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Tuberculosis (TB) remains a global health problem, and is the leading cause of

death from an infectious disease. A crucial step in the treatment of tuberculosis is

screening high risk populations and the early detection of the disease, with chest

x-ray (CXR) imaging being the most widely-used imaging modality. As such, there has

been significant recent interest in artificial intelligence-based TB screening solutions for

use in resource-limited scenarios where there is a lack of trained healthcare workers

with expertise in CXR interpretation. Motivated by this pressing need and the recent

recommendation by the World Health Organization (WHO) for the use of computer-aided

diagnosis of TB in place of a human reader, we introduce TB-Net, a self-attention

deep convolutional neural network tailored for TB case screening. We used CXR data

from a multi-national patient cohort to train and test our models. A machine-driven

design exploration approach leveraging generative synthesis was used to build a

highly customized deep neural network architecture with attention condensers. We

conducted an explainability-driven performance validation process to validate TB-Net’s

decision-making behavior. Experiments on CXR data from a multi-national patient cohort

showed that the proposed TB-Net is able to achieve accuracy/sensitivity/specificity of

99.86/100.0/99.71%. Radiologist validation was conducted on select cases by two

board-certified radiologists with over 10 and 19 years of experience, respectively, and

showed consistency between radiologist interpretation and critical factors leveraged by

TB-Net for TB case detection for the case where radiologists identified anomalies. The

proposed TB-Net not only achieves high tuberculosis case detection performance in

terms of sensitivity and specificity, but also leverages clinically relevant critical factors

in its decision making process. While not a production-ready solution, we hope that

the open-source release of TB-Net as part of the COVID-Net initiative will support

researchers, clinicians, and citizen data scientists in advancing this field in the fight against

this global public health crisis.
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1. INTRODUCTION

Tuberculosis (TB) remains a devastating global public health
crisis, with tremendous on-going negative impact around the
world as the leading cause of death for an infectious disease
at approximately 1.5 million deaths and 10 million infected
each year (World Health Organization, 2020a). Caused by
Mycobacterium tuberculosis (M. tb), a species of pathogenic
bacteria, TB is an airborne disease that affects approximately
a quarter of the global population, particularly areas of
the world faced by poverty and economic distress (World
Health Organization, 2020a). More specifically, the most
devastating effect of tuberculosis has been on low- and middle-
income regions, with two thirds of all tuberculosis infections
found in 8 countries (Bangladesh, China, India, Indonesia,
Nigeria, Pakistan, Philippines, and South Africa) (World Health
Organization, 2020a). Tuberculous is a curable disease, with
approximately 85% of infections successfully treated via a 6-
month drug treatment regimen of different antibiotics.

A very crucial step in the treatment of tuberculosis is screening
high risk populations and the early detection of the disease,
although tuberculous remains underdiagnosed with an estimated
3 million out of 10 million infected individuals not diagnosed
or reported to the World Health Organization (WHO) (World
Health Organization, 2020c). Currently, the most widely-used
imaging modality used in the screening of tuberculous is chest x-
ray (CXR) imaging, which has been shown to be a highly effective
and cost-effective screening tool in this scenario (van’t Hoog
et al., 2012; Li et al., 2018; Diaz et al., 2020). However, one of the
biggest limitations with the use of CXR for tuberculosis screening
is that it requires experienced human readers such as radiologists
or trained clinicians and technicians for interpretation (World
Health Organization, 2020a). This problem is exacerbated given
the significant shortage of such experienced readers in the most
effected countries.

Given this shortage of experienced readers worldwide
for CXR interpretation for tuberculosis screening, there
has been significant recent interest in artificial intelligence-
based TB screening solutions for use in resource-limited
scenarios (Chauhan et al., 2014; Hwang et al., 2016; Melendez
et al., 2016; Hooda et al., 2017; Lakhani and Sundaram, 2017;
Lopes and Valiati, 2017; Vajda et al., 2018; Yadav et al., 2018;
Ahsan et al., 2019; Hernandez et al., 2019; Meraj et al., 2019;
Nguyen et al., 2019; Pasa et al., 2019; Singh and Hamde, 2019;
Rahman et al., 2020). In fact, the most recent WHO guidelines
for tuberculosis screening introduced a new recommendation
stating that, for those 15 years and older in populations where
screening is recommended, computer-aided detection (CAD)
may be used in place of human readers for CXR interpretation
for tuberculosis screening (World Health Organization, 2020c).

