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Simple Summary: Multiple myeloma (MM) is a neoplastic disease of plasma cells, characterized
by a complex array of clinical manifestations. Despite extensive efforts and progress in the care of
MM patients, the disease is still fatal because of de novo or acquired resistance of malignant cells to
standard chemotherapies. In turn, new therapies and/or combination therapies are urgently needed.
Reactive oxygen species (ROS) are unstable and highly reactive chemical molecules, able to alter
the main structural components of cells, such as proteins and lipids, and thus, modifying cell fates.
ROS levels are tightly controlled in normal cells both for their production and degradation. In turn,
an unbalance of the redox status might be exploited to induce cell death. This is indeed the case
for myeloma cells even those that are resistant, opening new perspectives for refractory or relapsed
MM patients.

Abstract: Multiple myeloma (MM) is a common hematological disease characterized by the accu-
mulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new
therapeutic strategies have significantly improved the treatment outcome and patients survival.
Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma
cells are prone to produce large amounts of immunoglobulins causing the production of intracellular
ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS
production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy
of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance
specifically toward proteasome inhibitors.

Keywords: multiple myeloma; ROS; antioxidant enzyme; proteasome inhibitor; NOX; mitochondria;
redox balance; OXPHOS

1. Introduction

Multiple myeloma (MM) is a plasma cell malignancy characterized by the accumula-
tion of clonal cells in the bone marrow and the overproduction of monoclonal immunoglob-
ulin causing the clinical features of the disease: hypercalcemia, renal failure, anemia and
bone lesions, collectively known as CRAB symptoms. Moreover, plasma cells are prone to
produce large amounts of immunoglobulins, causing an endoplasmic reticulum stress, the
unbalance of redox homeostasis and the production of intracellular ROS [1]. The disease
progresses from benign monoclonal gammopathy of undetermined significance (MGUS)
and smoldering myeloma to overt aggressive MM and ultimately plasma cell leukemia.
Over the past twenty years, MM patients outcome has been improved through the use of
new drugs as well as new therapeutic approaches [2–5]. For elderly patients, not eligible
to autologous transplantation, the use of proteasome inhibitors (PIs), immunomodulators
(IMiDs), monoclonal antibodies, histone deacetylase (HDAC) inhibitors and more recently,
check-point inhibitors and their various combinations have improved substantially MM
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patients survival. However, most MM patients are refractory or relapse (R/R) after one or
more treatment regimens and the disease is still fatal [3,5,6].

The first-in-class PI, bortezomib (BTZ) and several second-generation PIs (carfilzomib
(CFZ), ixazomib) are efficient drugs, currently used for newly diagnosed patients and
R/R patients alone or associated with other agents [7]. By targeting subunits of the
ubiquitin/proteasome system (UPS), the major cell regulator of protein degradation, PIs
cause a proteotoxic stress that activates the apoptotic function of the unfolded protein
response (UPR) [8]. Indeed, after UPS inhibition, misfolded proteins accumulate in the
endoplasmic reticulum (ER) generating an ER stress and activating the UPR. The survival
of MM cells is highly dependent on the UPR, and inefficient or prolonged UPR activation
signals apoptosis [9–11]. Another important mechanism of BTZ cytotoxicity in MM cells
is the generation of an oxidative stress that has been long considered as a byproduct of
the ER stress. The production of ROS depends on ER-resident protein disulfide isomerase
(PDI) and endoplasmic reticulum oxidoreduction (ERO1) enzymes as well as nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOX) complexes and mitochondrial
electron transport chain (ETC) [12]. The ERO1 flavoprotein consumes oxygen and generates
hydrogen peroxide (H2O2). Under ER stress, the activity of these enzymes is increased
and generates higher amounts of ROS and, in turn, an oxidative stress. Moreover, BTZ
treatment induces an adaptative antioxidant response by depleting intracellular glutathione
(GSH), activating CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP)
and transcription factor 4 (ATF4), two antioxidant transcription factors, and the nuclear
factor-erythroid 2 p45-related factor 2 (NRF2), the key controller of detoxification genes [13].

Although BTZ and more generally PIs have achieved excellent therapeutic effects,
innate resistance can be observed in drug-naive patients and acquired resistance may
appear during the course of the treatment [14]. Indeed, during the progression of the
disease, complex genetic alterations occur that contribute to the development of a resistant
phenotype. The upregulation of the 20S proteasome subunits [15,16], the paradoxical
downregulation of the 19S proteasome subunits [17], and the overexpression of efflux
pumps [18] are among the main reported mechanisms of acquired resistance. However,
the modulation of UPR, the alteration of apoptosis/autophagy signaling and metabolic
changes contribute also largely to PI resistance. Indeed, a high glycolytic activity and/or
the rewiring of glucose metabolism through the pentose phosphate pathway (PPP) and
the serine synthesis pathway (SSP), an increased mitochondrial activity and fatty acid
oxidation, are associated with PIs resistance [19–21]. A proteomic analysis comparing naive
and R/R MM patients characterized four sets of relevant proteins including proteasomal
proteins, apoptosis signaling proteins, proteins regulating the inflammation response, and
factors regulating the redox status [22]. Moreover, the tumor microenvironment (TME)
within the bone marrow facilitates tumor cells proliferation as well as drug resistance. This
is due, at least in part, to a metabolic reprogramming of mesenchymal stromal and immune
cells favoring the defense against ROS [23,24].

We face an apparent paradox. Due to their ability to secrete high amounts of im-
munoglobulin, MM cells undergo massive endoplasmic and oxidative stresses [25]. Al-
though in accordance to the resulting high intracellular ROS levels, MM cells still respond
to ROS inducers such as PIs and enter apoptosis. However, during the progression of
the disease, within tumor cells and their TME, genetic and epigenetic changes occur that
enable MM cells to escape death. Nevertheless, manipulating the redox status in MM cells
including those that are PI-resistant may show therapeutic values. This review focuses on
the redox landscape of MM cells and patients either naive or R/R and how manipulating
the redox status in tumor cells could be effective in killing myeloma cells. We discuss the
antimyeloma effects of drugs that buffer ROS or, by contrast, enhance ROS production, the
latter counteracting the acquisition of PIs resistance.
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2. Cellular ROS and Their Production
2.1. Generalities

The first non-mitochondrial consumption of O2 has been observed in granulocytes
in 1959 [26]. This has been attributed to high H2O2 production during phagocytosis [27].
Later, the discovery of superoxide dismutase (SOD) showed the production of superoxide
(O2
•−) [28]. This production, derived from NOX activity, was subsequently demonstrated

in granulocytes, settling the antibacterial function of ROS [29–32]. Nowadays, ROS are
no longer only regarded as toxic byproducts, and their function limited to the innate
response to infection, but are recognized as important secondary messengers involved in
the regulation of many cell signaling cascades [33].

2.2. ROS Homeostasis

ROS are short-life electrophilic molecules arising from the partial reduction of O2
to O2

•− including free radicals that contain one or more unmatched orbital electrons,
and non-radical ROS that can be chemically reactive and converted to radicals. The
most abundant free radicals include O2

•−, hydroxyl radical (HO•), and nitric oxide (NO).
Non-radical ROS comprise H2O2, ozone (O3), peroxynitrate (ONOO−), and hydroxide
(HO−) [34]. ROS homeostasis is maintained in cells by a tightly regulated balance between
the production by oxidizing systems and the elimination by antioxidant systems. The
alteration of this balance by increased ROS production or by decreased antioxidant activity
leads to oxidative stress [35]. The exogenous ROS come from the environment, such
as pollutants, smoke, radiation, temperature change, and xenobiotic compounds. The
endogenous ROS are produced in the cell mainly by NOX, ETC, ER, xanthine oxidase
(XDH), nitric oxide synthase (NOS), lipoxygenase (LOX), cyclo-oxygenase (COX), and
other metabolic activities such as β-oxidation in peroxisomes, prostaglandin synthesis, and
cytochrome P450 detoxification reactions [34,36]. To protect against harmful ROS effects,
cells have retained during evolution antioxidant systems enabling their detoxification.
The antioxidants include a variety of enzymes, such as SOD, catalase (CAT), glutathione
peroxidases (GPX), peroxiredoxins (PRDX), and glutaredoxins (GLRX), as well as non-
enzymatic systems, such as vitamins A, C, D, E, β-carotene, and ubiquinone [37].

