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A B S T R A C T

Under the prevailing circumstances of the global pandemic of COVID-19, early diagnosis

and accurate detection of COVID-19 through tests/screening and, subsequently, isolation

of the infected people would be a proactive measure. Artificial intelligence (AI) based solu-

tions, using Convolutional Neural Network (CNN) and exploiting the Deep Learning model’s

diagnostic capabilities, have been studied in this paper. Transfer Learning approach, based

on VGG16 and ResNet50 architectures, has been used to develop an algorithm to detect

COVID-19 from CT scan images consisting of Healthy (Normal), COVID-19, and Pneumonia

categories. This paper adopts data augmentation and fine-tuning techniques to improve

and optimize the VGG16 and ResNet50 model. Further, stratified 5-fold cross-validation

has been conducted to test the robustness and effectiveness of the model. The proposed

model performs exceptionally well in case of binary classification (COVID-19 vs. Normal)

with an average classification accuracy of more than 99% in both VGG16 and ResNet50

based models. In multiclass classification (COVID-19 vs. Normal vs. Pneumonia), the pro-

posed model achieves an average classification accuracy of 86.74% and 88.52% using

VGG16 and ResNet50 architectures as baseline, respectively. Experimental results show

that the proposed model achieves superior performance and can be used for automated

detection of COVID-19 from CT scans.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

The viral disease COVID-19, which broke-out from Wuhan

China, has spread worldwide as a global pandemic. As of 09

Jan 21, more than 87.5 millions of people have been infected

including 1.9 million deaths worldwide due to the pandemic
[1]. COVID-19 is one of the single largest events in human his-

tory which has affected in such proportion globally. The pan-

demic has not only affected routine activities of the people

but has also led to the mental and psychological stress apart

from substantial financial loss, economic stagnation, and

health liabilities [2,3]. So far, no proven vaccine has been
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developed for the disease, though concerted efforts are in-

progress. The asymptomatic COVID-19 transmission cases

have also been reported, though they are less contagious than

the symptomatic cases [4]. These circumstances demand the

regular check-ups of a large number of people that may lead

to an extra burden. Being a viral infection, early identification,

and isolation of COVID-19 patients is vital in breaking the

chain of its spread and efficient handling of the present

situation.

Presently Reverse Transcription–Polymerase Chain Reac-

tion (RT-PCR) and rapid tests are being conducted for early

detection of the disease [5]. However, the sensitivity shown

by these tests is not optimal. There are many false-positive

and false-negative results, which defeats the very purpose

of early identification and isolation of the patients [6,7]. This

further delays in making the right decision and suitable

action taken. Shortage and timely availability of sufficient

test-kits to conduct mass level tests is also a significant con-

cern in many countries [8]. Several studies have been per-

formed for prediction of the spread and continuous

monitoring of the COVID-19 pandemic [9–12].

The X-ray, computerized tomography (CT) scan, ultra-

sound screening tests are also being used by radiologists to

examine the patients to detect COVID-19 infection. While

evaluating the CT scan images, specific and consistent pat-

terns/features have been identified in almost all COVID-19

patients. Two significant patterns, one ground glass opacities

in the early stage and other one is pulmonary embolism

demonstrating linear consolidation in the latter stages, have

been identified as prominent signs in detecting the infection

of virus [13,14]. It is important to note that COVID-19 develops

symptoms similar to Pneumonia, as both are viral diseases,

affecting the lungs and leading to breathing problems. There-

fore, it becomes very challenging and bewildering to differen-

tiate between COVID-19 and Pneumonia. In pandemic

scenarios, this manual method of evaluating images takes

much time and needs intensive human resources. As an alter-

native, the need of the hour is to find an automatic system/-

tool to have early and precise detection of COVID-19 disease

to control its spread.

Machine learning, deep learning and AI based approaches

have been used for detection and classifications various dis-

eases [15–17]. Thus, as an alternative, AI-based solutions

can provide efficient solutions that can help in automatic

learning of features/patterns from CT scan images, which

can augment the capabilities of radiologists in better

decision-making and more effective management of the situ-

ation. Deep Learning models [18], based on CNN are highly

effective and have shown promising results in various medi-

cal imaging applications [19–21]. CNN has made possible the

development of deep neural network architectures consisting

of several intermediate layers. In contrast to the traditional

Machine Learning algorithms, where input features are

required to be fed as input to the algorithm, CNN has auto-

matic feature learning capabilities. Technology improve-

ments in terms of large data handling and high-speed

Graphical Processing Units (GPU) have worked as a catalyst

in augmenting the performance. CNN based deep learning

models have shown promising results across diverse fields

and are fundamental to almost all image recognition tasks.
CNN consists of several intermediate layers, where initially

low-level features are learned, and higher-level or fine-grade

features are learned in deeper stages. Fundamentally, CNN

based model consists of two levels. The first level is feature

extraction layer cascaded with several layers of convolution,

activation, and MaxPooling operations, which helps in learn-

ing unique and specific features from an input. The second

level consists of fully connected layers that perform the

actual classification task [22].