Motivated by this pressing need and the new recommendation
by the WHO for the use of CAD for tuberculosis screening,
we introduce TB-Net, a self-attention deep convolutional
neural network design tailored for TB case screening. More
specifically, we leveraged machine-driven design exploration to
build a highly customized deep neural network architecture
with attention condensers. The TB-Net deep neural network
design is not only designed to be high-performing but also

highly efficient, which is especially important for practical,
operational TB screening given that high-risk regions for TB
around the world are those faced by poverty and economic
distress, and as such have high resource constraints. In order to
validate TB-Net’s decision-making behavior, we also conducted
an explainability-driven performance validation analysis to
show that TB-Net leverages the correct critical factors in
making predictions. Furthermore, radiologist validation was
conducted with two board-certified radiologists to study the
consistency between radiology interpretation and TB-Net’s
decision-making behavior.

The proposed TB-Net is part of the COVID-Net open
source initiative (Gunraj et al., 2020, 2021; Wang et al., 2020;
Wong et al., 2020c; Ebadi et al., 2021), which was launched
to accelerate advancements in machine learning for tackling
different challenges ranging from screening to risk stratification
to treatment planning for patients with the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Accordingly
to the WHO, it is anticipated that those with both tuberculosis
and SARS-CoV-2 infections could potentially experience poorer
treatment outcomes, particularly if tuberculosis treatment is
interrupted as a result of SARS-CoV-2 infection (World
Health Organization, 2020b). Furthermore, tuberculosis and
SARS-CoV-2 infection can share similar symptoms (World
Health Organization, 2020b). Therefore, effective CAD of both
SARS-CoV-2 and tuberculosis infections to support clinicians
and front-line healthcare workers can have great potential
for improving clinical workflows for tackling these health
crises by improving screening, triaging, risk stratification, and
treatment planning.

While not a production-ready solution, we hope that
the open-source release of TB-Net will support researchers,
clinicians, and citizen data scientists in advancing this field in the
fight against this global public health crisis.

The article is organized as follows. Section 2 covers recent
literature related to tuberculosis detection using deep learning
approaches. Section 3 describes the underlying methodology
behind the design of the proposed TB-Net, data preparation,
explainability-driven performance validation, and radiologist
validation. Section 4 presents both the qualitative and
quantitative results of the study. Section 5 explores and
discusses the efficacy and decision-making behavior of TB-Net
both quantitatively and qualitatively, along with radiologist
validation. Finally, conclusions are drawn and discussions in
broader impact and future directions are presented in Section 6.

2. RELEVANT WORK

The shortage of experienced CXR interpreters worldwide for
tuberculosis screening, has caused a significant recent interest in
the use of artificial intelligence-based TB screening solutions for
resource-limited scenarios (Chauhan et al., 2014; Hwang et al.,
2016; Melendez et al., 2016; Hooda et al., 2017; Lakhani and
Sundaram, 2017; Lopes and Valiati, 2017; Vajda et al., 2018;
Yadav et al., 2018; Ahsan et al., 2019; Hernandez et al., 2019;
Meraj et al., 2019; Nguyen et al., 2019; Pasa et al., 2019; Singh
and Hamde, 2019; Rahman et al., 2020; Rajaraman and Antani,
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2020). There are a variety of different approaches, ranging from
classical artificial intelligence solutions such as random forests
(Melendez et al., 2016) or shape and texture feature vectors
(Chauhan et al., 2014; Vajda et al., 2018; Singh andHamde, 2019),
to deep learning approaches using individual CNNs (Hwang
et al., 2016; Hooda et al., 2017; Lakhani and Sundaram, 2017;
Lopes and Valiati, 2017; Ahsan et al., 2019; Pasa et al., 2019;
Rahman et al., 2020) or ensemble CNNs (Hernandez et al., 2019;
Rajaraman and Antani, 2020). The advancements of artificial
intelligence has even motivated changes to the WHO guidelines
for tuberculosis screening, allowing the use of computer-aided
detection (CAD) software in place of human readers for CXR
interpretation (World Health Organization, 2020c) for those 15
years and older in populations where screening is recommended.
CAD software that is able to interpret CXR images is already
available (Qin et al., 2021), but suffers from two faults, the first
being that the software is usually closed and not available to the
general public, and the second being that there is a significant lack
of transparency around the software performance and outputs.