2.3. ROS Targets

At low levels, ROS can react in a reversible manner with various elements. In par-
ticular, H2O2, a transient secondary messenger, oxidizes the reactive cysteine residues of
redox-sensitive proteins and alters their function. Similar to phosphorylation by kinases,
alteration of the thiol group modifies the activity of proteins in an inhibiting or activating
way [38]. In contrast, at high levels, ROS irreversibly reacts with heme iron, as well as
the carbon of specific amino acids (arginine, lysine, proline, and threonine) and nucleo-
sides [39]. DNA oxidation by ROS is treated by activation of the nucleotide excision repair
and base excision repair pathways [40]. Some oxidative damages, such as amino acid car-
bonyl groups, are not repairable. This leads to the degradation of oxidized macromolecules
by the proteasome [41] or the autophagosome [42]. The list of proteins physiologically
regulated by ROS increases regularly, and includes variable-pathway proteins: tyrosine
and serine/threonine phosphatases, tyrosine and serine/threonine kinases, transcription
factors, HDACs, heat-shock proteins (HSPs), caspases, metalloproteinases, PIs, metabolic
enzymes, and ion channels [43].

2.4. Physiological ROS Functions

ROS are crucial in multiple signaling pathways by reacting directly with proteins, tran-
scription factors, and genes. Thus, ROS are involved in a variety of processes, from inflamma-
tion and pathogen elimination, to adaptation to hypoxia, growth, and cell differentiation.
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2.4.1. Cell Signaling

The activation of tyrosine kinase (TK) receptors by growth factors induces cell prolif-
eration, differentiation, migration, and survival. The phosphorylation cascade that follows
the binding of a growth factor to its receptor may be attributed, at least partially, to ROS
production [44]. For example, activation of epidermal growth factor receptor (EGFR) by its
ligand induces ROS production by NOX [45]. The ROS produced, mainly H2O2, alter the
activity of redox-sensitive target proteins by modulating specific reactive cysteine residues.
So, they inhibit tyrosine phosphatase proteins on one side [46], and activate EGFR on the
other [47], leading to an increased TK activity and signal amplification. This transient ROS
signaling can be reverted by the PRDXs that reduce oxidized cysteines in a glutathione- or
thioredoxin-dependent way [48].

2.4.2. Hypoxia Adaptation

Hypoxia-inducible factors (HIFs) compose a family of dimerized transcription factors,
involved in the cellular adaptation to low oxygen levels. In normoxia, prolyl-hydroxylases
(PHD) hydroxylate two proline residues in the HIF-α subunits inducing their recognition
by the von Hippel-Lindau (VHL) tumor suppressor protein with an ubiquitin ligase activity,
and their degradation by the proteasome. In hypoxia, their stability is mediated by the
absence of oxygen as a co-factor of PHD, and by mitochondrial ROS. PHDs are further
inhibited, allowing the accumulation of HIF-α subunits, their hetero-dimerization with
HIF-β, their translocation to the nucleus, and the transcription of their target genes, such
as those involved in cell metabolism [49–51]. In addition, mitochondrial ROS can induce
transcription by direct oxidation of DNA. Such oxidation of the vascular endothelial growth
factor (VEGF) promoter facilitates the binding of HIF-1α, for example [52].

2.4.3. Retro-Control and Regulation of Antioxidants

NRF2 regulates the expression of antioxidant genes by recognizing antioxidant re-
sponse elements (ARE) in their promoters [53]. NRF2 localized in the cytoplasm, is attached
to the Kelch inhibitory protein-like ECH-associated protein 1 (KEAP1). The increase in
ROS level modifies a KEAP1 cysteine residue that detaches from NRF2 allowing it to
migrate into the nucleus. This similarly happens to the transcription factor FOXO4, whose
intermolecular oxidation of reactive cysteines allows the bond with the activator couple
EP300-cAMP-response element binding protein (CREB) binding protein (p300/CBP). This
induces its activation and transcription of antioxidants such as SOD2, CAT, and PRDX,
and leads therefore to decreased ROS levels [38,54]. In addition, the oxidation of ataxia
telangiectasia mutated (ATM) kinase cysteines by ROS induces a flow of glucose to the PPP
allowing the synthesis of NADPH essential for antioxidants as well as DNA repair [55].

2.5. Oxidants
2.5.1. Mitochondria

The mitochondria is generally regarded as the major producer of cellular oxidants. It
mainly produces ATP depending on O2 [56]. During this process, an electron leak induces
the generation of O2

•−, a secondary product [33]. The ETC contains five protein complexes
localized in the intermembrane space, the complexes I–IV and the ATP synthase, as well as
two soluble factors that function as electron acceptors: the cytochrome c (CYCS), which
is a protein, and the coenzyme Q10, which is a lipid known as ubiquinone [57]. First, the
complexes I and II receive electrons from the nicotinamide adenine dinucleotide (NADH)
and succinate, respectively, and transfer them to the complex III via the coenzyme Q10.
Next, the complex III transfers the electrons to CYCS, which in turn transfers them to
complex IV (cytochrome reductase) reducing O2 to H2O [58]. During this electron transfer,
a pH gradient occurs allowing ATP synthesis by the ATP synthase. However, 1–2% of
electrons escape the ETC and react directly with O2 reducing it to O2

•− [59]. Superoxide
can be generated at the complex III level, during the Q-cycle of electron transfer from
coenzyme Q10 to CYCS [60]. The coenzyme Q10 accepts two electrons from the complex I
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or II and is reduced to QH2, which yields them to CYCS in two stages at the Qo site of the
complex I near the intermembrane space. After the transfer of the first electron, the oxidized
coenzyme Q (QH•) can react with O2 to generate O2

•− released in the intermembrane
space. QH• is usually re-reduced to QH2 within the Qi site of complex III near the matrix.
The production of O2

•− at the level of complex III is particularly high under hypoxia
where H2O2 accumulates in the intermembrane space. It diffuses to cytosol triggering for
example, PHD-dependent redox inhibition, then stabilizing HIF-α [50].

In addition, O2
•− may also be produced by mitochondrial matrix metabolic enzymes

such as glycerol-3-phosphate dehydrogenase 2 (GPD2), electron transfer flavoprotein dehy-
drogenase (ETFDH), 2-oxoglutarate dehydrogenase (OGDH), and pyruvate dehydrogenase
complex (PDC) [33,61].

2.5.2. NADPH Oxidases

The NOX2 complex, with CYBB (gp91phox) as the catalytic subunit encoded by the
CYBB gene, is the first complex discovered at the neutrophil membrane [32]. Later studies
have shown that a variety of ligands such as tumor necrosis factor (TNF), platelet-derived
growth factor (PDGF, angiotensin I, and EGF) can induce the generation of intracellular
ROS in non-phagocytic cell even in the absence of NOX2 [62–64]. This production led to
the discovery of the NOX1 complex [65]. Comparative analyses identified five additional
complexes, NOX3-5, and DUOX1-2 [66–68] Although similar, each complex has distinct
structural, biochemical, and cellular localization features [34]. Today, NOX-derived ROS
are known to be involved in cellular signaling besides their antibacterial role [69]. These
transmembrane flavoprotein enzymes are the only ones to physiologically produce ROS
and, next to mitochondria, form an important source of ROS in cells [70]. According
to the needs, several regulatory ways exist to limit both the expression and activity of
ROS over time and space. Following activation, they catalyze the electron transfer of
NADPH through a biological membrane to O2 from the different intra- and extracellular
compartments and reduce it to O2

•−, which is converted into H2O2 by SODs or directly, in
the case of NOX4 and DUOX [34].

