed among the other three groups at this

time point (Figure 6B).

Cotransplantation of NPCs and VPCs Promotes

Engrafted Neural Cells Expressing VEGF, BDNF,

and IGF1

To determine the molecular basis underlying the beneficial

effect of cotransplantation of NPCs and VPCs, we exam-

ined the expression of a set of growth/trophic factors,

including brain-derived neurotrophic factor (BDNF),

vascular endothelial growth factor (VEGF), insulin growth

factor 1 (IGF1), and nerve growth factor (NGF), by double

immunostaining against cell-type-specific markers and

growth/trophic proteins in all of the experimental groups.
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The immunostaining revealed that BDNF was expressed

by a subset of the grafted GFP+/NESTIN+ NPCs (Figure 7A).

BDNF was also synthesized by some GFP+/GFAP+ astroglia

(Figure 7B). Aside from BDNF, many GFP+/GFAP+ cells

expressed VEGF (Figure 7C). Notably, a subset of grafted

GFP+/bIII-TUBULIN+ neurons expressed IGF1 (Figure 7D).

No detectable immunostaining against NGF was found

in the infarct area. In addition, none of the Ho+ vascular

cells expressed any of the aforementioned growth/trophic

factors in the rats cotransplanted with NPCs and VPCs or

transplanted with VPCs alone. It should be noted that

we did not detect growth/trophic factor-expressing cells

derived from the host in the infarct area in any of the

groups examined.

To assess whether cotransplantation of NPCs and VPCs

could promote the neural production of growth/trophic

factors, we counted the number of GFP+/NESTIN+/BDNF+,

GFP+/GFAP+/BDNF+, GFP+/GFAP+/VEGF+, and GFP+/bIII-

TUBULIN+/IGF1+ cells in the infarct area in the group co-

transplanted with NPCs and VPCs compared with either

the group cotransplanted with NPCs and irrFCs or the

group transplanted with NPCs alone on days 7 and 14.

No difference in the numbers of growth/trophic factor

expressing cells was observed between the control groups

on either day 7 or 14 (Figure 7E). On day 7, the number

of GFP+/NESTIN+/BDNF+ cells in the group cotransplanted

with NPCs and VPCs (696.6 ± 120.0) was �2-fold greater

than that in either the group transplanted with NPCs and

irrFCs (325.0 ± 29.1; p < 0.01) or the group transplanted

with NPCs alone (345.6 ± 40.11; p < 0.05; Figure 7E). No

GFP+/NESTIN+/BDNF+ cells were detected in any of the

three groups on day 14, likely due to the full differentiation

of GFP+/NESTIN+ cells (Figure 7E). Cotransplantation of

NPCs and VPCs also promoted the production of BDNF

in astroglia. The number of GFP+/GFAP+/BDNF+ cells in

the group cotransplanted with NPCs and VPCs (1,294.0 ±

136.2) was�2.4-fold greater than that in the group cotrans-

planted with NPCs and irrFCs (5,31.3 ± 74.0; p < 0.01) or

the group transplanted with NPCs alone (537.3 ± 65.9;