Deep learning is a subset of artificial intelligence that has
also garnered much attention over the past few decades. The
use of deep learning for tuberculosis screening is not a new
topic, given the urgency and importance of this task. Most
recently, a comprehensive study conducted by Rahman et al.
(2020) compared nine different deep convolutional neural
network architectures [ResNet-18 (He et al., 2016), ResNet-
50, ResNet-101, ChexNet (Rajpurkar et al., 2017), Inception-
V3 (Szegedy et al., 2015), VGG-19 (Simonyan and Zisserman,
2015), DenseNet-201 (Huang et al., 2018), SqueezeNet (Iandola
et al., 2016), and MobileNet-v2 (Sandler et al., 2019)] for the
task of detecting TB patient cases from CXR images, and found
the ChexNet deep neural network architecture design (Rajpurkar
et al., 2017), a state-of-the-art deep neural network architecture
for CXR image analysis, to provide the highest sensitivity
and specificity without the use of segmentations. Kim et al.
(2020) used a deep CNN in a semi-supervised study, and
demonstrated a synergistic effect between the algorithm’s
classification and radiologist interpretations, further proving the
idea that deep learning can be used to perform accurate labeling
and classification of CXRs.

However, one issue that tends to arise in deep learning
problems is the high resource requirements necessary for the
deployment of said systems. Thus, one design consideration
behind TB-Net is ensuring that it is high-performing but also
highly efficient, which is especially important for practical,
operational TB screening given that high-risk regions for TB
around the world are those faced by poverty and economic
distress, and as such have high resource constraints. In a study
by Rajaraman et al., stacked ensemble networks comprised of
knowledge-transferred CNNs were leveraged to achieve high
performance metrics on multiple CXR datasets (Rajaraman
and Antani, 2020), showing that although individual models
each performed worse than state-of-the-art architectures, the
combination of the top-3models into a stacked ensemble resulted
in above state-of-the-art performance across metrics including
accuracy, sensitivity, specificity, and F1 score. However, ensemble
methods are computationally expensive and would be hard to

deploy in a resource constrained region even given the high
potential accuracy it could offer.

Another strategy taken in literature is to try and replicate a
radiologist’s interpretation procedure when analyzing a screening
result. Chandra et al. (2020) proposed a technique leveraging
hierarchical feature extraction in which critical features are used
in a two-level hierarchy to categorize healthy and unhealthy
groups. In the first level, handcrafted geometrical features such as
shape, size, and perimeter are used, and in level 2, traditional first
order statistical features are used such as texture features, energy,
entropy, contrast, and correlation. These features are extracted
from segmented lung-fields, where a supervised classification
approach is then taken on the extracted features to output
a normal or abnormal prediction of a CXR image. However,
similar to a CNN ensemble method, the pre-processing steps
involved to perform two-level hierarchical decomposition are
computationally expensive, and thus would not perform well in a
resource constrained environment.

3. METHODS

In this study, we introduce TB-Net, a self-attention deep
convolutional neural network design for detection of TB
cases from chest X-ray images. A machine-driven design
exploration strategy is leveraged to automatically discover
highly customized and unique macro-architecture and micro-
architecture designs that make up the proposed TB-Net self-
attention deep neural network architecture with attention
condensers. Explainability-driven performance validation was
conducted to study and validate the decision-making behavior
of TB-Net. Finally, radiologist validation was conducted by
two board-certified radiologists. The details between data
preparation, network design, explainability-driven performance
validation, and radiologist validation are described below.