2.6. Antioxidants

SOD, CAT, GPX, and PRDX form the first-line of cellular antioxidant defense by me-
tabolizing O2

•− and H2O2. SODs are the only enzymes that eliminate O2
•− by catalyzing

its dismutation into H2O2 and O2. While SOD1 and SOD3 depend on copper for their
activity, SOD2 is dependent on manganese. They are distinguished by their cellular lo-
cation: SOD1 is located in the cytoplasm, the mitochondrial intermembrane space, and
the nucleus, SOD2 is located in the mitochondrial matrix, while SOD3 is extracellular [71].
CAT catalyzes the transformation of H2O2 into H2O and O2. It is expressed in all cell
types with the exception of erythrocytes [72] and vascular cells [73]. There are eight human
GPX, among which five are selenoiproteins (GPX1-4 and GPX6), whereas the other three
(GPX5 and GPX7-8) depend on thiol instead of selenol [74]. Selenoiproteins and thiol
peroxidases promote the two-electron reduction of H2O2 to H2O using GSH as a reducing
agent [75]. They are associated with glutathione reductase (GSR), which catalyzes oxidized
glutathione reduction (GSSG) using NADPH as a reducing agent. GPX1 and GPX2 are
mainly cytoplasmic, whereas GPX3, GPX5, and GPX6 are extracellular [74]. Splicing of
GPX4 results in three isoforms having cytoplasmic, nuclear, or mitochondrial localizations
whereas GPX7 and GPX8 are respectively in the membrane and cisternal space of ER [74].

Like GPX, PRDX (1–6) are thiol peroxidases containing reactive cysteines that allow
them to eliminate H2O2 to produce H2O [76]. They function together with the thioredoxin
system [75]. In humans, six PRDX enzymes are expressed and differ by their cellular loca-
tions: PRDX1, PRDX2, and PRDX6 are cytoplasmic, PRDX3 is restricted to mitochondria,
PRDX4 is localized in ER, whereas PRDX5 is in the cytosol, mitochondria, and nucleus [76].

The thioredoxin system includes thioredoxins (TXN and TXN2), and thioredoxin
reductases (TXNRD1-3), as well as NADPH as a cofactor. TXN is cytoplasmic and nuclear,
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whereas TXN2 is mitochondrial [77]. Among TXNRDs, TXNRD1 is cytosolic, TXNRD2 is
mitochondrial and TXNRD3 is both cytoplasmic and nuclear [78]. Thioredoxins are small
thiol-disulfide oxidoreductases that provide the electrons needed for H2O2 removal by
PRDX. In turn, TXNRD catalyzes the recycling of oxidized thioredoxins using NADPH as
a reduction agent [76,79].

Finally, the glutaredoxin system includes GLRX, GSR, as well as NADPH and GSH
as cofactors. GLRX catalyzes oxidation-reduction reactions of GSH-disulfides, deglutony-
lation of S-glutathionylated proteins, and reduction of TXNs, in the absence of TXNRD,
using GSH as the reducing agent. Human cells express four glutaredoxin paralogs (GLRX,
GLRX2-3, and GLRX5) that differ in their localization. GLRX and GLRX3 are cytoplasmic,
whereas GLRX2 and GLRX5 are mitochondrial [80]. As with GPX, GSR catalyzes oxidized
glutathione reduction (GSSG) using NADPH as a reduction agent.

The dynamics of ROS production as well as their elimination through the antioxidant
systems are schematized in Figure 1.
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Figure 1. Cell mechanisms of redox regulation. The two key reactive oxygen species (O2•− and H2O2), that serve as
intracellular signaling molecules, are mainly produced by the transmembrane NOXs and the mitochondria electron transport
chain (ETC). NOXs are found at different localizations (cell membrane, organelles, nucleus) thereby contributing to local
generation of ROS. Apart from NOXs and the ETC, H2O2 is also produced by various oxidases present in the ER as well
as by several SODs. ROS are sensors of environmental changes and stresses and permit cells to adapt these changes. In
turn, the redox status of cells is finely tuned by various antioxidant systems. ROS detoxification involves two main systems:
non-catalytic small molecules that directly scavenge ROS including glutathione (GSH) and catalytic antioxidant enzymes.
Catalytic enzymes that scavenge O2•− include the SODs, each catalyzing the conversion of O2•− into H2O2 and collectively,
controlling NOXs activity. SOD2 (in red) is overexpressed in MM cells (see Section 3). Enzymes that scavenge H2O2

include catalase (CAT) which converts H2O2 into H2O + O2 as well as peroxiredoxin (PRDX) and glutathione peroxidase
(GPX). Reduction of H2O2 by PRDX1-5 is at the expense of oxidized thioredoxin (TNX) which leads to thioredoxin with
intramolecular disulfide bridge (TXN-(SH)2 → TXN-S2), whereas PRDX6 requires GSH rather than TXN). Reduction of
H2O2 by GPX also requires TXN but, for that, the thiol group between two cysteines from two GSH molecules yields
an intermolecular disulfide bridge after reduction (GSH → GSSG). TXN and TXNRD1, GPX1 and GPX4 (in red) are
overexpressed in myeloma cells compared to normal plasma cells [81]. Moreover, NOX2 (CYBB) is the only catalytic NOX
subunit expressed in myeloma cells together with NCF4 (p40phox) and CYBA (p22phox) regulatory subunits. In turn, only
the NOX2 complex is functional in those tumor cells [81].
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3. The Redox Landscape in Multiple Myeloma

Cancer cells including myeloma cells contain higher levels of ROS than their normal
counterparts and this high level of ROS sustains the malignant phenotype [82]. Indeed, it
is well-established that ROS initiates the tumorigenesis process, fuel cell proliferation and
survival, and influence the tumor microenvironment during the progression of the disease.
To avoid entering senescence or dying, MM cells increase their GSH content as well as
enhance the activity of TXN and TXNRD1 enzymes. Adaptation to this chronic oxidative
stress necessitates a metabolic reprogramming that culminates with enhanced oxidative
glycolysis, glutaminolysis, and fatty acid oxidation although MM cells still use mitochon-
drial respiration [83]. The molecular basis of MM cells adaptation to oxidative stress as
well as ROS-mediated PI-resistance is described below and schematized in Figure 2.
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Figure 2. Schematic representation of MM cells adaptation to elevated intracellular ROS and ROS-mediated PIs resistance.
In MM cells, activation of keys oncoproteins (RAS, STAT3, BCL2, MYC) and inactivation of TP53 result in an increase of
intracellular ROS. To avoid entering apoptosis, cells adapt their antioxidant capacities and enhance the transcriptional
activity of factors targeting GSH- and TXN-dependent enzymes and detoxifying systems. The decrease of GSH and the
inhibition of antioxidant enzymes (TXN, TXNRD1) by gold compounds (auranofin) or L-buthionine sulfoximine (BSO),
an irreversible inhibitor of the glutamate-cysteine ligase (GCL or γ-glutamylcysteine synthetase), one enzyme of GSH
synthesis, as well as the inhibition of mitochondrial respiration complex I with diphenyleneiodonium (DPI), trigger MM
cells apoptosis (see chapter 4). Due to genetic and epigenetic changes occurring during PI-treatment, drug resistance rises.
In PI-resistant cells, the targeting of antioxidant enzymes (TXN and TXNRD1 inhibitors), or the pool of GSH (BSO and
APR-246) is still efficient and restores drug sensitivity. The association of auranofin and BTZ exacerbates the level of ROS
and is more efficient for inducing MM cell death.

3.1. Activation of Antioxidant Transcription Factors

Multiple metabolic programs are controlled at the level of gene transcription by tran-
scription factors. HIF-1α is stabilized by hypoxia; it regulates the expression of GSH-based
genes under hypoxic conditions and exerts antioxidant effects by decreasing mitochondrial
ROS production through glucose catabolism [82,84]. HIF-1α is constitutively activated
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and stabilized in MM cells [85–88]. In BTZ-resistant cells, HIF-1α is even more expressed
leading to an increased glycolysis that supports resistance [19].