p < 0.01) on day 7 (Figure 7E). By day 14, the group cotrans-

planted with NPCs and VPCs still displayed �2-fold

more GFP+/GFAP+/BDNF+ cells (5,328.0 ± 201.3) than

either the group cotransplanted with NPCs and irrFCs

(2,606.0 ± 405.9; p < 0.01) or the group transplanted with

NPCs alone (2,565.0 ± 1133.0; p < 0.01; Figure 7E). Simi-

larly, the production of VEGF in astroglia was also

enhanced after cotransplantation of NPCs and VPCs. The

number of GFP+/GFAP+/VEGF+ cells in the group cotrans-

planted with NPCs and VPCs (2,481.0 ± 366.6) was �2.5-

fold greater than that in the group cotransplanted with

NPCs and irrFCs (995.7 ± 152.5; p < 0.01) and �2.4-fold

greater than that in the group transplanted with NPCs

alone (1,026.0 ± 196.4; p < 0.01) on day 7. In contrast, no



Figure 6. Cotransplantation of NPCs and
VPCs More Effectively Attenuated the
Cortical Infarct Volume
(A) Images captured via MRI of the same
rats in each group prior to cell trans-
plantation (pre) and on days 7 and 14 after
cell transplantation.
(B) The average infarct volumes of rats
evaluated by MRI in group cotransplanted
with NPCs and VPCs were compared with
those in the group cotransplanted with NPCs
and irrFCs, the group transplanted with
irrFCs alone, and the group sham injected
with PBS on day 1 before cell trans-
plantation and days 7 and 14 after cell
transplantation (n = 18 for each group). The
data are presented as means ± SD (*p<0.05;
**p < 0.01; ***p < 0.001; Kruskal-Wallis
test and Dunnett’s post hoc).
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difference was detected between the groups on day 14 (Fig-

ure 7E). Finally, the number of GFP+/bIII-TUBULIN+/IGF1+

cells in the group cotransplanted with NPCs and VPCs

(1,460 ± 449.7) was�5.3-fold greater than that in the group

cotransplanted with NPCs and irrFCs (274.3 ± 17.6; p <

0.01) and �5.0-fold greater than that in the group trans-
Ste
planted with NPCs alone (292.5 ± 34.5; p < 0.01) on

day 7 (Figure 7E). By day 14, the number of GFP+/bIII-

TUBULIN+/IGF1+ cells in the group cotransplanted with

NPCs and VPCs (2,277.0 ± 262.4) was �6.8-fold greater

than that in the group cotransplanted with NPCs and

irrFCs (335.9 ± 116.1; p < 0.001) and �5.0-fold greater
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Figure 7. Cotransplantation of NPCs and VPCs Enhanced the Differentiation of VEGF-, BDNF-, and IGF1-Producing Neural Cells
Derived from Transplanted NPCs
(A–D) Representative images of GFP+/NESTIN+/BDNF+, GFP+/GFAP+/BDNF+, GFP+/GFAP+/VEGF+, and GFP+/bIII-TUBULIN+/IGF1+ cells
(arrow).
(E) The average total numbers of GFP+/NESTIN+/BDNF+, GFP+/GFAP+/BDNF+, GFP+/GFAP+/VEGF+, and GFP+/bIII-TUBULIN+/IGF1+ cells in
the group cotransplanted with NPCs and VPCs were compared with those in the group cotransplanted with NPCs and irrFCs or the group
transplanted with NPCs alone (n = 6 for each group) on day 7 or 14 after transplantation.
(F) Proposed model by which cotransplantation of NPCs and VPCs promotes neurovascular regeneration, infarct volume reduction, and
recovery from functional neurological deficits. The data are presented as means ± SD (*p < 0.05; **p < 0.01; ***p < 0.001; Kruskal-Wallis
test and Dunnett’s post hoc). Scale bars, 20 mm.
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than that in the group transplanted with NPCs alone

(463.1 ± 106.7; p < 0.001; Figure 7E).
DISCUSSION

Numerous previous studies have described the transplanta-

tion of NPCs alone or ECs alone for the treatment of

ischemic stroke (Liu et al., 2014). A recent study also

demonstrated an enhanced functional recovery after co-

transplantation of neural stem/progenitor cells and ECs

(Nakagomi et al., 2009). However, in the present study,

we cotransplanted ESC-VPCs with NPCs to treat ischemic

stroke, which produced not only neural cells but also ECs

and pericytes/SMAs, thus providing nearly all important

components for recovery of the neurovascular unit. These

beneficial outcomes appear to be due to themutual support
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provided by each progenitor cell type and the enhanced

expression of growth/trophic factors by grafted neural

cells, which allow the cotransplanted progenitor cells to

generate both the neural and vascular cell types that consti-

tute the cerebral parenchyma (Figure 7F).