3.1. Data Preparation
To train and evaluate the proposed TB-Net, we leveraged the
CXR data from a multi-national patient cohort introduced in a
study by Rahman et al. (2020), which unified patient cohorts from
several initiatives from around the world (Jaeger et al., 2014; Pasa
et al., 2019; NIAID, 2020; Rubin et al., 2020). More specifically,
the multi-national patient cohort consists of patient cohorts
curated by the Department of Health and Human Services in
Montgomery County, Maryland, USA, Shenzhen No. 3 People’s
Hospital in China, the National Institute of Allergy and Infectious
Diseases in the USA, as well as the Radiological Society of
North America. This multi-national patient cohort represents
one of the largest, most diverse patient cohorts for exploring
computer-aided tuberculosis screening, to the best of the authors’
knowledge.

After additional image quality screening of the CXR images,
the CXR data used in this study comprises 6,939 CXR images.
In terms of data distribution, there are a total of 3,461 CXR
images from TB positive patients and 3,478 CXR images from
TB negative patients. The training, validation, and test data
consist of 80, 10, and 10% of the patient cases randomly
selected from the multi-national patient cohort, respectively. To
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FIGURE 1 | Example chest X-ray images from the multi-national patient cohort introduced by Rahman et al. (2020): (top) TB negative patient cases and (bottom) TB

positive patient cases.

FIGURE 2 | The comparison of TB positive vs. TB negative samples in the

dataset. As shown, the split is roughly even.

facilitate for the training and evaluation of TB-Net, the CXR
images were resampled to 224 × 224 and mean imputation was
performed on the top left-hand and top right-hand corners to
mitigate the presence of embedded markings found in the CXR
images. Example CXR images from the multi-national patient
cohort used in this study for both TB negative and TB positive
patient cases are shown in Figure 1. Figure 2 shows the patient
distribution between TB positive and TB negative samples in the
full dataset.

All data generation and preparation scripts are available
in an open source manner at https://github.com/darwinai/
TuberculosisNet.

3.2. Network Design
The proposed TB-Net self-attention deep neural network
architecture design was constructed using a machine-driven
design exploration strategy using the aforementioned CXR data
from the multi-national patient cohort. More specifically, we
leverage the concept of generative synthesis (Wong et al., 2018)
to determine the macro-architecture and micro-architecture
designs of a deep neural network architecture tailored for the
task of TB case detection from CXR images. In generative
synthesis, the automatic discovery of the macroarchitecture
and microarchitecture designs are posed as a constrained
optimization problem, where the goal is to find the optimal
generator that generates deep neural network architectures that
maximizes a given universal performance function under a
set of constraints:

The designs are discovered automatically using an optimal
generator G that is capable of, given a set of seeds S, generating
deep neural network architectures {Ns|s ∈ S} that maximize a
universal performance function U (e.g., Wong, 2018) under a set
of constraints defined by an indicator function 1r(·),

G = max
G

U(G(s)) subject to 1r(G(s)) = 1, ∀s ∈ S. (1)

where G denotes the generator, S denotes a set of seeds, {Ns|s ∈ S}

denotes a set of deep neural network architectures based on the
set of seeds, U denotes a universal performance function U (e.g.,
Wong et al., 2018), and 1r(·) denotes an indicator function that
defines a set of constraints. When building TB-Net, the set of
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constraints specified were: (1) sensitivity ≥ 95%, (2) specificity
≥ 95%, and (3) number of parameters ≤ 5M.

The proposed TB-Net self-attention deep convolutional
neural network design is shown in Figure 3. A number of
interesting observations can be made. First, it can be observed
that the overall network architecture design exhibits high
macro-architecture and micro-architecture heterogeneity, with
a mix of standard convolutions, depth-wise convolutions,
point-wise convolutions, and self-attention mechanisms with
different micro-architecture characteristics. This high degree of
architectural diversity and heterogeneity reflects the fact that
a machine-driven design exploration strategy was leveraged to
customize the design in a very fine-grained manner specifically
around TB case detection using CXR images to achieve an
optimal level of performance for the given task at hand.