The heat shock factor 1 (HSF1), the master regulator of heat shock response, and its
transcriptional targets are associated with MM patient outcome and necessary for MM
cells survival [89]. HSF1 targets the ROS scavenger PRDX4 that is highly expressed in MM
cells [81] and in turn, controls cellular H2O2 levels. HSF1 inhibitors synergize with BTZ to
induce MM cells death from MM patients including those belonging to adverse prognosis
groups or in relapse [90].

NRF2 is the master regulator of the ROS stress response in MM cells [91]. In the
molecular subgroup of MM cells having the t(4;14) translocation, overproducing MMSET,
a histone methyltransferase, associated with a poor prognosis [92], a small nucleolar
RNA (snoRNA) called ACA11, inhibits NRF2, increases ROS levels, and drives MM
cells proliferation [91]. In response to cellular stress, NRF2 activates stress-protective
genes such as NOX, heme oxygenase 1 (HO1), or the autophagy receptor sequestosome 1
(SQSTM1 or p62) [93]. In CFZ-resistant cells, NRF2 is upregulated and activated, which
promotes enhanced expression of NRF2 target genes including GSR and GPX4. Moreover,
in agreement with NRF2 function in facilitating the production of NADPH cofactor by
directing the carbon flux through the PPP, NADPH levels are high in CFZ-resistant MM
cells, disrupt the redox homeostasis, and affect also fatty acid oxidation [94]. In response to
high ROS levels, NRF2 stimulates the expression of Kruppel-like factor 9 (KLF9). Then,
KLF9 causes accumulation of ROS by suppressing TXNRD2 transcription [95]. It is worth
noting that in MM cells, BTZ- and CFZ-resistance is correlated to high levels of KLF9 [96].

The AP-1 transcription factors family comprises several proteins that function through
their dimerization. They exert antioxidant effects via the induction of genes encoding
ROS scavengers, synthesizing GSH and metabolizing pro-oxidant xenobiotics [82]. Among
them, JUNB and MAF are important for MM pathophysiology. MAF (c-MAF or MAFB) is a
basic leucine zipper-containing oncoprotein expressed in almost 50% of MM having or not
the t(14;16) and t(14;20) transactivating translocations [97]. Although, to our knowledge, a
role of MAF in PI-resistance has not been reported so far, JUNB, specifically induced by
the TME, controls BTZ-resistance by regulating genes of the oxidative metabolism and the
mitochondrial respiration [98].

Five proteins belong to the nuclear factor (NF)κB family: NFκB1 (p50 and its precursor
p105), NFκB2 (p52 and its precursor p100), RELA (p65), RELB, and c-REL [99]. Their
transcriptional activities are mediated by their various associations that generate homo-
and heterodimers. The activation of the NFκB pathway by external or internal stimuli
occurs through the canonical or alternative pathways [99]. In MM cells, an increased
cytokine stimulation from the TME as well as mutations of genes encoding NFκB proteins
and their regulators (NFKB1/2, TRAF2/3, TACI, MAP3K14) lead to the constitutive activation
of the pathway [100–102]. Genes coding for CAT, GPX1, and SOD1/2 are controlled by
NFκB members [82].

During the development of MM disease, an increased accessibility of chromatin is
observed favoring global histone acetylation and chromatin activation [103]. Recent data
obtained using a multi-epigenomic approach showed that MM cells are characterized by an
aberrant chromatin activation [104]. Among the target genes upregulated by this process,
are members of the NFκB and p53 signaling pathways, and response to oxidative stress.
Among them, TXN is activated and the protein overexpressed due to de novo activation of
a distant enhancer.

3.2. Activation of Oncoproteins That Stimulate ROS Production

Mutations of NRAS, KRAS, BRAF oncogenes are found in up to 50% of newly di-
agnosed MM patients and associated with a poor prognosis. Most of them cause the
constitutive activation of the RAS/MEK/ERK survival signaling pathway and modulate
PI sensitivity [105,106]. Moreover, mitochondrial metabolism and mitochondrial ROS
generation are essential for RAS-induced cell proliferation and tumorigenesis [107].
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Almost all MM cells express one of the three cyclin D-type proteins. Thus, it has
been proposed that the dysregulation of one of the CCND genes encoding cyclins D is an
unifying event for MM pathogenesis [92]. Cyclins D in dimer with their catalytic partners,
the cyclin-dependent kinase (CDK)4/6, controls the early phase of the cell cycle i.e., the
progression within the G1 phase and the G1-to-S phase transition. However, depending
on their subcellular localization, activation or/and associated partners, cyclins D possess
various cell functions that are not necessarily redundant [108]. Regardless the t(11;14)
translocation that activates the CCND1 gene, cyclin D1 is present in almost 50% of MM
cells. In the remaining cases, cyclin D2 and cyclin D3 are expressed as a consequence of
FGFR3/MMSET or MAF deregulations corresponding to t(4;14) and t(14;16) or t(14;20)
translocations, respectively [92]. In MM cells, cyclin D1 increases NOX2 activity and
produces ROS, thereby disrupting the redox balance and modifying drug sensitivity [109].
Moreover, cyclin D1 acts as a cofactor of HIF-1α and transactivates the HK2 gene in
turn, enhancing the oxidative glycolysis [110]. Finally, cyclin D1 facilitates the shift from
OXPHOS to glycolysis by competing with hexokinase 2 (HK2) for voltage-dependent anion
channel (VDAC) binding and metabolites/ATP entrance into the mitochondria [111].

Fibroblast growth factor (FGF) and FGF receptors (FGFR) are expressed on MM cells
suggesting that an autocrine signaling contributes to myeloma proliferation. Moreover, this
autocrine signaling protects MM cells from ROS-induced apoptosis. Indeed, FGF blockade
by FGF trapping or tyrosine kinase inhibitor induces a GSH depletion and mitochondrial
ROS production [112]. This oxidative stress is the consequence of c-MYC proteasomal
degradation. Moreover, these findings were also observed in BTZ-resistant cell lines
and in primary cells obtained from R/R patients [112]. c-MYC is an oncoprotein and
transcription factor that drives the progression from MGUS to MM. MYC activation relies
on translocation involving the IGH locus and gain and amplification at 8q24 [113]. c-MYC
is a major player in the regulation of glycolysis and glutaminolysis but its role in the control
of redox homeostasis is less documented [114].

MCL1, BCL2, and BCLXL are antiapoptotic proteins overexpressed in MM cells [115]
and associated with a bad prognosis [116]. At the outer mitochondrial membrane, they
prevent death by sequestering proapoptotic BH3-only activators such as BIM, PUMA,
BID. The BH3-only sensitizers, such as NOXA, BAD release activators by binding anti-
apoptotic proteins. Then, the BAK and/or BAX effectors activate the subsequent steps
of apoptosis [116]. A number of reports attribute the death-inducing activity of BCL2
family proapoptotic members to the modulation of cellular redox metabolism [117]. The
samples belonging to the MM subgroup with a t(11;14) and expressing cyclin D1 respond
well to venetoclax, a BH3-mimetic [118]. They have reduced mitochondrial respiration
due to reduced complex I and II activities, the latter being linked to the generation of
ROS [119]. Conversely, an elevation of oxidative phosphorylation (OXPHOS) promotes
venetoclax resistance.

B7-homolog 3 (B7-H3) or CD276 is a member of the B7 family of checkpoint molecules.
B7-H3 is highly expressed on MM cells, promotes glucose metabolism, and participates
in drug resistance. Indeed, B7-H3 activates the JAK/STAT3 pathway through the redox-
mediated oxidation and activation of SRC and the degradation of SOCS3 [120].