The development of any deep learning algorithm from

scratch requires resources in terms of a high-speed GPU pro-

cessor for execution, large number of input images for train-

ing, and time to fine-tune and optimize the model parameters

for specific tasks. Therefore, in this paper, transfer learning-

based architectures have been used as a base model to reduce

complexity, which has been optimized and fine-tuned further

to improve the performance of the COVID-19 detection algo-

rithm. There are a number of easily accessible top-

performing models, namely VGG16/VGG19 [23], ResNet50

[24], Inception [25], Xception [26], InceptionResNet [27] and

DenseNet [28], which can be integrated into a new image clas-

sification task. The weights of these models, which have been

trained optimally on millions of images for similar kinds of

image recognition tasks, can be easily loaded into the algo-

rithm. Based on requirements, the weights of model can be

re-trained, or new convolution layers can be incorporated into

the algorithm to increase the model capacity. Further, model

performance can be improved by assimilating BatchNormal-

ization, regularization, and tuning of the neural network

Hyperparameters.

Since the spread of COVID-19, several deep learning-based

models have been proposed to detect the disease. Models

have been implemented using X-ray [29–34] or CT scan

[35,36] images. Since the pandemic is in-continuation and

spreading at a very high rate, there is a lack of a large number

of good quality-labeled radio-graphic images to train a neural

network. Given this, the dataset in almost all proposed mod-

els are highly unbalanced view paucity of adequate COVID-19

images. It is also pertinent to mention that developing a deep

learning model from scratch needs many resources and con-

certed efforts to optimize it. Therefore, most of the proposed

models available in the literature have been built-upon using

transfer learning-based architecture. COVID-19 detection

model for three classes, consisting of Coronavirus, Bacterial

Pneumonia and Normal categories, has been proposed in

[29,37,35,38]. In [29], the proposed DarkCOVIDNet model

based on the Darknet-19 model has been evaluated using X-

ray images and 5-fold cross-validation. The authors in [37]

have introduced a COVID-Net network architecture, and [35]

has studied various transfer learning-basedmodels, including

ResNet50 and VGG16 using X-ray images and single fold

cross-validation. A similar analysis has been carried out in

[38] using X-ray, CT scan, and ultrasound images applying

various transfer learning models.

A hybrid approach based on the integration of artificial

neural networks and fuzzy logic has been described in [39]

for diagnosis of pulmonary diseases using chest X-ray images.

The author performs the classification task by feeding grays-

cale histogram features, grey-level co-occurrence matrix,

texture-based features, and local binary pattern texture



Fig. 1 – Sample CT scan images used for training and

evaluation of the proposed COVID-19 detection model. First

row: Normal; second row: COVID-19, third row: Pneumonia.
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features into the artificial neural network. The same authors

have undertaken the classification of COVID-19 using the

same texture features and neural networks in [40]. A seven-

layer convolutional neural network-based COVID-19 diagno-

sis model has been proposed in [41] using 14-way data aug-

mentation and introduced stochastic pooling. In reference

[42], six different pretrained models have been experimented

with bymaking the number of layers adaptive and adding two

new fully connected layers in each model. The authors have

fused the features from the best two pretrained models using

discriminant correlation analysis. The authors in [43] have

used different pretrained models as feature extractors com-

bined with machine learning algorithms to perform the auto-

matic detection using chest X-ray images. Automated

detection of COVID-19 using CNN-based U-Net architecture

has been proposed in [44] that consists of a sequence of con-

volutional blocks where the output of a block is concatenated

with the output from a previous block in a specific pattern

before feeding to the next block. A model based on Multiple

Kernels-Extreme Learning Machine and neural network using

chest CT images has been proposed in [45] for COVID-19

detection based on DenseNet201 transfer learning architec-

ture. In this study, the final output class is predicted using

the majority voting of the outputs from three different activa-

tion functions. CVID-19 detectionmodel proposed by [46] uses

ShuffleNet and SqueezeNet architectures as a feature extrac-

tor and Multiclass Support Vector Machine as a classifier.