Rehabilitation after brain ischemia requires the recovery

of both neural and vascular components in the damaged

brain area. In this study, the cotransplanted NPCs and

VPCs differentiated into neurons, astroglia, ECs, andmural

cells in the infarct area. The latter two developed into

microvessels or mural cell-covered microvessels. It was pre-

viously reported that endogenous neovascularization is

poor in the infarct area after stroke in rats (Navaratna

et al., 2009); however, we showed that the regeneration

of microvessels derived from the transplanted VPCs was

effective. These microvessels promoted the survival, differ-

entiation, and maturation of neuronal cells derived from
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the transplanted NPCs. Specifically, �70% of the grafted

NPCs generated neurons (bIII-TUBULIN+). Approximately

17% of these neurons were mature neurons (TAU1+) and

�32% were GABAergic neurons that displayed the ability

to receive glutamatergic synaptic inputs, whichmay under-

lie the more effective improvement in motor coordination

and balance of the rats based on the results of the rotarod,

EBST, and mNSS tests during the 14 days after cotransplan-

tation of NPCs and VPCs. Due to the lack of vascular

supply, implanted NPCs display poor survival and differen-

tiation into neuronal cells, ultimately risking graft failure in

the group transplanted with NPCs alone or the group co-

transplanted with NPCs and irrFCs. Supporting data for

graft failure were generated in a preliminary long-term

study of transplanted GFP+ NPCs in the ischemic rat brain,

inwhich noGFP+ cells were detected on day 28 after stroke,

whereas successfully engrafted and properly differentiated

GFP+ neural cells were detected upon cotransplantation

of NPCs andVPCs at the same time point (data not shown).

Consistent with these results, cotransplantation of NPCs

and irrFCs did not improve some of the neurological pa-

rameters on day 7 and completely failed to display efficacy

in neurobehavioral improvement on day 14. Reestab-

lishing the vascular network in the infarct area appears to

have a neuroprotective effect on neural transplants, and

thus its importance for successful NPC transplantation

therapy cannot be underestimated.

Stroke causes damage to not only a core area of the brain

but also the peri-infarct area surrounding the ischemic core

after the initial ischemic insult, which leads to enlargement

of the infarct volume and, ultimately, irreversible tissue loss

(Jung et al., 2013). This study demonstrates that cotrans-

plantation of NPCs and VPCs prevents the progression of

brain atrophy more effectively than cotransplantation of

NPCs and irrFCs (�27% greater reduction in infarct vol-

ume). Post hoc immunohistochemical analysis revealed

that cotransplantation of NPCs and VPCs induced the gen-

eration of more neurotrophic or angiogenic factor-produc-

ing neural cells than transplantation of NPCs, suggesting

that cotransplantation of NPCs and VPCs has the potential

to mediate a greater neuroprotective effect when these fac-

tors are delivered to both the infarct and peri-infarct cortex.

In addition, the formation of mature microvessels in the

infarct area by cotransplanted progenitor cells could exert

a beneficial effect by increasing the blood flow, facilitating

growth/trophic factor delivery. Thus, cotransplantation of

NPCs and VPCs may provide mutually supportive trophic

mechanisms of neural protection via production of VEGF,

BDNF, and IGF1 in the microenvironment that preserve

the host brain from further degeneration.

The expressionof neurotrophic or angiogenic proteins by

grafted neural cells benefits the two types of transplanted

progenitors in the infarct core. First, BDNF, which is known
Ste
to be neuroprotective (Louhivuori et al., 2011), may ensure

the survival of newly formed neurons during the first week

after transplantation. Second,VEGF, oneof themost impor-

tant angiogenic factors (Horie et al., 2011), and IGF1,

considered as both neurotrophic and angiogenic (Zhu

et al., 2009), may improve the neovascularization of trans-

plantedVPCs throughout the 14days after transplantation.

Third, during the second week after transplantation, the

strong expression of BDNF by newly engrafted astroglial

cells may not only mediate consistent neuroprotection

but also play a role in the control of the excitatory/inhibi-

tory balance by regulating local GABAergic circuits (Jiao

et al., 2011). The latter is important for proper neural

network formation between the grafted and host neurons.