Mucin 1 (MUC1) is a glycoprotein aberrantly expressed by MM cells and the MUC1
C-terminal oncoprotein (MUC1-C) is involved in cell proliferation and survival [121]. The
treatment of MM cells with GO-203, an inhibitor of MUC1 homodimerization, induces
ROS production and a significant downregulation of the TP53-induced glycolysis and
apoptosis regulator (TIGAR). The production of ROS is due to the depletion of both
NADPH and GSH [122,123]. Moreover, the GO-203/BTZ combination is effective for
killing BTZ-resistant MM cells [122].

3.3. Increase of Antioxidant Defenses

MM cells increase their metabolic demand when the disease progresses and produce
high levels of ROS. In turn, MM cells highly depend on antioxidant systems: non catalytic
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small molecules of ROS scavengers such as GSH, catalytic enzymes (SOD1/2) that scav-
enge O2

•−, and those (CAT, PRDX, GPX) that scavenge H2O2. Intracellular GSH level
determines the sensitivity of MM cells to BTZ [93]. The cysteine-glutamate antiporter Xc−
imports cystine, regulates GSH levels and consequently, BTZ-response and -resistance.
Increased GSH level abolishes BTZ-induced death, whereas reciprocally the blocking of
Xc− potentiates PI-mediated cell death [93].

By contrast with GPX1/4, GPX3 is not expressed in MM cell lines or patients [81].
The transcription of GPX3 is controlled by the methylation of its promoter. Importantly,
this epigenetic silencing of GPX3 is associated with MM disease progression and adverse
prognosis for patients [124].

Antioxidant genes coding for TXN and TXNRD1 are overexpressed in myeloma pa-
tients and MM cell lines when compared to normal plasma cells [96,125–127]. GLRX2/3
and TXN are overexpressed in MM molecular subtypes with adverse prognosis (namely
PR, MS, HY), whereas PRDX6 and SOD1 expression are associated with a shorter overall
survival [81,128]. A high expression of either SOD1 or SOD2 contributes also to BTZ resis-
tance [129,130]. Moreover, a multi-epigenomics approach demonstrated that an aberrant
chromatin activation is a common feature of MM cells. Among the targeted genes activated
by this process are genes involved in the response to oxidative stress including TXN [104].

3.4. Metabolism Rewiring

Compared to normal plasma cells, MM cells have enhanced metabolic activity includ-
ing glycolysis, serine synthesis pathway (SSP), glutaminolysis, fatty acid or β-oxidation all
benefiting tumor cells against oxidative damage (Figure 3) [131].

MM cells also utilize OXPHOS and glycolysis/glutaminolysis compensate each
other [132]. Proteasome inhibition results in even a higher glycolytic activity [19,20,22]. This
glycolytic activity contributes significantly to the generation of reducing equivalent, such
as NADPH, the most important oxidizing agent, regenerated from NADP+ when malate
is converted into pyruvate through the tricarboxylic acid (TCA) cycle. The generation of
NADPH makes MM cells more tolerant to UPS inhibition [22]. The reduction of lactate
dehydrogenase A (LDHA) activity and the inhibition of pyruvate dehydrogenase kinase 1
(PDK1), the serine/threonine kinase that negatively regulates PDH, lead to an elevation
of NADH/NADPH ratio, and an increase of ROS production [133]. Lactate produced
by MM cells as the last metabolite of glycolysis is transported through monocarboxylate
transporters (MCT1/4) and fuels OXPHOX [134].

Deregulated metabolic processes involved in protein biosynthesis, GSH synthesis,
malate/aspartate shuttle, metabolism of purines, pyrimidines, amino acids, and the TCA
cycle also consistently change as observed in PI-resistant cells [21]. The rewiring of glucose
metabolism through the PPP and SSP is associated with PIs resistance [19–21,135]. These
pathways lead to increased antioxidant capacities through the recovery of GSH, higher
redox homeostasis, and maximum generation of NADPH [136].
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Figure 3. Schematic representation of metabolism rewiring in MM cells. MM cells are glycolytic. 
GLUT1/4, glucose transporters. The levels of GLUT1/4 are high and allow an elevated glucose 
uptake. Intracellular glucose is transformed into lactate by oxidative glycolysis. This multi-step 
catabolism is controlled by several glycolytic enzymes all overexpressed in MM cells such as HK2, 
PFK, PKM2, LDHA [19,110,137,138]. The end-product of glycolysis, lactate is secreted by MM 
cells. However, MM cells take up exogenous lactate produced by the surrounding TME. Lactate 
enters cells through the MCT1/4 transporters and fuels OXPHOS fully performing in MM. Gluta-
mine synthase is lacking in MM cells, therefore MM cells are dependent on glutamine uptake. By 
contrast, glutaminase (GLS) expression is increased [139]. PDH is a gatekeeper enzyme that con-
verts pyruvate into acetyl-CoA and regulates the mitochondrial metabolism. PDK1 is a ser-
ine/threonine kinase that negatively regulates PDH, its inhibition induces MM cell death [133]. 
The serine metabolism is also involved in MM cell adaptation to BTZ treatment. Phosphoglycerate 
dehydrogenase, PHGDH, the first limiting enzyme of the SSP pathway that converts 3-PG into 
PHP is elevated and increases GSH synthesis in BTZ-resistant cells [20,137]. G6PD, the first rate-
limiting enzyme of the PPP, converting G6P into 6PG, is elevated in MM cells and associated with 
an exacerbated flux [140]. Associated with increased mitochondrial biomass and function, MM 
cells have higher concentrations of ATP, NADH/NADPH ratio and mitochondrial membranes are 
hyperpolarized, all these changes leading to impaired drug response and resistance [129,141]. β-
oxidation participates in the myeloma metabolism changes [19]. The abbreviations used in the 
Figure 3 are gathered at the end of the text. 

Figure 3. Schematic representation of metabolism rewiring in MM cells. MM cells are glycolytic.
GLUT1/4, glucose transporters. The levels of GLUT1/4 are high and allow an elevated glucose
uptake. Intracellular glucose is transformed into lactate by oxidative glycolysis. This multi-step
catabolism is controlled by several glycolytic enzymes all overexpressed in MM cells such as HK2,
PFK, PKM2, LDHA [19,110,137,138]. The end-product of glycolysis, lactate is secreted by MM cells.
However, MM cells take up exogenous lactate produced by the surrounding TME. Lactate enters cells
through the MCT1/4 transporters and fuels OXPHOS fully performing in MM. Glutamine synthase is
lacking in MM cells, therefore MM cells are dependent on glutamine uptake. By contrast, glutaminase
(GLS) expression is increased [139]. PDH is a gatekeeper enzyme that converts pyruvate into acetyl-
CoA and regulates the mitochondrial metabolism. PDK1 is a serine/threonine kinase that negatively
regulates PDH, its inhibition induces MM cell death [133]. The serine metabolism is also involved in
MM cell adaptation to BTZ treatment. Phosphoglycerate dehydrogenase, PHGDH, the first limiting
enzyme of the SSP pathway that converts 3-PG into PHP is elevated and increases GSH synthesis in
BTZ-resistant cells [20,137]. G6PD, the first rate-limiting enzyme of the PPP, converting G6P into 6PG,
is elevated in MM cells and associated with an exacerbated flux [140]. Associated with increased
mitochondrial biomass and function, MM cells have higher concentrations of ATP, NADH/NADPH
ratio and mitochondrial membranes are hyperpolarized, all these changes leading to impaired drug
response and resistance [129,141]. β-oxidation participates in the myeloma metabolism changes [19].
The abbreviations used in the Figure 3 are gathered at the end of the text.
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The integrity of mitochondrial function is necessary for limiting oxidative stress. A
reduced efficiency of ETC is associated with alteration of the PPP, increases GSH levels in
MM cells [142]. Moreover, PI-resistant MM cells display global changes of mitochondrial
metabolism [142]. MM cells overexpress a mitochondrial biogenesis signature and this
signature is even exacerbated in R/R patients [143]. The accompanying increase of the
mitochondrial mass is recognized as an adaptive response to treatments [22,129]. MM cells
resistant to BTZ have high concentrations of ATP, NADH/NADPH ratio, and a hyperpolar-
ization of the mitochondrial membrane [144]. These biomarkers are also predictors of MM
sensitivity to venetoclax, a BH3-mimetic that targets the BCL2 antiapoptotic molecule [119].
An elevated mitochondrial mass might be associated with drug resistance irrespective of
its mechanism of action.