In this study, extensive experiments have been performed

through the proposed model and the main contributions are

as follows:

1. Transfer learning-based architectures (VGG16 and

ResNet50), originally developed on ImageNet dataset, have

been studied and experimented with to detect COVID-19

disease from CT scan images.

2. The dataset has been prepared by collecting three different

categories of images consisting of Normal, Pneumonia,

and COVID-19 from authentic websites [47–49].

3. Several performance improvement techniques and data

augmentation have been incorporated in the proposed

model to improve the performance of standard VGG16

and ResNet50 models.

4. To make the standard pretrained models more specific and

relevant for COVID-19 detection, convolutional blocks of

VGG16 and ResNet50 architectures have been re-trained.

5. A new convolutional block consisting of Convolutional

layer, BatchNormalization, MaxPooling, and Dropout has

been incorporated into the proposed model to minimize

the overfitting and hence, the generalization error.

Rest of the work is organized as follows: The details of

dataset preparation, proposed neural network architecture,

data augmentation, and performance improvements incorpo-

rated into the baseline VGG16 and ResNet50 models have

been discussed in Section II. The discussions and analysis

of results obtained from the experiments are presented in

Section III. Finally, Section IV concludes the paper by propos-

ing some future scopes.
2. Experimental design of COVID-19 detection
model

2.1. Dataset

The major challenge in training and validating the proposed

model is the availability of authentic, labeled, and class-

balanced COVID-19 CT scan images. Most of the available

open-source datasets are either unorganized or highly

unbalanced, which would affect the learning and prediction

capabilities of deep learning models significantly. Moreover,

the available numbers of COVID-19 CT scan images are min-

imal and insufficient. Therefore, for experiment purposes,

the dataset is obtained by downloading CT scan images from

the authentic websites [47–49]. From these images, a class-

balanced dataset consisting of 400 images each of COVID-

19 and Normal categories is prepared by performing required

pre-processing that consists of resizing and conversion to a

common image format (PNG). Further, since COVID-19 has

similar symptoms as Pneumonia and both are viral disease,

a new dataset comprising three categories of COVID-19,

Pneumonia, and Normal (Healthy) images, is prepared to

assess the robustness and effectiveness of the proposed

model. Two hundred fifty images exhibiting Pneumonia have

been downloaded from the website [49] to perform the 3-

class classification task. All input images are resized to

224x224 pixels.

Sample images from each class are shown in Fig. 1. The

complete dataset is divided in a ratio of 80:20 for training

and testing of the neural network. Training dataset has been

further divided in a ratio of 80:20 for model training and val-

idation purpose. Detailed information about the training and

testing samples is listed in Table 1.



Table 1 – Details of number of images used for training,
validation and testing of the proposed COVID-19 detection
model.

Sr. Class Train Validation Test Source

(i) COVID-19 256 64 80 [48,49]
(ii) Normal 256 64 80 [47]
(iii) Pneumonia 160 40 50 [49]

Total 672 168 210
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2.2. Proposed deep learning architecture

In this section, standard VGG16 and ResNet50 models a base-

line models have been described, and various performance

improvement techniques have been discussed. These tech-

niques have been integrated with the VGG16 and ResNet50

model carefully to obtain the proposed deep learning model

in detecting COVID-19 from the CT scan images.
Fig. 2 – Process flow architecture of the proposed neural networ

(B) Model-2, based on ResNet50 architecture.
2.2.1. VGG16 and ResNet50 Model
VGG16model was thewinner of the ILSVRC-2014 annual com-

puter vision competition and developed by the Visual Graph-

ics Group (VGG) from Oxford. It has been trained over a

dataset of 14 million images corresponding to 1000 categories.

It consists of 5 convolution blocks (Conv Block-1 to Conv

Block-5) and Fully Connected layers, as shown in Fig. 2, and

details of each block are shown in Table 2. It is pertinent to

note that BatchNormalization and Dropout techniques were

not incorporated in the original VGG16 model. The model is

flexible, simple in implementation, and still very powerful

in performance. Further, as an improvement to the VGG16,

ResNet50 architecture was proposed, which was the winner

of several tracks in ILSVRC & COCO 2015 competitions. With

the increase in deep learning models’ depth, a vanishing gra-

dient problem has been observed, causing accuracy satura-

tion and degradation in subsequent stages. ResNet50

architecture has addressed this problem by introducing a

deep residual learning framework and by incorporating
k models: (A) Model-1, based on VGG16 architecture;



Table 2 – Details of convolutional building blocks: VGG16
architecture (Left) and ResNet50 architecture (Right).