There are some limitations in the present study. First,

we used Ho dye for in vivo tracking of grafted ESC-VPCs

because these cells only undergo a relatively limited round

of cell divisions before terminal differentiation occurs

(Yamashita et al., 2000). The use of Ho dye to trace progen-

itor cells is similar to what was described in a previous study

(Goodell et al., 1996). It shouldbepointedout thatHodye is

not an optimal tracer for lineage tracing because it becomes

diluted alongwith cell divisions,whichmay result in an un-

derestimationof thenumberof labeled cells at theendpoint.

In addition, the debris of the dying Ho dye-labeled cells can

be takenupbymicrophages, leading to false-positive results.

Moreover, although theconcentrationofHodyeweused for

cell labeling does not cause apparent cell death (<0.01%), as

evaluated by cytotoxicity tests for 3 consecutive days after

the initial plating, higher concentrations of the dye can be

toxic to cells and should be used with caution. Second, the

majority of grafted fetal NPCs developed into GABAergic

neuronal subtypes, and no glutamatergic neurons were

generated. The lack of replacement for glutamatergic neu-

rons might decrease glutamate production and conse-

quently the glutamate pool in the infarct area, whichwould

probably limit the extent of the restoration. Third, consis-

tent with previous work by Nakagomi et al. (2009), this

study reinforces the notion that cotransplantation of

NPCs and ESC-VPCs for neurovascular regeneration is a bet-

ter therapeutic strategy for the treatment of ischemic stroke

than transplantation ofNPCs alone.However, for therapeu-

tic applications, it is desirable to deriveNPCs andVPCs from

the same donor, e.g., to derive these progenitors from the

same pluripotent stem cells. Further studies could address

whether using ESC-derived NPCs for cotransplantation

would provide the same benefits as fetal NPCs.
EXPERIMENTAL PROCEDURES

Cell Culture
NPCs were isolated from the telencephalon of E14 GFP transgenic

mice (Research Center of Nanjing University, Nanjing, China) as
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described previously (Azari et al., 2011) and in Supplemental

Experimental Procedures. To derive the VPCs, murine R1 ESCs

(Institute of Biochemistry and Cell Biology, Shanghai, China)

were cultured on mitomycin-C-treated feeder cells in ESC growth

medium. Details regarding themethods used for ESCmaintenance

and differentiation can be found in Supplemental Experimental

Procedures. The FLK1+ cell fraction from day 4 EBs was isolated

using a flow cytometer (Beckman-Coulter). The FLK1+ cells were

either immediately used for cell transplantation or seeded on fibro-

blasts treated withmitomycin-C (Sigma), and exposed to 50 ng/ml

VEGF (R&D Systems) for in vitro experiments.

tMCAO
To induce focal cerebral ischemia, adultmale rats (Sprague-Dawley,

3 months old, 250–300 g; Shanghai Laboratory Animal Center,

Shanghai, China) were subjected to tMCAO for 2 hr. MRI was

performed 24 hr after tMCAO. Only rats that displayed an infarct

volume between 41% and 44% of the contralateral hemisphere

were used for all of the experiments in the study. Animal surgeries

were performed as previously described (Yang and Betz 1994) and

in Supplemental Experimental Procedures. All animal procedures

were approved by the Shanghai Jiaotong University Administra-

tive Panel on Laboratory Animal Care.

Cell Transplantation
Cells were transplanted into the peri-infarct area at 24 hr after

ischemic stroke in rats. To track VPCs and irrFCs after transplanta-

tion, the VPCs or irrFCs were incubated in Hoechst 33342 (Sigma-

Aldrich) medium (7.5 mg/ml) for 5 min at 37�C. The rats were

treated with 25 ml of the cell suspension at the densities indicated

in Results or with PBS along the anterior-posterior axis in the cor-

tex at the coordinates described in Supplemental Experimental

Procedures. The rats were injected i.p. daily with cyclosporine A

(CsA, 10 mg/kg; Sigma-Aldrich) for immunosuppression from

day 1 to day 14 after cell transplantation. On day 7 or day 14,

the rats were transcardially perfused with heparinized saline

(0.9%) and fixed with 4% paraformaldehyde (PFA). Five equidis-

tant sets of coronal sections (20 mm thick) were generated using a

cryostat and stored in cryoprotectant solution at �80�C until use.