3.5. Impact of ROS Production on the Immune Tumor Microenvironment

MM progression is tightly associated with a dynamic modeling of its surrounding
environment [145]. The bone marrow niche in which MM develops is a complex sys-
tem comprising the vascular and endosteal niches as well as the immune microenviron-
ment [146]. Several recent reviews focused on the role of vascular and endosteal niches in
the development of MM pathology and mechanisms of drug resistance (e.g., [147–149]).
The oxidative stress imposed by ROS production in the bone marrow environment, causes
an immunosuppressive state and impairs endogenous signaling of immune cells [146].
ROS are produced by MM cells themselves and also by tumor-associated macrophages
(TAMs) that infiltrate the BM compartment [150]. TAMs are polarized toward a M2-like
phenotype that is associated with immunosuppressive functions [151]. ROS produced by
M2 macrophages recruit regulatory T cells (Tregs) to the TME. Tregs are highly vulnerable
to ROS in the TME and Tregs achieve strong suppressor function through an oxidative
stress-dependent apoptosis [152]. Myeloid-derived suppressor cells (MDSCs) are a hetero-
geneous population of myeloid cells with immunosuppressive competence [153]. Although,
they could achieve immunosuppression using various mechanisms [153], they induce Tregs
in the TME [154]. Moreover, MDSCs produce ROS in a NOX2-dependent manner and
released ROS suppress T-cells proliferation thereby enhancing immunosuppression [155].
Tumor-infiltrating lymphocytes (TILs) comprise cytotoxic and helper lymphocytes as well
as natural killer (NK) cells [156]. Within the TME, it appears that T cells are exhausted and
senescent exhibiting aberrant function [157] whereas the cytotoxicity of NK cells toward
MM cells is impaired [158]. As a whole, though ROS production, MM cells evade the
immune system through two concomitant strategies: impairing immune recognition and
enhancing the immunosuppressive state of TME [159].

4. Unbalancing ROS in Multiple Myeloma

The rational for manipulating the redox status of MM cells to induce their death
and/or to alleviate their resistance is an old concept [160]. This is based on the observation
that the oxidative metabolism in myeloma vs. normal plasma cells is fundamentally differ-
ent. Theoretically, either oxidant or antioxidant treatment could exacerbate an oxidative
stress and in turn, cell death. Indeed, myeloma cell death is obtained either by decreasing
ROS levels or by increasing them (Table 1). ROS are synthesized in MM cells at least in part
by the NOX complex activity [109]. Moreover, compared to normal bone marrow plasma
cells, patients with MGUS, or a smoldering myeloma, NOX2 (encoded by CYBB) is the only
catalytic subunit expressed in MM patients along with the p40phox (NCF4) and p22phox

(CYBA) regulatory subunits [81]. Although a pan-NOX inhibitor, VAS3947 has a strong
anti-MM activity, it shows adverse effects when combined with BTZ [81].

The effects due to pro-oxidant strategies are more documented. Increasing the in-
tracellular ROS level can be achieved either by their direct production or by inhibiting
antioxidant defenses.



Cancers 2021, 13, 2411 13 of 27

4.1. Drugs That Target Glutathione Metabolism

TP53 mutations/deletions are present in most cancers and associated with resistance
to therapies. In turn, molecules acting downstream of p53, inducing the transcription
of p53 targets such as p21CIP, BAX, PUMA, and NOXA and reactivating cell death have
been selected. In MM cells, TP53 mutations/deletions are rare but increase with disease
progression and associate with a bad prognosis. p53-modulating agents such as CP-31398,
PRIMA-1 (p53 reactivation and induction of massive apoptosis-1), or APR-246 (PRIMA-
1Met) induce ROS-mediated apoptosis of MM regardless the TP53 status [161–165]. At the
molecular level, APR-246 induces ROS production by depleting GSH cell content [161,164].
Interestingly, APR-246 synergizes BSO, an irreversible inhibitor of the GSH synthesis.
Another report indicated that caffeic acid phenetyl ester (CAPE), a phenolic compound,
induces apoptosis through an oxidative stress caused by glutathione depletion [166].

Table 1. Drugs targeting redox metabolism in MM preclinical models.

Effects on ROS Level Drug/Combination Effects Preclinical Model Reference

Decreasing VAS3947 NOX2i 1 HMCL [81]

Increasing APR-246 GSH depletion
HCML

Primary cell
In vivo

[163]

CAPE GSH HCML [166]

APR-246/BSO GSH depletion/γGCSi In vivo [161]

APR-246/auranofin GSHdepletion/TXNRD1i r HCMLs
Primary cells [164]

Auranofin TXNRD1i HCMLs [167]

Auranofin/ZnPP IX TXNRD1i/HO1i HCMLs [127]

PX-12 TXNi HCMLs [168]

Auranofin/BTZ TXNi/PI HCMLs [81]

Lenalidomide/BTZ TXNi/PI HCMLs [169]

LCS-1 SOD1i
HCMLs

Primary cells
In vivo

[130]

2-methoxyestradiol/BTZ SOD2i/PI HCMLs [129]

Disulfiram/BTZ SOD1i/PI HCMLs [128]

Scutellarein/BTZ SOD2i/PI HCMLs [170]

CCF642/BTZ PDIi/PI HCMLs
In vivo [171]

E64FC26 PDIi HCMLs
In vivo

[172,173]

L-asparaginase/CFZ AA depletion/PI HCMLs [174]

DPI/HK2-ASO/PER Mitochondria complex
I/HK2i/FAOi

HCMLs
In vivo [175]

SR18292 PCG-1αi HCMLs
Primary cells [176]

1 Abbreviations: AA, amino acid; ASO, antisense oligonucleotide; BTZ, bortezomib; CAPE, caffeic acid phenethyl ester; DPI,
diphenyleneiodonium; γGCS, γ-glutamylcysteine synthetase; FAO, fatty acid oxidation; HMCL, human cell line; HO1, heme oxygenase 1; i,
inhibitor; NOX, NADPH oxidase; PDI, protein disulfide isomerase; PER, perhexiline; PCG-1α, peroxisome proliferator-activated receptor γ
(PPARγ) coactivator-1 α; PI, proteasome inhibitor, SOD, superoxide dismutase; TXN, thioredoxin, TXNRD1, thioredoxin reductase 1; ZnPP,
zinc protoporphyrin.
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4.2. Drugs That Target Antioxidant Enzymes

MM cells display increased expression of TXN and TXNRD1 involved in the protection
against oxidative stress. Moreover, antioxidant genes are overexpressed in myeloma
patients, including those with a poor prognosis, and MM cell lines when compared to
normal plasma cells [81]. As expected, the targeting of antioxidant enzymes could be
beneficial for MM patients.