Layer Name Output Size Filter Details
[size, numbers]

ConvBlock� 1 112� 112
3� 3;64
3� 3;64

� �

MaxPooling
ConvBlock� 2 56� 56

3� 3; 128
3� 3; 128

� �

MaxPooling
ConvBlock� 3 28� 28

3� 3; 256
3� 3; 256
3� 3; 256

2
4

3
5

MaxPooling
ConvBlock� 4 14� 14

3� 3; 512
3� 3; 512
3� 3; 512

2
4

3
5

MaxPooling
ConvBlock� 5 7� 7

3� 3; 512
3� 3; 512
3� 3; 512

2
4

3
5

MaxPooling
FC 1000

FC; 4096
FC; 4096
FC; 1000

2
4

3
5,

Softmax
Conv1 112� 112 7� 7, 64, stride 2
Conv2 x 56� 56 3� 3 MaxPool, stride 2

1� 1; 64
3� 3; 64
1� 1; 256

2
4

3
5� 3

Conv3 x 28� 28
1� 1; 128
3� 3; 128
1� 1; 512

2
4

3
5� 4

Conv4 x 14� 14
1� 1; 256
3� 3; 256
1� 1; 512

2
4

3
5� 6

Conv5 x 7� 7
1� 1;512
3� 3;512
1� 1;2048

2
4

3
5� 3

FC 1000 AveragePool,
FC-1000, Softmax
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shortcut connections. We observe that ResNet50 obtains

accuracy gain from increased depths with lower complexity

than VGG nets. The details of layers of ResNet50 model is

shown in Table 2 and Fig. 2.

2.2.2. Data augmentation and fine-tuning
Data augmentation and various performance improvement

techniques have been implemented to enhance the learning

capabilities of the baseline models. Details are enumerated

as follows:
� Data Augmentation: Data augmentation has been applied

to improve the diverse feature learning capabilities of the

model by creating more number of distinct images from

the training dataset. It is pertinent to mention that the per-

formance of deep learning model generalizes well on new

images when trained on large number of training dataset.

Data augmentation introduces random variations in the

dataset at each iteration of the optimization process. It

has been applied carefully to augment the dataset while
preserving the quality. Various types of data augmentation

techniques have been applied to the training dataset, such

as horizontal flip, vertical flip, rotation, width/height shift,

zoom, and shear.

� Re-train the weights of VGG16 and ResNet50 Model:

VGG16, and ResNet50 were originally developed to classify

millions of images into the thousands of categories. Re-

training of the models’ convolution blocks has been car-

ried out to improve the model weights specific to the

detection of COVID-19 disease.

� Fine-Tuning of the Model: Hyperparameters of the model

have been fine-tuned precisely through iterations to

achieve the optimal performance. Various fine-tuning

techniques, incorporated into the proposed models, are

briefed as follows:
1. Number of Layers- Several number of intermediate layers

and nodes have been experimented within the proposed

model. It has been observed that a small number of lay-

ers underfit the model capabilities. In contrast, large

numbers lead to increased model complexity due to an

increased number of weights to be learned, more time

to converge, and performance degradation. Suitable val-

ues were set empirically to achieve performance

improvement.

2. Learning Rate- Learning rate is one of the most vital

parameter that needs careful selection. It has been

observed through experiments that a too-large value of

the learning rate leads to the quick and sub-optimal con-

vergence of the optimization process. At the same time,

a too-small value stuck the learning process. An optimal

value of the learning rate has been deduced analytically

to obtain optimal performance.

3. Batchsize- Batchsize is the number of training samples

taken together to estimate the error gradient of the opti-

mization algorithm. Experimentally, it has been noted

that Batchsize impacts the learning behavior and speed

of the model. A suitable value of Batchsize is chosen

empirically.

4. BatchNormalization- Improved stability of the neural net-

work has been achieved by incorporating a BatchNormal-

ization after every convolutional and fully connected

layers. It reduces the covariance shift between the layers

by normalizing the input to a layer[50] while training a

neural network.

5. Regularization- For the given training dataset, VGG16

and ResNet50 models showed the tendency of overfit-

ting and sub-optimal performance. Mitigation of overfit-

ting and generalization of the proposed model has

been accomplished by incorporating a regularization

technique. Two popular regularization methods, Drop-

out [51] and Early Stopping, have been implemented

in this paper.