Cell Migration
Fourteen days after transplantation, transplants were visualized by

fluorescencemicroscopy. Themigration of transplanted cells in rat

brain slices was quantified in terms of the maximum distance. For

each transplant, cells that had migrated the farthest from the edge

of the transplants were measured. In each rat, the average from

three coronal slices was obtained. The average of vertical distance

of the farthest migration frommultiple transplants is presented in

Figure 2E. Six brains were analyzed for each group.

MRI
All MRI experiments were performed using a 3T General Electric

MR system (GE Medical Systems). The brains were examined via

T2-weighted MRI using the imaging parameters described in

Supplemental Experimental Procedures. Subsequentmeasurement

processing was performed using ImageJ and MRI Cell Image

Analyzer (Montpellier RIO Imaging Volker Baecker) software. The
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infarct volume was calculated based on the following formula:

(volume in the contralateral hemisphere � noninfarct volume in

the ipsilateral hemisphere) / volume in the contralateral hemi-

sphere 3 100%.

In Vivo LECTIN-DyLight 594 Angiography
LECTIN-DyLight 594 (Vector Laboratories) was administered to

anesthetized rats via the femoral vein 5min before they were sacri-

ficed on day 14. The rats were then transcardially perfusedwith ice-

cold heparinized PBS and their brains were isolated and embedded

in Tissue-Tek O.C.T. compound (Sakura Finetek).

Neurobehavioral Tests
All neurobehavioral tests were performed by an investigator who

was blinded to the experimental groups. The rats were trained for

3 consecutive days prior to surgery. Neurobehavioral tests were per-

formed before stroke occurred and on days 1, 3, 7, and 14 after the

stroke. Details regarding the methods used for the rotarod, EBST,

and mNSS tests can be found in Supplemental Experimental

Procedures.

Immunofluorescence Staining
Brain sections were fixed and stained with the appropriate anti-

bodies. Details regarding the immunostaining procedures and pri-

mary antibodies used for immunofluorescence can be found in

Supplemental Experimental Procedures. The primary antibodies

were detected using the appropriate secondary antibodies conju-

gated to Alexa Fluor 488, 594, or 633 (Jackson ImmunoResearch).

Images were viewed under a laser-scanning confocal microscope

(TCS SP5II; STED CW; Leica). Serial images were captured along

the z axis every 1 mm to a depth of 20 mm.

Cell Counting
Brainswere sectionedat20mmintervals fromapproximately+1mm

and�5mmtobregma. Everyninth sectionof the serial sectionswas

collected, placed on the slide, and processed/counted forGFP+ cells,

Ho+ cells, or LECTIN-perfused vessels, or stained with antibodies

against the cell-type-specific markers or growth/trophic proteins.

Images were captured using a laser-scanning confocal microscope.

To estimate the total cell number in a whole brain, we counted the

total numbers of cells or positively stained cells in one set of serial

sections (containing every ninth section) and then multiplied

them by nine.

RNA Extraction and RT-PCR
Total RNA was isolated from undifferentiated ESCs and FLK1+

and FLK1� cell fractions from day 4 EBs using Trizol (Invitrogen).

The RNA was treated with DNase I (Invitrogen) to eliminate any

contaminating DNA. RT-PCRs were performed using SuperScript

III (Invitrogen) according to the manufacturer’s instructions. The

primer sequences used for this study can be found in Supplemental

Experimental Procedures.

Statistical Analysis
The results are presented as the means ± SD and were analyzed via

the unpaired t test, the Kruskal-Wallis test, or one-way ANOVA.
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Post hoc comparisonswere conducted using either Tukey’s or Dun-

nett’s test. Statistical analysis was performed using PRISM software

(GraphPad).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and one figure and can be foundwith this article online
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