Second, it can be observed that the network architecture
possesses a very light-weight design, consisting primarily
of highly efficient depth-wise convolutions and point-wise
convolutions as well as leveraging light-weight design patterns
such as project-expansion-projection-expansion (PEPE) patterns
that reduces and expands representational dimensionality in
a way that strikes an optimal balance between accuracy
and efficiency. This light-weight design pattern utilization
reflects the ability for a machine-driven design exploration
strategy to tailor the macro-architecture design of deep neural
network architectures based on the architectural complexity
constraint imposed in the indicator function. The highly
efficient architecture design of TB-Net is especially critical to
enabling potential widespread adoption since real-world TB
screening scenarios in high-risk regions faced by poverty and
economic distress have high resource and cost constraints, and so
deployment would often have to take place on low-cost, low-end
computing devices.

Third, it can be observed that a majority of the layers
of the TB-Net network architecture design is comprised
of visual attention condensers (Wong et al., 2020b), which
are a variant of the highly efficient attention condenser
self-attention mechanisms recently introduced in Wong
et al. (2020a). More specifically, visual attention condensers
produce condensed embedding characterizing joint spatial and
cross-channel activation relationships and achieves selective
attention accordingly to improve representational capability
while maintaining very low architectural and computational
complexity. As a result, by leveraging visual attention condensers,
the proposed TB-Net network architecture design facilitates for
high TB screening performance by better focusing its attention
on the distinguishing visual cues within CXR images for
identifying TB positive patient cases in a very efficient manner.

Last but not least, the end-stage sub-architecture of the TB-
Net deep neural network architecture consists of a global average
pooling layer, a fully-connected layer, and a softmax layer to
produce the final output for predicting whether a patient is TB
positive or negative. The TB-Net network is available in an open
source manner at https://github.com/darwinai/TuberculosisNet.

3.3. Network Training
Training was conducted on the proposed TB-Net deep neural
network architecture design using stochastic gradient descent

optimization with a learning rate of 0.0001, momentum of 0.9,
and a batch size of 8 for 200 epochs.

Each image went through the following pre-processing steps.
To begin, images were cropped such that 5% of the top, left, and
right sides of the image were removed, and 25% of the bottom
was removed. Each image was then resized back to a size of 224
× 224 pixels. Based on our experiments, a size of 224× 224 pixels
was able to provide optimal performance and retained sufficient
textural information to discriminate between TB positive and
TB negative patients, with no performance gains for higher
resolutions. This is consistent with Sabottke and Spieler (2020),
noting that the performance of neural networks plateau after
a certain resolution as sufficient information is available for
high accuracy.

Next, data augmentation was conducted on training images
with the following augmentation types: horizontal flip, random
cropping (within 10%), random contrast shift (within 20%), and
random intensity shift (within 10%). Test and validation images
were not augmented. These augmentations were chosen as they
are typical transformations in medical image applications, as
CNNs are good at learning spatial filters that capture spatially
local discriminant features. Since spatially local visual biomarkers
and patterns within the lungs that are useful for characterizing
tuberculosis may have similar visual appearance across patients
but are not identical and have geometric and intensity variations,
the use of geometric transformations can allow a neural network
to better generalize.

Following the augmentation step, for all images, a mask was
applied on the top-left and top-right corners to remove pre-
existing markers on the images, and filled with black. Finally,
the images were normalized to the range 0–1, and the previously
masked corners were filled in with the average pixel value across
the entire dataset. These pre-processing steps were designed such
that any noise, pre-existing markings, and unnecessary areas of
the image were removed prior to model training.

All construction, training, and evaluation are conducted in
the TensorFlow deep learning framework. The scripts for the
aforementioned process are available in an open source manner
at https://github.com/darwinai/TuberculosisNet.

3.4. Explainability-Driven Performance
Validation
To gain a deeper insight and validate the decision-making
behavior of TB-Net, we leveraged GSInquire (Lin et al., 2019),
a state-of-the-art explainability method that was shown to no
only provide explanations that better reflect the decision-making
behavior of deep neural networks when compared to other well-
known methods, but also identify specific critical factors that are
quantitatively critical to the decision-making process rather than
relative heatmaps pertaining to relative importance variations.