6. Optimization Algorithms- Various optimization algo-

rithms, viz. SGD, Adam, RMSprop have been analysed to

assess their effectiveness in the classification task.
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2.2.3. Proposed model
Initially, performance analysis of baseline VGG16 and

ResNet50 model was carried out. It was observed that valida-

tion learning curves do not converge to training learning

curves and have random variations. The baseline model also

performed poorly on the test data. Based on these observa-

tions, it was predicted that the model is showing a tendency

of overfitting and need fine-tuning of Hyperparameters. To

further improve the performance, the following modifications

have been incorporated in the baseline models:

1. Weights of the convolution Blocks of VGG16 and ResNet50

are re-trained so that the proposed model is more suitable

and efficient for the specific classification task.

2. An additional convolution block consisting of Convolu-

tional layers, BatchNormalization, MaxPooling, and Drop-

out layers are inserted before the fully connected layer in

VGG16 architecture. This block has been primarily used

to mitigate the overfitting of the model (through BatchNor-

malization and Dropout) and also to assist in the learning

of fine-order features (through convolutional layers).

3. BatchNormalization and Dropout are incorporated in the

fully connected block of VGG16. Similar changes are also

done in ResNet50, in addition to the incorporation of two

more Fully Connected layers.

The process flow architecture of the proposed model based

on VGG16 and ResNet50 architecture is shown in Fig. 2.

2.2.4. Experimental parameters
The proposed deep learning model has been trained and eval-

uated using Keras [52] library on Google Colab. The Hyperpa-

rameter values have been tuned optimally in multiple

iterations while training the model. Details of the final exper-

imental parameters are tabulated in Table 3.
Table 3 – Details of Hyperparameters (Left) and data augmentat

Hyperparameters

M

Learning rate 0
Momentum
Batchsize
Epochs

Patience(Early Stopping)
Dropout 0
Optimizer

Momentum SGD
Learning rate decay epoch

Data Augme

Re-scaling
Horizontal flip
Vertical flip

Rotation range
Width shift range
Height shift range

Shear range
Zoom range
2.2.5. 5-fold cross-validation
Cross-validation has been used to estimate the performance

and robustness of the proposed model on unseen data with

the aim of minimal generalization error. In this study, 5-fold

cross-validation has been used, where the actual dataset is

divided into five folds. In each experiment, only four folds

have been used for the purpose of training, and the holdout

set is used for testing purpose. Five experiments are per-

formed to get five different accuracies corresponding to each

fold of the dataset as test set. The absolute accuracy of the

proposed model is the average of the accuracy from all exper-

iments. A stratified version of cross-validation has been

implemented to ensure the balance of classes in each fold.

The schematic representation of the proposed stratified 5-

Fold cross-validation is shown in Fig. 3.

3. Results analysis and discussions

Proposed models have been trained on Google Colab using

Hyperparameters as listed in Table IV using the prepared

dataset. The model based on VGG16 and ResNet50 have been

trained for maximum epochs of 500 and 350, respectively,

combined with Early Stopping. Performance analysis is car-

ried out using Accuracy, Precision, Recall (Sensitivity), Speci-

ficity, and F1-Score metrics. The values of various metrices

recorded and analyzed for each experiment. The performance

measures are mathematically calculated as follows:

Accuracy ¼ TPþTN
TPþTNþFPþFN ; Precision ¼ TP

TPþFP ;

Recall ðSensitivityÞ ¼ TP
TPþFN ; Specificity ¼ TN

TNþFP ; F1 � score ¼ 2� Precision
TPþFP

where TP, TN, FP, and FN are True Positives, True Negatives,

False Positives, and False Negatives, respectively.

Four different experiments have been undertaken to

obtain the detailed analysis of the proposed models. Binary

classification of COVID vs. Normal, and multiclass (3-class)
ion (Right) used in the proposed COVID-19 detection model.

Details

odel1 Model2

.00007 0.00003
0.8 0.8
32 16
500 350
100 100
.2–0.5 0.5
SGD SGD
0.7 0.8
/iteration epoch/iteration

ntation

1/255 1/255
Yes Yes
Yes Yes
45� 45�
20% 20%
20% 20%
20% 20%
20% 20%



Fig. 3 – Schematic representation of stratified 5-Fold cross-

validation technique implemented in the proposed COVID-

19 detection model.
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classification of COVID vs. Normal vs. Pneumonia have been

undertaken using two different proposed models (VGG16

and ResNet50). For each experiment, 5-Fold cross-validation

has been carried out to evaluate the robustness and effective-

ness of the model. Details of models and various experiments

are tabulated in Table 4.

The details of performance measures of the experiments

are presented in Table 5. Moreover, an evaluation matrix for

the binary classification of COVID-19 vs. Normal using pro-

posed models (Experiment-1 and Experiment-2) is tabulated

in Table 6. Similarly, an evaluation matrix for multiclass clas-

sification of COVID-19 vs. Normal vs. Pneumonia

(Experiment-3 and Experiment-4) is presented in Table 7.