4.2.1. Thioredoxin System Inhibitors (Auranofin and Other Gold Compounds)

As described before, the thioredoxin system comprising TXN and TXNRD1 is one
of the major antioxidant systems in MM cells. In turn, TXN and TXNRD1 inhibition re-
sults in ROS-induced apoptosis [125,168]. Gold compounds have a high affinity for thiol
and selenol groups and auranofin is very efficient to induce MM cells death, including
PI-resistant cells and those with p53 deficiency [81,125,164,167,168]. TXN inhibition acti-
vates mitophagy, the selective degradation of mitochondria by autophagy, and negatively
regulates the AKT/mTOR and ERK1/2 survival signaling pathways [168]. TNXRD1 inhi-
bition impacts the NFκB signaling pathway [167]. Importantly, auranofin combined with
BTZ alleviates the chemoresistance mediated by the tumor microenvironment [81]. A bis-
chelated tetrahedral gold(I) phosphine complex seems even more powerful than auranofin
to induce ROS-mediated apoptosis [177]. However, TNXRD1 inhibition could be com-
pensated by the overexpression of HO1 through the NRF2 signaling pathway [127]. HO1
pharmacological inhibition using zinc protoporphyrin IX restores BTZ sensitivity [127]. A
number of drugs targeting TXN and TXNRD1 and inducing ROS, have been described in
the past decade [12], but their ability to synergize with PI in MM patients remains to be
established. Nevertheless, the targeting of multiple antioxidant systems could be essential
for an efficient anti-MM strategy.

The IMiDs, lenalidomide and pomalidomide, are thalidomide analogs. They inhibit
TXNRD1 that leads to an accumulation of cytotoxic H2O2 levels [169]. In contrast with
auranofin and gold compounds, the cytotoxicity of IMiDs necessitates cereblon (CRBN),
the substrate receptor the CUL4-RING E3 ligase complex [178]. Indeed, IMiDs/CRBN
complexes are retained in the cells and change the redox status by inhibiting H2O2 degra-
dation. Thus, MM cells with a low antioxidant capacity display increased sensitivity to
IMiD-mediated cell death [178].

4.2.2. Superoxide Dismutase (SOD1/2) Inhibitors

Both SOD1 and SOD2 enzymes are overexpressed in MM cells and cell lines compared
to normal plasma cells and mediate BTZ-resistance [81,128–130]. The inhibition of SOD1
with disulfiram and SOD2 with 2-methoxyestradiol induces apoptosis of both BTZ-sensitive
and -resistant MM cells [128,129]. Among the various mechanisms of BTZ resistance, the
19S associated-ubiquitin receptor Rpn13 plays a major role since its inhibition restores BTZ
sensitivity [179]. SOD1 is the mediator of Rpn13 signaling and in turn, SOD1 inhibition
using the LCS-1 inhibitor, induces a ROS-mediated MM cell death including BTZ-resistant
cells [130]. Scutellarein, a flavone extracted from a traditional Chinese medicinal herb,
induces a mitochondrial-mediated apoptosis in the MM cells by activating SOD2. This
leads to ROS accumulation and synergistic effects combined with BTZ [170].

4.3. Other ROS-Inducing Drugs

PDIs are ER-resident oxidoreductase enzymes that ensure the proper folding of nascent
polypeptide chains by forming bonds between cysteine residues. PDIs are overexpressed
in MM [172]. The inhibition of PDIs induces the accumulation of misfolded or unfolded
proteins, an ER stress, and an oxidative stress. Moreover, both pathways are enhanced
in response to PIs [171–173]. In turn, the concomitant inhibition of PDIs and UPR further
enhances the proteotoxic/ER stress and oxidative stress, and the apoptotic response.

Amino acid depletion triggered by L-asparaginase (ASNase) after hydrolysis of glu-
tamine (glutaminolysis) sensitizes MM cells to CFZ [174]. This occurs via NRF2 upregula-
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tion, increased mitochondrial ROS generation and mitochondrial dysfunction. Deregulat-
ing the protein and amino acid synthesis programs allows PI-resistant MM cells to enter
apoptosis [174].

OXPHOS genes are often overexpressed in MM cells and associated with a poor prog-
nosis [176]. This is due to the overexpression of the transcriptional coactivator peroxisome
proliferator-activated receptor gamma coactivator-1α (PGC-1α). In turn, OXPHOS genes
are enriched in MM patients with high PGC-1α level and the PGC-1α inhibitor ST18292
exerts efficient antimyeloma effects trough ROS production [83].

5. Global Alteration of MM Metabolism

More generally, several metabolic pathways are altered in MM cells offering a plethora
of potent targets (Figure 3) [83]. MM cells are particularly dependent on glycolysis.
GLUT1/4 glucose transporters are expressed on MM cells and their activity is neces-
sary for cell survival [180,181]. Ritonavir, a HIV protease inhibitor reversibly binds GLUT4
and induces MM cell apoptosis [132]. HK2, the first rate-limiting enzyme of the glycol-
ysis cascade is expressed on MM cells at diagnosis and its overexpression is associated
with poor prognosis [110,175]. HK2 converts glucose into G6P. The targeting of HK2 by
the small molecule 3-bromopyruvate (3-BP) is efficient for killing MM cells [182]. Inter-
estingly, the knockdown of HK2 by an antisense oligonucleotide (ASO) associated with
DPI or metformin as mitochondrial complex I inhibitor, and perhexiline as β-oxidation
inhibitor induces specifically tumor cell death [175]. The targeting of ENO1 that mediates
the conversion 2-phospho-D-glycerate to phosphoenolpyruvate at the final step of the
glycolytic pathway, also induces MM cell death. ENO1 is overexpressed in MM sam-
ples [183,184]. Other glycolytic enzymes such as phosphofructokinase (PFK), pyruvate
kinase M2 (PKM2), and lactate dehydrogenase (LDHA) are also highly expressed in MM
cells becoming attracting targets [110,137].

Significant amounts of lactate are produced in MM cells confirming that the oxidative
glycolysis is fully functional, but lactate is also produced by the stromal cells within the
TME. Lactate enters MM cells through the MCT1 transporter and fuels OXPHOS [134]. The
inhibition of MCT1 by the α-cyano-4-hydroxycinnamic acid reduces lactate incorporation
and causes apoptosis [134]. Recently, phosphatase of regenerating liver 3 (PRL3), an
interleukin-6-induced oncogenic phosphatase, has been shown essential for the metabolic
changes of myeloma cells. PRL3 exerts pleiotropic effects. It promotes glucose uptake
and glycolytic flux through the upregulation of glycolytic enzymes, and regulates the SSP
leading to an increase in GSH intracellular content [184]. PRL3 is highly expressed in MM
cells and correlates with poor prognosis and unfavorable outcome [185].

As much as glucose, glutamine is used as an energy provider and MM cells are
addicted to glutamine [139]. Alanine/serine/cysteine-preferring transporter 2 (ASCT2),
L-type amino acid transporter (LAT1), and sodium-coupled neutral amino acid trans-
porter 1 (SNAT1) are the glutamine transporters expressed on MM cells [139]. Although
ASCT2, LAT1, and SNAT1 inhibitors have been assessed on several types of tumors, to
our knowledge there is no data on myeloma. Glutamine synthase (GS) is lacking in MM
cells, therefore MM cells are dependent on glutamine uptake. By contrast, glutaminase 1
(GLS1) expression is increased [139]. In turn, the inhibition GLS1 that catalyzes glutamine,
by benzophenanthridinone (BPI) induces MM apoptosis [186]. An increased glutamine
anaplerosis toward TCA cycle is observed in malignant MM cells and this increase is
even more marked in comparison with MGUS and overt myeloma [187]. Importantly and
different from normal plasma cells in this regard, glycolysis and OXPHOS compensate
each other as well as glycolysis and glutaminolysis [132].

Metabolic reprogramming in MM cells is also necessary for cells to adapt their TME.
We have previously seen that glutamine, lactate, and probably other metabolites enter
MM cells from the TME and in turn, change profoundly the cell metabolism. Furthermore,
mitochondria are trafficking between MM cells and mesenchymal stromal cells through
tumor-derived nanotubes [141]. The enhanced OXPHOS of MM cells could be the outcome
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of massive mitochondria acquisition and metabolism reprogramming. Although NOX2
could drive mitochondria transfer from stromal cells to tumor cells as shown for leukemic
blasts [188], we have reported that a pan-NOX inhibitor induces MM cell death but shows
adverse effect when combined with BTZ [81]. Alternatively, NOX inhibitors could be
associated with drugs that have no impact on ROS production rather modifying glycolysis
or glutaminolysis. Hypoxia is also a hallmark of the bone marrow niche and HIF-1α and
HIF-2α that are stabilized in MM cells control glycolysis through the upregulation of genes
coding for glycolytic enzymes and redox homeostasis.