Briefly, GSInquire leverages an inquisitor I within a
generator-inquisitor pair {G, I} during the generative
synthesis (Wong et al., 2018) process used in the machine-
driven exploration strategy. The inquisitor can be more formally
defined as I(G; θI) parameterized by θI that, given a generator
G, produces 1θG (i.e., 1θG = I(G)). To obtain an interpretation
z of a decision from a network N = G(∫ ) comprising a set V
of vertices v ∈ V and a set E of edges e ∈ E (here, the TB-Net

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2022 | Volume 5 | Article 827299

https://github.com/darwinai/TuberculosisNet
https://github.com/darwinai/TuberculosisNet
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Wong et al. TB-Net

FIGURE 3 | The proposed TB-Net architecture design. The TB-Net design exhibits high architectural heterogeneity, light-weight design patterns, and the utilization of

visual attention condensers, with macro-architecture and micro-architecture designs tailored specifically for the detection of TB cases from chest X-ray images.

network) for an input signal x (here, a CXR image), the inquisitor
I probes {Vs, Es}, where Vs ⊆ Vs and Es ⊆ Es with targeted
stimulus x, and the resulting set YG(s) of reactionary responses
y ∈ YG(s) are observed and used to update I. After the update
of I, 1θG = I(G) is generated, transformed, and projected
into same subspace as x via a transformation T (1θG(s)) to
create an interpretation z(x;N). The details related to the use of
GSInquire to generate interpretations of deep neural network
decision-making behavior for CXR images can be found inWang
et al. (2020). Here, the interpretation z indicates the critical
factors leveraged by TB-Net in its decision-making process for a
CXR image.

Explainability-driven performance validation facilitates for:
(1) transparent validation of the TB-Net network to ensure that
the TB case detection process is primarily driven by clinical
relevant visual indicators such as infiltrates, consolidations,
pleural effusion, cavities, and lesions, (2) identification of
potentially erroneous visual indicators being leveraged such
as embedded markers and text, imaging artifacts, and motion
artifacts, and (3) improve greater trust in the clinical workflow
through greater transparency.

3.5. Radiologist Validation
The results for TB-Net that were obtained during the
explainability-driven performance validation process for select
patient cases are further reviewed and reported on by two board-
certified radiologists (AS and AA). The first radiologist (AS) has
over 10 years of experience, and the second radiologist (AA) has
over 19 years of radiology experience.

4. RESULTS

We evaluate the efficacy of the proposed TB-Net self attention
deep convolutional neural network design for detecting TB

cases from CXR images in three ways. First, we evaluate the
quantitative performance of the network as well as study its
architectural and computational complexity. Second, we study
its decision-making behavior using an explainability-driven
performance validation strategy. Third, we conduct radiologist
validation on study the consistency of TB-Net’s decision-making
behavior with radiologist interpretation. The details of the
quantitative and qualitative results are shown below. Further
exploration of the results will be discussed in Section 5,
along with an explanation of how TB-Net is able to achieve
higher performance without the need for high architectural and
computational complexity.

4.1. Quantitative Analysis
The accuracy, sensitivity, and specificity of the proposed
TB-Net are shown in Table 1, while the architectural and
computational complexity of the proposed TB-Net are shown
in Figure 4. For comparison purposes, CheXNet (Rajpurkar
et al., 2017) was also evaluated, given that it is a state-of-the-
art deep neural network architecture for CXR image analysis
and was found in a comprehensive study conducted by Rahman
et al. (2020) to be the best performing deep neural network
architecture amongst nine different deep convolutional neural
network architectures [ResNet-18 (He et al., 2016), ResNet-
50, ResNet-101, ChexNet (Rajpurkar et al., 2017), Inception-
V3 (Szegedy et al., 2015), VGG-19 (Simonyan and Zisserman,
2015), DenseNet-201 (Huang et al., 2018), SqueezeNet (Iandola
et al., 2016), and MobileNet-v2 (Sandler et al., 2019)] for the task
of detecting TB patient cases from CXR images without the use
of segmentations. In addition, the EfficientNetB0 (Tan and Le,
2019) and NASNetMobile (Zoph et al., 2018) model architectures
were also evaluated, chosen due to the fact that these models were
also created using state-of-the-art neural architecture search for
optimal performance.
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TABLE 1 | Accuracy, sensitivity, and specificity of TB-Net on the test data from

the multi-national patient cohort.