Training and Validation Learning Curves of Cross-Entropy

Loss and Classification Accuracy have been also evaluated

during the training process. Parameters of the model are opti-

mized based on the learning curves of Cross-Entropy Loss,

and the model has been evaluated based on the learning

curves of Classification Accuracy. The validation curve indi-

cates howwell the model is learning. Overfitting and underfit-

ting of the model are assessed, and based on these

observations, fine-tuning of the Hyperparameters is carried

out to achieve a Good-Fit of the model.
Table 4 – Details of models and various experiments conducted

Sr.No. Particulars

(i) Baseline Model

(ii) Proposed Model

(iii) Experiment-1

(iv) Experiment-2

(v) Experiment-3

(vi) Experiment-4
During the fine-tuning of the model, it is observed that the

Stochastic Gradient Descent optimization algorithm, as com-

pared to the other adaptive optimization algorithms, gives

better control of Hyperparameters to improve the learning

performance. We also observed that the model performance

is highly sensitive to the Hyperparameters, particularly to

learning rate, batch size, momentum, and thus careful fine-

tuning is required. As compared to ResNet50 architecture,

VGG16 architecture is more flexible as extra convolution

blocks, including optimization techniques, can be incorpo-

rated more easily.

Learning curves of Cross-Entropy Loss and Classification

Accuracy for Experiment-1 to Experiment-4, for each 5-fold

cross-validation, are shown in Fig. 4–7, respectively. From

the evaluation of the learning curves, it is observed that there

is a minimal fluctuations and better convergence between the

training and validation curves that shows the Good-Fit of the

model.

Confusion matrix [53] is an essential tool to analyze the

model performance, which provides a matrix of true labels

vs. predicted labels. Confusion matrices of Experiment-1 to

Experiment-4, for each fold, are shown in Fig. 8–11, respec-

tively. The diagonal elements of the matrix show the number

of correct classification in each category. Through the confu-

sion matrix, the performance measures can be calculated for

each class, giving a better understanding of the relations and

interdependencies among various classes. It is observed that

the Normal category of CT images are categorized exception-

ally well from COVID-19 and Pneumonia images. However,

major confusion occurred between COVID and Pneumonia

categories. This confusion is primarily due to the similarity

of impacts made by the diseases on human.

In last one year, several efforts have beenmade in develop-

ment of deep learning based COVID-19 detection models.

Direct comparison with the proposed models in literature

could not be carried out view lack of common training data-

set. However, some comparisons have been undertaken in-

terms of proposed methodologies. Authors in [29] have used

DarkCOVIDNet model and achieves an average classification

accuracy of 87.02% using 5-fold cross-validation on X-ray

images. COVID-Net network architecture in [37] achieves clas-

sification accuracy of 93.3%, whereas, ResNet50 and VGG16
in the proposed COVID-19 detection model.

Details

Original VGG16 model with changes in output layer
Original ResNet50 with changes in output layer

Model1 based on VGG16 Architecture (Refer Fig. 2)
Model2 based on ResNet50 Architecture (Refer Fig. 3)

Binary Classification
COVID vs. Normal) using Model1

Binary Classification
(COVID vs. Normal) using Model2

Multiclass Classification
(COVID vs. Normal vs. Pneumonia) using Model1

Multiclass Classification
(COVID vs. Normal vs. Pneumonia) using Model2
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based models in [35] achieves classification accuracy of

87.54% and 74.84%, respectively. It is pertinent to note that

the dataset in [37,35] are class unbalanced due to lack of ade-

quate COVID-19 images and have been evaluated using

single-fold cross-validation only. Superior classification accu-

racy between COVID-19 and Pneumonia has been proposed

using ultrasound images in [38].

The authors in [40] attains validation accuracy of 92.81%

for binary class classification (COVID-19 vs. Normal) and

96.83% for three-class classification (COVID-19 vs. Pneumonia

vs. Normal) using feature-based feed-forward neural net-

work. The author in [41] using a 10-fold cross-validation

experiment for binary classification (normal vs. COVID-19),

achieves a sensitivity of 94.44%, a specificity of 93.63%, and

accuracy of 94.03%. The proposed model in [42] achieves aver-

age F1-score of 97.04 and precision of 97.32%, 96.42%, 96.99%,

97.38% on COVID-19, pneumonia, tuberculosis and healthy

classes, respectively. The extractor-classifier combination in

[43] achieves the best F1-score of 98.5% using MobileNet

architecture with the SVM classifier and a linear Kernel. The

authors attains the best F1-score of 95.6% using DenseNet201

with multi-layer perceptron (MLP) for the other dataset. U-

Net-based architecture [44] attains average classification

accuracy of 94.26% using 10-fold cross-validation using lungs

CT scan images. The model [45] based on Multiple Kernels-

Extreme Learning Machine and neural network using chest

CT images achieves classification accuracy of 98.36% for bin-

ary classification. The proposed model in [46] obtains classifi-

cation accuracy of 100% for binary classification (COVID vs.

