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Abstract

Metabolism is a crucial frontier of host-virus interaction as viruses rely on their host cells to

provide nutrients and energy for propagation. Vaccinia virus (VACV) is the prototype poxvi-

rus. It makes intensive demands for energy and macromolecules in order to build hundreds

and thousands of viral particles in a single cell within hours of infection. Our comprehensive

metabolic profiling reveals profound reprogramming of cellular metabolism by VACV infec-

tion, including increased levels of the intermediates of the tri-carboxylic acid (TCA) cycle

independent of glutaminolysis. By investigating the level of citrate, the first metabolite of the

TCA cycle, we demonstrate that the elevation of citrate depends on VACV-encoded viral

growth factor (VGF), a viral homolog of cellular epidermal growth factor. Further, the upregu-

lation of citrate is dependent on STAT3 signaling, which is activated non-canonically at the

serine727 upon VACV infection. The STAT3 activation is dependent on VGF, and VGF-

dependent EGFR and MAPK signaling. Together, our study reveals a novel mechanism by

which VACV manipulates cellular metabolism through a specific viral factor and by selec-

tively activating a series of cellular signaling pathways.

Author summary

Vaccinia virus (VACV) is a large DNA virus with an acute and increasing demand for

energy and macromolecules to build hundreds and thousands of viral particles in a single

cell within hours of infection. The demand postulates reprogramming of the TCA cycle, as it

is the central metabolic hub of a cell that generates metabolites for energy production and

macromolecule synthesis. We show that VACV infection reprograms cellular metabolism

globally, elevating the TCA cycle intermediate levels and modulating related cell metabolism.

The elevation of the TCA cycle intermediates depends on the virus-encoded growth factor

that stimulates non-canonical STAT3 signaling during VACV infection. Our results provide

the metabolic foundation of viral growth factor to boost VACV infection.
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Introduction

Viruses do not have metabolism and rely on their host cells for energy and molecular precur-

sors to replicate. Different viral infections often have different metabolic needs from their host

cells. Hence, many viruses have developed strategies to rewire cellular metabolism, and often

this ability shapes the outcome of virus replication [1–3]. While metabolism is arguably a hot

frontier of virus-host interaction, the molecular mechanisms underlying virus-induced meta-

bolic reprogramming are mostly unknown. Identifying the mechanisms by which a virus

usurps host cell metabolism will facilitate understanding viral infection and uncover funda-

mental mechanisms of metabolic regulation.

Vaccinia virus (VACV), the prototypic member of the poxviridae family, is a large, envel-

oped virus with a double-stranded DNA genome that encodes over 200 genes [4]. It had been

used as the vaccine to eradicate smallpox, one of the deadliest diseases in human history [5].

Poxviruses continue to cause significant morbidity and mortality in humans and animals.

There are also concerns about unregistered smallpox virus stocks that could be used for bioter-

rorism [6–8]. In addition, the study of VACV is of great importance because of promising

development in its use to treat cancers [9], to produce recombinant proteins [10], and to

develop vaccines against other infectious diseases [11]. Recent evidence suggests that VACV is

an outstanding model to study how a virus reprograms cellular metabolism. VACV rewires

host metabolism such that it upregulates glutamine metabolism [12,13]. It also depends on de
novo fatty acid synthesis to generate an energy-favorable environment [14], suggesting the

virus may need to modulate fatty acid synthesis. We have shown that VACV selectively upre-

gulates the translation efficiency of oxidative phosphorylation (OXPHOS) mRNAs, indicating

the requirement of increased and continuous supply of energy during virus replication [15].

Interestingly, while these metabolic alterations by VACV could converge to the tricarbox-

ylic acid cycle (TCA cycle), little is known about how VACV infection impacts the TCA cycle.

Citrate, the first intermediate of the TCA cycle and the primary source of cytosolic fatty acid

synthesis, stands at the crossroads of these two critical processes in cellular metabolism [16].

Not surprisingly, citrate metabolism contributes to the growth and proliferation of organisms

ranging from algae, fungi, bacteria, plants and worms to mammalian cells [17–22]. Given the

vital role of this metabolite, it is conceivable that its biosynthesis and breakdown would be

affected by many viruses. However, very little is known about how a viral infection may affect

this key metabolite of cell metabolism.

VACV encodes two copies of viral growth factor (VGF) gene, C11R, in the inverted terminal

repetition (ITR) of its genome. VGF is a viral polypeptide with homology to cellular epidermal

growth factor (EGF) and transforming growth factor [23–26]. It is the most highly expressed

gene among the 118 early genes during VACV infection [27,28]. This secreted protein induces

proliferative effects on VACV-infected cells [29–31], and facilitates cell motility and virus spread

[32]. VGF brings about these effects by binding to the EGF receptor (EGFR) to stimulate the

mitogen associated protein kinase (MAPK) signaling [33]. The majority of cells in an animal are

in resting status and it was shown that VACV with the VGF gene deleted has a reduced replica-

tion in resting cells [34]. VGF gene deleted VACV is significantly less virulent in mice [34,35].