The vulnerability of MM cells to fatty acid metabolism is less studied. Fatty acid
synthase (FASN) is overexpressed in MM patients and the inhibition of β-oxidation as well
as de novo fatty acid synthesis induces MM cell death including BTZ-resistant cells [189].
Disruption of fatty acid oxidation confers sensitivity to CFZ [94]. Moreover, PI-resistant
MM cells increase lipogenesis as a mechanism of resistance [19]. Perhexiline (PER) as
a β-oxidation inhibitor synergizes with HK2-antisens oligonucleotide (ASO) for induc-
ing cell death. Cell death is even dramatically enhanced with the triple combination
PER/DPI/HK2-ASO [175]. Obesity is a risk factor for MM and bone marrow-resident
adipocytes sustain MM growth [190]. By analogy with leukemias, a metabolic shift from
glycolysis to enhanced β-oxidation could impact on MM survival [191].

Interestingly, diet and nutrition are linked to risk factors for multiple myeloma [192,193].
Dietary factors may affect inflammation and endogenous growth factors pathways (e.g.,
IL6, insulin-like growth factor) thereby playing an important role in MM pathogenesis and
in patients’ survival [194]. Moreover, diet may also impact the risk of developing MGUS,
the premalignant condition of MM [195].

The growth of MM cells within their bone marrow niche necessitates a metabolic shift
that shapes the TME toward a hypoxic, acidic, and nutrients-poor milieu [196]. In turn,
TME becomes unfavorable for immune cells including T cells and NK cells to exert their
antitumor effects. TME displays also tumor-promoting activity by allowing the polarization
of M2 macrophages and inhibiting regulatory T cells (Tregs). Several recent reviews are
dedicated to this theme [148,196–198], we rapidly report here some important clues. The
PD-1/PD-L1 pathway controls, at least in part, the maintenance of immune surveillance
within the TME [199]. PD-L1 expression is increased in MM cells and associated with
disease progression. Although several regulatory pathways are involved in the regula-
tion of PD-L1 level such as JAK/STAT, PI3K/AKT, and ERK/MAPK pathways [200], it
is worth noting that HIF-1α directly regulates positively CD274 gene (encoding PD-L1)
transcription [201]. The increased expression of PD-L1 increases cell resistance to cytotoxic
T-cell-mediated lysis [202]. Other immune-suppressive cells such as MDSCs [203] and
TAMs [204] express high levels of PD-L1. One can imagine that the presence of hypoxic
niches in the bone marrow drives the stabilization of HIF-1α that favors PD-L1 expression
also in these cells. Moreover, hypoxia inhibits the killing potential of NK cells favoring im-
mune evasion [205]. As described for melanoma cells, the acidity within the TME imposed
by an enhanced glycolysis could impact tumor infiltrating lymphocytes (TILs) in pro-
moting anergy and macrophages polarization supporting tumor growth [206,207]. These
immunosuppressive pathways should be considered for efficient anti-myeloma therapy.

6. Autophagy and Ferroptosis Are Forms of Death Controlled by MM Metabolism

Due to their function of immunoglobulin synthesis, MM cells are addicted to UPS and
to another protein degradation pathway, macroautophagy referred to as autophagy [208].
Autophagy is the cell mechanism of self-destruction for clearing organelles and compensate
proteasome deficiency to degrade ubiquitinylated proteins. SQSTM1 is the autophagy
cargo receptor that bridges ubiquitinylated proteins and autophagosomes and is a critical
mediator of autophagy and PI-resistance [209]. In BTZ- and CFZ-resistant cells, SQSTM1 is
overexpressed through the activation of NRF2 and this affects the fatty acid oxidation and
in turn the level of NADPH [94]. The simultaneous inhibition of UPS and autophagy by
hydroxychloroquine induces a synergistic cytotoxicity [210]. Furthermore, FAM46C that
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encodes a non-canonical poly(A) polymerase is mutated in almost 20% of MM patients.
FAM46C sustains ER biogenesis in MM cells and this activity is controlled by autophagy
through an inhibitory interaction with SQSTM1 [211]. This SQSTM1/FAM46C interplay
could be exploited to increase PI efficacy and alleviate PI resistance.

Another type of cell death has been described recently for MM cells: ferroptosis [212].
Ferroptosis is an iron-dependent programmed cell death characterized by a high lipid
peroxidation and accumulation of ROS that occurs mainly through intracellular GSH
depletion and decreased activity of GPX4 [213]. One way to reduce GSH level is to inhibit
the Xc- antiporter that allows cysteine to enter cells (Figure 3). Starheim and coworkers
have reported previously that inhibiting Xc- activity induces MM cell death including
BTZ-resistant cells. However, in this report the nature of cell death was not examined.
GPX4 is a key regulator of ferroptosis inhibiting the formation of lipid peroxide. GPX4,
highly expressed in MM cells, is targeted by FTY720 leading to MM ferroptosis [212]. It
appears that autophagy and apoptosis play a role in the occurrence of ferroptosis [213].
Although such interplay has not been reported for MM cells, it opens new perspectives for
combinatory therapies.

7. Conclusions

MM cells have increased ROS levels in comparison to plasma cells, their normal coun-
terparts. This high level of ROS contributes to the initiation, promotion, and progression of
MM disease, as well as, resistance to chemotherapy. Therefore, increasing ROS to highly
toxic levels may provide a unique tool to kill myeloma cells. This approach seems very
efficient since ROS-inducing agents co-operate with PIs (and probably other drugs) and
induce MM cell apoptosis including those that are PI-resistant. However, to our knowledge,
despite preclinical evidences, no clinical trials using either drugs targeting antioxidant
enzymes or depleting glutathione are currently ongoing (www.clinicaltrials.gov). One
main concern is to know what are the effects of pro-oxidants on the MM cancer-stem cell
(CSC). MM-CSCs is a rare subpopulation of cells that has the capacity for self-renewal
and tumor initiation. CSCs are responsible for drug resistance and disease relapse [214].
Although the phenotype of MM CSC is still debated, by analogy with other hemopathies
and solid tumors, CSCs likely, synthesize low levels of ROS and in turn, are little impacted
by pro-oxidants. Indeed, pro-oxidants inhibit tumor cells proliferation but may have lim-
ited impact on cancer-stem cells that synthesize low ROS levels [215]. Moreover, in the
perspective of an anti-myeloma immunotherapy, the complex network of immune cells,
non-immune cells, and MM cells in their niche, including their redox status, should be
better understood.

Interestingly, several unrelated drugs are acting by modulating the redox status. Mel-
phalan is an alkylating agent; its toxicity is due to a redox imbalance and melphalan resistance
is linked to modulation of metabolic pathways as well as oxidative stress [216–218]. The
depletion of intracellular GSH by BSO significantly enhances melphalan activity [216,217].
The next-generation melphalan pro-drug melflufen (melphalan flufenamide ethyl ester)
is an alkylating agent that has shown its high efficacy. It was recently approved by the
FDA for use in combination with dexamethasone in R/R MM patients [219]. Melflufen
enters cells where it is targeted by aminopeptidases resulting in its trapping in organelles
and membranes allowing its accumulation. In pre-clinical models, it has been shown that
it generates ROS [220]. HDAC inhibitors, which regulate gene expression by inhibiting
the deacetylation of histone proteins, have been shown to exert a wide array of antitumor
effects including cell cycle arrest and cell death by generating ROS [221,222].

Metabolism changes in MM cells show their vulnerability. For efficient killing of
myeloma tumor cells, the design of metabolic targets and the choice of new combinations
must take into account the modifications of metabolism imposed by the TME as well as the
redox status of MM cells themselves.

www.clinicaltrials.gov
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