Non-COVID), 99.72% for three-class classification (COVID-19

vs. Normal vs. Pneumonia) and 94.44% for four-class classifi-

cation (COVID-19 vs. Normal vs. Bacterial Pneumonia vs. Viral

Pneumonia).

Based on the extensive experimentation and detailed per-

formance analysis of the proposed models in this study, some

important observations have been made, which are briefly

presented as follows:

1. In Experiment-1, the model shows superior performance

with a test accuracy of more than 97% in all the

dataset folds. In all folds, training and validation learning

curves converge perfectly, showing a Good-Fit of the

model.

2. In Experiment-2, the performance of the model is out-

standing. It achieves test accuracy of almost 100% in all

experiments that show the great avenues in developing

technology for the detection of COVID-19 disease using

CT images. This performance is consistent in all the 5-

Fold experiments. The training and validation learning

curves are converging very well without any substantial

random variations.

3. In Experiment-3, the model achieves varying degrees of

test accuracies ranging from 80% to 96%. This variation

is mainly due to the diverse origin of input images and

the similarity of features of Pneumonia and COVID-19

images. However, in all the experiment folds, the training

and validation learning curves converge very well. The

model improvement can be achieved by adding more

number of input training images.



Table 6 – Evaluation Matrix of binary classification, COVID-19 vs. Normal, using VGG16 based architecture (Experiment-1) and
using ResNet50 based architecture (Experiment-2).

Folds Class Experiment-1 Experiment-2

Precision Sensitivity Specificity F1-score Precision Sensitivity Specificity F1-score

Fold-1 COVID 100 99 100 99 100 100 100 100
Normal 99 100 98.75 99 100 100 100 100
Average 99 99 99.37 99 100 100 100 100

Fold-2 COVID 100 99 100 99 100 100 100 100
Normal 99 100 98.75 99 100 100 100 100
Average 99 99 99.37 99 100 100 100 100

Fold-3 COVID 95 100 95 98 100 100 100 100
Normal 100 95 100 97 100 100 100 100
Average 98 97 97.5 97 100 100 100 100

Fold-4 COVID 100 100 100 100 100 100 100 100
Normal 100 100 100 100 100 100 100 100
Average 100 100 100 100 100 100 100 100

Fold-5 COVID 99 100 98.75 99 96 100 96.25 98
Normal 100 99 100 99 100 96 100 98
Average 99 99 99.37 99 98 98 98.12 98

Table 7 – Evaluation Matrix of multiclass classification, COVID-19 vs. Normal vs. Pneumonia, using VGG16 based architecture
(Experiment-3) and using ResNet50 based architecture (Experiment-4).

Folds Folds Experiment-3 Experiment-4

Precision Sensitivity Specificity F1-score Precision Sensitivity Specificity F1-score

Fold-1 COVID 79 72 88.46 76 81 55 92.3 66
Normal 99 100 99.23 99 100 100 100 100

Pneumonia 62 70 86.87 66 53 80 77.5 63
Average 80 81 91.52 80 78 78 89.93 76

Fold-2 COVID 79 65 90 71 90 57 96.15 70
Normal 98 100 98.42 99 100 100 100 100

Pneumonia 60 74 84.07 66 58 90 78.98 70
Average 79 80 90.83 79 82 82 91.71 80

Fold-3 COVID 84 68 92.31 75 93 89 96.15 91
Normal 98 100 98.46 99 100 99 100 99

Pneumonia 62 80 85 70 84 92 94.37 88
Average 81 83 91.92 81 92 93 96.84 93

Fold-4 COVID 94 81 96.92 87 92 90 95.38 91
Normal 100 100 100 100 100 100 100 100

Pneumonia 75 92 90.62 83 85 88 95 86
Average 90 91 95.85 90 92 93 96.79 92

Fold-5 COVID 99 94 99.23 96 95 95 96.92 95
Normal 100 99 100 99 100 100 100 100

Pneumonia 91 100 96.87 95 92 92 97.5 92
Average 97 97 98.7 97 96 96 98.14 96
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4. In Experiment-4, the Fold-5 experiment achieved the high-

est test accuracy of 97%, and the Fold-2 experiment

achieved the lowest test accuracy of 78%. It shows a wide

variation in the test accuracy from different experiments.