The proliferative response generation needs heightened energy and macromolecule metabolism,

which depends on the TCA cycle [36,37]. These arguments suggest that VACV VGF could be a

key regulator to reprogram host metabolism during VACV infection.

In this study, we report that VACV infection elevates the levels of citrate and other interme-

diates of the TCA cycle and modulates metabolites closely related to the TCA cycle. We dem-

onstrate that the increased citrate level upon VACV infection depends on VGF expression and

cellular EGFR and MAPK signaling. We show that VACV infection induces selective
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upregulation of non-canonical signal transducer and activator of transcription 3 (STAT3)

phosphorylation at the serine727 (S727) via VGF, EGFR, and MAPK signaling. Remarkably,

the STAT3 signaling is also required for citrate level elevation during VACV infection. We fur-

ther demonstrate that the elevation of TCA cycle intermediate levels and VGF-mediated upre-

gulation of non-canonical STAT3 phosphorylation could be independent of glutamine

metabolism. These findings identify a novel function of VGF that is needed to reprogram cel-

lular metabolism through a molecular mechanism involving non-canonical STAT3 activation.

VGF could be of great utility in understanding how growth factors modulate cellular metabo-

lism and cellular metabolic engineering.

Results

VACV infection induces profound reprogramming of cellular metabolism

globally under glutamine depleted conditions

VACV replication is substantially reduced in cells cultured in glucose-containing, but gluta-

mine-depleted medium [12,14]. We have previously shown that VACV replication is not

affected in medium containing glucose and asparagine under glutamine-depleted condition

[38]. As previous studies have shown, VACV upregulates glutaminolysis [12,13], our finding

that asparagine can fully rescue VACV replication from glutamine-depletion provides a valu-

able system to study how VACV modulates cellular metabolism in a glutamine-independent

manner. Metabolic profiling during VACV infection in the presence of both glucose and gluta-

mine had been carried out by Fontaine et al. previously [12]. To obtain a global view of the

host cell metabolic changes upon VACV infection under the glutamine-depletion condition,

we performed metabolic profiling to compare the levels of metabolites in VACV-infected and

mock-infected human foreskin fibroblasts (HFFs) cultured in medium containing glucose plus

asparagine at 8 and 16 hours post-infection (hpi) (Fig 1A). At 8 hpi, the virus is actively repli-

cating, while the virus has completed most of the replication cycle at 16 hpi. We chose the

HFFs because they are primary cells, and the metabolism in these cells is not already dysregu-

lated as it is in transformed cancer cells.

In media with glucose plus asparagine, our metabolic profiling detected 173 and 190 metab-

olites significantly altered by VACV infection, with a general increase at 8 hpi (109 up, 64

down) and decrease at 16 hpi (51 up, 139 down), respectively (S1 File). Significant changes in

metabolites were prominent in the categories of TCA cycle, amino acids, and carnitylated fatty

acids that are used for β-oxidation (S1 Fig, S2 File). The substantial changes in cellular metab-

olism upon VACV infection were clearly revealed by a Principal Component Analysis (PCA),

a statistical procedure to summarize the information content in large datasets. (Fig 1B).

VACV replication is classified into three stages; early, intermediate, and late, as a cascade

based on the timing of its gene expression [4]. Our previous study indicated that VACV repli-

cation was not affected at the early gene expression stage but was blocked at intermediate and

late replication stages in the absence of glutamine and asparagine in the glucose-containing

medium [38]. We also carried out metabolic profiling of VACV-infected and mock-infected

HFFs cultured in medium containing glucose without glutamine and asparagine (Fig 1A). In

glucose only medium, we found 220 and 145 metabolites significantly altered by VACV infec-

tion at 8 hpi (156 up, 64 down) and 16 hpi (95 up, 50 down), respectively (S1 File). Interest-

ingly, while we observed a similar global metabolic reprogramming pattern as in the glucose

plus asparagine medium at 8 hpi, more metabolites were still up in glucose only medium com-

pared to glucose plus asparagine medium at 16 hpi (Fig 1C, S1 Fig, S2 File), likely because

more nutrients are used in the asparagine containing medium at the later stage of replication,

in which VACV replication rate is much higher [38]. These results suggest that the metabolic
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reprogramming by VACV starts at the early stages of replication. At the later stage, the metab-

olites are likely consumed to support virus replication.