Architecture Accuracy Sensitivity Specificity

(%) (%) (%)

CheXNet (Rajpurkar et al., 2017) 99.42 100 98.85

EfficientNetB0 (Tan and Le, 2019) 98.99 99.42 98.56

NASNetMobile (Zoph et al., 2018) 99.28 98.84 99.71

TB-Net 99.86 100 99.70

Better performance metric in bold.

The following three equations below outline how the accuracy,
sensitivity, and specificity values were calculated for each model,
respectively. A true positive (TP) is a TB positive patient correctly
classified as TB positive, a false negative (FN) is a TB positive
patient incorrectly classified as TB negative, a false positive (FP)
is a TB negative patient incorrectly classified as TB positive, and
finally a true negative (TN) is a TB negative patient correctly
classified as TB negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

FP + TN
(4)

4.2. Qualitative Analysis
Explainability-driven performance validation was conducted on
TB-Net and examples of patient cases with associated critical
factors identified by GSInquire for driving the decision-making
behavior of the proposed TB-Net are shown in Figure 5. It
can be seen that the proposed TB-Net is primarily relying on
clinically relevant areas of the lung in the CXR images to drive
its decision-making behavior.

4.3. Radiologist Analysis
The expert radiologist findings for select patient cases in regards
to the relevancy of the critical factors identified during the
explainability-driven performance validation process as shown
in Figure 5 are as follows. In all three cases, TB-Net correctly
detected them to be TB positive cases.

Case 1. According to radiologist findings, both radiologists
did not observe any abnormalities that would be indicative of
TB, while identified critical factors leveraged by TB-Net indicate
some form of abnormality in the right midlung region.

Case 2. According to radiologist findings, it was observed by
both radiologists that there is a cavity in the hilar region that
coincide with the identified critical factors leveraged by TB-Net in
that region. One of the radiologists also observed other scattered
opacities in the lungs.

Case 3. According to radiologist findings, both radiologists
did not observe any abnormalities that would be indicative of

TB, while identified critical factors leveraged by TB-Net indicate
some form of abnormality in the right lower lung region.

5. DISCUSSION

From the quantitative results shown in Table 1, a number of
observations can be made. First, it can be observed from Table 1

that the TB-Net network achieved high accuracy, sensitivity,
and specificity of 99.86, 100, and 99.7%, respectively, and thus
achieves the same level of sensitivity and slightly higher accuracy
and specificity when compared to CheXNet used in this study.
When compared to EfficientNetB0, TB-Net also achieves higher
accuracy, sensitivity, and specificity across all three metrics. Only
NASNetMobile has a similar specificity as TB-Net, but does so
at the cost of lower accuracy and sensitivity. The high sensitivity
achieved with the proposed TB-Net implies that there would
be fewer missed TB positive patients during the TB screening
process, which is highly desirable from a clinical perspective
especially given the infectious nature of TB and the need to
reduce spread within the community. On the other hand, the
high specificity achieved with the proposed TB-Net implies that
there would be fewer false positive detections, which is important
to reduce the burden on healthcare systems caused by additional
work for clinicians and front-line healthcare workers.

Second, it can be observed from Figure 4 that the TB-
Net network achieves low architectural complexity and
computational complexity of 4.24 million parameters and
0.42 billion multiply-accumulate (MAC) operations, which is
also ∼1.9× lower and ∼6.7× lower, respectively, than that
of CheXNet used in this study. The high architectural and
computational efficiency achieved by the proposed TB-Net
network is important for enabling CAD-driven TB screening
on low-cost, low-power computing devices, particularly given
the types of resource-constrained clinical environments faced
in high-risk regions faced by poverty and economic distress.
For comparison, other highly efficient network architectures
such as EfficientNet or NasNetMobile consist of 5.3 million
parameters, demonstrating the lightweight aspect of TB-Net,
which only contains 4.24 million. TB-Net also only requires
a similar number of MAC operations as these state-of-the-
art model architectures, further showcasing the ability of
machine-driven architecture design in generating powerful yet
compact networks.