Comprehensive analysis of the confusion matrix reveals

that the reduction in performance is primarily due to the

confusion between Pneumonia and COVID classes. As both

diseases are viral with similar symptoms and training

images are comparatively smaller in number, the model
could not learn essential higher-order features that lead

to lower test accuracies in some experiments. The model

achieved an average accuracy of 88.52% that can be consid-

ered a promising performance towards developing a deep

learning-based COVID-19 detection model.

5. Stratified 5-Fold cross-validation plays a crucial role in

assessing the effectiveness and robustness of the model.

It averages the biases towards the large variations in the

test dataset as final accuracy will be the mean of accuracy



Fig. 4 – Learning Curves of binary classification, COVID-19 vs. Normal, using VGG16 based architecture (Experiment-1) using:

(A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.
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from each fold. Many deep learning-based models pro-

posed in the literature have been evaluated based on sin-

gle fold experiment only. It is considered to be a

preliminary evaluation technique as noticeable from the

large variations among the test results from 5-fold cross-

validation of each experiment.
4. Conclusion and future scopes

A deep learning model based on VGG16 and ResNet50 transfer

learning architecture has been experimented in this study for

the rapid and efficient detection of COVID-19 disease using CT

scan images. Four different experiments have been under-

taken to evaluate the proposed models for binary class classi-



Fig. 5 – Learning Curves of binary classification, COVID-19 vs. Normal, using ResNet50 based architecture (Experiment-2)

using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.
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fication (COVID vs. Normal) and multiclass classification

(COVID vs. Normal vs. Pneumonia). The robustness of the pro-

posed models has been assessed through the stratified 5-fold

cross-validation. It is observed that the proposed model per-

forms exceptionally well in case of binary classification with

an average classification accuracy of more than 99% in both

VGG16 and ResNet50 based models. The model’s performance

degrades relatively when Pneumonia images are added to

make it multiclass classification, though it shows superior
and promising results. With the limited available dataset,

the proposed model achieves an average accuracy of 86.74%

and 88.52% using VGG16 and ResNet50 architectures as base-

line, respectively, in the case of multiclass classification. This

degradation is primarily due to viral nature and similar

impacts on human by COVID-19 and Pneumonia. The results

analysis of the proposed model has shown promising results,

which would enable the development of AI-based automated

solutions/systems assisting the radiologist in efficient and



Fig. 6 – Learning Curves of multiclass classification, COVID-19 vs. Normal vs. Pneumonia, using VGG16 based architecture

(Experiment-3) using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.
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accurate detection of COVID-19 disease. The proposed model

can be further built upon or improved by researching the fol-

lowing areas:

1. Availability of a large number of good quality training

images will enable the learning of diverse and higher-

order features and will reduce the generalization error

that would further accelerate the research and

development.
2. Various high performing transfer learning-based models

can be integrated with the proposed model to improve

the model’s learning capabilities and performance.

3. Performance can be further improved upon by incorporat-

ing X-ray or ultrasound images along with CT scan images.

4. Pre-processing measures can be incorporated into the pro-

posedmodel to learn the fine-order distinguishing features

between Pneumonia and CT scan images to improve the

overall performance.



Fig. 7 – Learning Curves of multiclass classification, COVID-19 vs. Normal vs. Pneumonia, using ResNet50 based architecture

(Experiment-4) using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.
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5. A hybrid approach based on integration of fuzzy logic and

artificial neural network can be studied to have a robust

representation of partial truth/uncertainty in the

classification.

6. Performance study of the proposed model can be

undertaken by collecting continent-wise dataset to have

more understanding about the impact of regional

variation.
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Fig. 8 – ConfusionMatrix of binary classification, COVID-19 vs. Normal, using VGG16 based architecture (Experiment-1) using:

(A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.

Fig. 9 – Confusion Matrix of binary classification, COVID-19 vs. Normal, using ResNet50 based architecture (Experiment-2)

using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.
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Fig. 10 – Confusion Matrix of multiclass classification, COVID-19 vs. Normal vs. Pneumonia, using VGG16 based architecture

(Experiment-3) using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5 dataset.

Fig. 11 – Confusion Matrix of multiclass classification, COVID-19 vs. Normal vs. Pneumonia, using ResNet50 based

architecture (Experiment-4) using: (A) Fold-1 dataset; (B) Fold-2 dataset; (C) Fold-3 dataset; (D) Fold-4 dataset; (E) Fold-5

dataset.
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