VACV infection elevates TCA cycle intermediate levels, including citrate

Next, we closely investigated the levels of the TCA cycle intermediates as it is the central hub

of cellular metabolism (Fig 2A), and a global metabolic reprogramming likely involved the

alteration of the TCA cycle intermediates. Notably, at 8 hpi, most of the TCA cycle intermedi-

ates are significantly higher in VACV-infected cells than in mock-infected cells, in both glu-

cose plus asparagine and glucose only conditions (the succinate levels were similar in mock-

Fig 1. VACV infection reprograms cellular metabolism profoundly and globally under the glutamine-depletion

conditions. (A) Experimental design of global metabolic profiling. Four biological replicates of HFFs per treatment

were either mock-infected or infected with VACV at an MOI of 3 for either 8 or 16 hours in medium with glucose

(Glc) or glucose plus asparagine (Glc+N). Metabolites were extracted, and their levels were measured. (B & C)

Principal component analysis (PCA) showing a clear separation between VACV-infected and uninfected HFFs in

glucose plus asparagine medium (B) and in HFFs in glucose only medium (C). Each small circle indicates one sample.

The shaded region indicates the 95% confidence interval. PC1 represents the effect of VACV infection and PC2

represents the effect of time.

https://doi.org/10.1371/journal.ppat.1009303.g001
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and VACV-infected cells) (Fig 2B). At 16 hpi, although we still observed the general trend that

the TCA intermediate levels increased in VACV-infected cells, the elevation levels decreased

(S2 Fig), again suggesting that the elevation of the metabolites occurred at an earlier time and

the metabolites were consumed at the later time of infection. Interestingly, the level of gluta-

mate, whose biosynthesis can be fed by the TCA cycle intermediate, α-ketoglutarate [39],

increased significantly in VACV infected cells in the absence of glutamine (Fig 2C). Together,

these results reveal the enhanced levels of the TCA cycle-related metabolites during VACV

replication.

To further validate the findings of metabolic profiling, we measured the citrate level as it is the

first molecule of the TCA cycle. Using a citrate assay kit, we confirmed that the citrate level signif-

icantly increased by approximately 3.3- and 3.2-fold in VACV-infected HFFs cultured in media

containing either glucose only or glucose plus asparagine, respectively (Fig 2D). Remarkably, we

also observed a similar increase of the citrate level in VACV-infected HFFs cultured in medium

containing glutamine and glucose (Fig 2E), indicating the elevation of citrate in the presence of

exogenous glutamine. The upregulation of citrate could be observed at 2 hpi (Fig 2E). The level

of oxaloacetate (OAA), another critical metabolite of the TCA cycle and citrate metabolism (Fig

2A) increased by two-fold at 8 hpi (Fig 2F). Interestingly, in the metabolic profiling in the pres-

ence of glucose and glutamine, Fontaine et al. found a 1.49 and 1.37-fold increase of citrate levels

upon VACV infection at 4 and 8 hpi, respectively, although it is not statistically significant [12].

Most of the other detected TCA cycle intermediates were also moderately (although not signifi-

cantly) upregulated by up to 1.37-fold at 8 hpi [12]. Taken together, our findings corroborate that

VACV infection elevates the steady-state levels of TCA cycle intermediates, which can provide

metabolic foundations to modulate TCA cycle-related activities and biomolecule synthesis.

Previous work from multiple groups demonstrated that VACV promotes oxygen consump-

tion and ATP production in different cell types [14,15,40], indicating an enhanced TCA cycle

activity. We examined if VACV infection increases ATP production in HFFs and observed a

significant, although not as high as in HeLa cells [15,40], increase in ATP production after

VACV infection (Fig 2G). These findings indicate a biologically relevant activity of the ele-

vated TCA cycle intermediate levels. To further examine if TCA cycle activity is important for

VACV replication, we treated HFFs with Enasidenib (targeting the enzyme isocitrate dehydro-

genase 2 of the TCA cycle). We observed a significant decrease of VACV replication (39- and

83-fold decrease at the MOI of 2 and 0.1 respectively) (Fig 2H) upon Enasidenib treatment at

a concentration that did not alter cell viability (Fig 2I). These results indicate an essential role

of high TCA cycle activity in VACV replication.

Fig 2. VACV infection elevates the levels of TCA cycle intermediates, including citrate. (A) A simplified overview of the TCA cycle and citrate metabolism. The

pyruvate generated from glycolysis can be converted into Acetyl-CoA that reacts with OAA to form citrate in the mitochondria of a cell. The citrate can then be

transported out of the mitochondria where it gets converted to Acetyl-CoA and OAA. The cytosolic Acetyl-CoA can act as a precursor for fatty acid biosynthesis.