These quantitative results illustrate that the self-attention
network architecture design tailored via a machine-driven design
exploration approach is capable of achieving high detection
performance while maintaining high efficiency, thus illustrating
high potential for resource-constrained clinical environments.
The addition of visual attention condensers is what enables
this high performance while maintaining a low complexity, as
they allow TB-Net to much more efficiently focus attention
on the most important visual bio-markers for characterizing
tuberculosis phenotypes, andmore effectively learn the difference
between tuberculosis positive and negative patients.

Quantitative results can also be seem from Figure 5. In this
image, it can be seen that the proposed TB-Net is primarily
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FIGURE 4 | Architectural and computational complexity comparison between the CheXNet (Rajpurkar et al., 2017) architecture vs. the proposed TB-Net architecture.

As shown, TB-Net achieves ∼1.9× fewer parameters and ∼6.7× lower MACs.

FIGURE 5 | Examples of patient cases with associated critical factors (highlighted regions) as identified by GSInquire (Lin et al., 2019) during explainability-driven

performance validation. From left to right: (a) Case 1, (b) Case 2, and (c) Case 3. Radiologist validation showed that several of the critical factors identified are

consistent with radiologist interpretation.

relying on clinically relevant areas of the lung in the CXR images
to drive its decision-making behavior. Furthermore, it can be seen
that it is not relying on erroneous visual indicators such asmotion
artifacts, embedded symbols and text, and imaging artifacts. As
such, it can be seen that TB-Net is exhibiting clinically relevant
decision-making behavior.

The third part of our evaluation procedure involved validation
from certified radiologists. Based on the radiologist findings
and observations on the three patient cases, it was shown that
the critical factors identified by GSInquire as critical factors
driving the decision-making behavior of TB-Net was consistent
with radiologist interpretation for Case 2, but not all regions
of concern as identified by the radiologists are necessarily
leveraged by TB-Net in making its TB case detection decisions.
Furthermore, more interestingly, the critical factors identified
by GSInquire as critical factors driving the decision-making

behavior of TB-Net for Case 1 and Case 3 for correctly
determining the patients as TB positive were not identified by the
radiologists, which could lead to more interesting insights and
methods for tuberculosis detection in the future.

6. CONCLUSION

In this study, we introduced TB-Net, a self-attention deep
convolutional neural network tailored for tuberculosis case
screening. A machine-driven design exploration strategy was
leveraged to build a highly customized deep neural network
architecture with attention condensers. An explainability-driven
performance validation process was conducted to validate TB-
Net’s decision-making behavior, and was further confirmed via
radiologist validation. Experimental results demonstrate that
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TB-Net can not only achieve high tuberculosis case detection
performance in terms of sensitivity and specificity, but also
exhibit clinically relevant behavior during an explainability-
driven performance validation process as well as during the
radiologist validation process for the case where radiologists
identified anomalies.

Since tuberculosis is an on-going global health crisis and
is curable if detected, the hope is that research such as
TB-Net and open source initiatives such as the COVID-
Net initiative that TB-Net is part of can accelerate the
advancement and adoption of deep learning-driven computer
aided diagnosis solutions within a clinical setting to aid front-
line health workers and healthcare systems in improving clinical
workflow efficiency and effectiveness in the fight against the
on-going tuberculosis crisis in high-risk regions where there
is a tremendous scarcity of experienced human readers for
tuberculosis screening. Therefore, additional care was taken to
perform explainability-driven performance validation as well as
radiologist validation to conduct additional checks and balance
around the decision-making behavior of TB-Net in a transparent
and responsible manner.

To the best of the authors’ knowledge, this research on
tuberculosis screening using deep learning does not put anyone
at any potential disadvantages. However, it is important to
note that TB-Net is not a production-ready solution and the
current focus is on facilitating research advancements in the
area. While not a production-ready solution, the hope is that
the open-source release of TB-Net as part of the COVID-Net

initiative will support researchers, clinicians, and citizen data
scientists in advancing this field in the fight against this global
public health crisis. Further work involves the exploration of
tailored deep neural network designs for other tasks in the
tuberculosis clinical workflow (e.g., severity assessment and
treatment planning), as well as exploring a system that can
differentiate between tuberculosis and SARS-CoV-2 infections as
they share similar symptoms.
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