The fatty acids undergo β-oxidation in the mitochondria to convert into Acetyl-CoA to feed the TCA cycle. Glutamine can also feed in the TCA cycle to increase the

citrate level by converting it to α-KG. (B) VACV infection increases the levels of most of the TCA cycle intermediates in the absence of exogenous glutamine. The

levels of TCA cycle intermediates at 8 hpi in the metabolic profiling of Fig 1A were shown. (C) VACV infection increases the level of glutamate. The level of

glutamate in HFFs in the global metabolic profiling of Fig 1A were shown. (D) VACV infection increases the citrate level in HFFs cultured in medium without

exogenous glutamine. HFFs infected with indicated viruses at MOI of 5 in media with glucose only (Glc) or glucose plus asparagine (Glc+N). Citrate level was

measured at 8 hpi using a citrate assay kit. (E) VACV infection increases the citrate level in HFFs cultured in medium with glutamine. HFFs infected with WT

VACV at an MOI of 5 in medium with glucose plus glutamine and the citrate level was measured at indicated time points using a citrate assay kit. (F) VACV

infection increases the levels of OAA. HFFs infected with WT VACV at MOI of 5 in HFFs cultured in medium with glucose plus glutamine and the OAA level was

measured at 8 hpi. (G) VACV infection increases the ATP levels in HFFs. HFFs were infected with MOI of 2 of WT-VACV or vΔVGF (VACV with VGF gene

deleted) in medium containing glucose and glutamine. The ATP levels were measured at 8 hpi by using an ATP assay kit. (H) TCA Cycle activity is important for

VACV replication. HFFs infected with WT VACV at MOI of 2 or 0.1 in media with glucose plus glutamine in the presence or absence of 50 μM Enasidenib. VACV

titers measured at 24 and 48 hpi for MOI 2 and 0.1 respectively using a plaque assay. (I) Enasidenib treatment has minimal effect on HFF viability. HFFs were treated

with 50 μM Enasidenib in medium with glucose plus glutamine. Cell viability measured by a trypan blue assay at 48 h post treatment. Error bars represent the

standard deviation of at least three biological replicates. ns, P> 0.05; �, P� 0.05; ��, P� 0.01; ����, P� 0.0001.

https://doi.org/10.1371/journal.ppat.1009303.g002
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VACV infection reprograms TCA cycle-related metabolism

Acetyl-CoA is an indispensable player in citrate biosynthesis and breakdown (Fig 2A). At 8

hpi we observed a significant 81% and 74% decrease of the Acetyl-CoA levels upon VACV

infection through metabolic profiling in medium with glucose or glucose plus asparagine,

respectively (Fig 3A). The level of Acetyl-CoA was still significantly reduced at 16 hpi (S3

Fig). Notably, there was a similar significant reduction in the Acetyl-CoA level in culture

medium containing glutamine (Fig 3B). In the absence of glutamine, glucose and fatty

acids are two other major carbon sources of the TCA cycle (Fig 2A) [41]. These findings

suggest that Acetyl-CoA is heavily consumed, or its synthesis is suppressed during VACV

infection. Although the lipid species are both up and down-regulated (S1A and S1B Fig),

the fatty acyl-carnitines, which are used up in β-oxidation to be converted to acetyl-CoA

after being transported to the mitochondria [42], significantly increased in the metabolic

profiling (Fig 3C and 3D). Interestingly, those non-carnitine-conjugated long-chain fatty

acid levels decreased significantly at 8 hpi (Fig 3E). Although not statistically significant,

the metabolic profiling in the presence of glutamine by Fontaine et al. showed a moderate

increase in all the detected carnitine-conjugated fatty acids at 8 hpi [12]. These results sug-

gest the metabolism of fatty acids is significantly reprogramed towards an enhanced levels

of carnitine conjugation during VACV infection. Analysis of the glycolysis products by

metabolic profiling in glutamine-depletion conditions indicated that several essential gly-

colysis products decreased in VACV-infected HFFs (Figs 3G and S4). The levels of lactate

were similar in both growth conditions upon VACV infection (Figs 3F and S5), suggesting

that VACV infection did not utilize glucose to undergo anaerobic respiration. In the pres-

ence of glutamine, the levels of most of the glycolysis intermediates were not significantly

altered in the metabolic profiling of VACV-infected HFFs carried out by Fontaine et al

[12]. Because VACV infection did not increase the level of glucose, the lowered glycolysis

could suggest two possibilities. First, glycolysis products were heavily consumed to feed the

TCA cycle in VACV-infected cells under glutamine-depletion conditions. Second, glycoly-

sis was down-regulated during VACV infection, which would suggest a more important

role of fatty acids to feed the TCA cycle. Overall, these results reveal a systematic repro-

gramming of TCA cycle-related metabolism during VACV infection.

Inhibition of glycolysis or fatty acid β-oxidation abolishes citrate level

increase during VACV infection

Our metabolic profiling data could not answer the question if glycolysis or β-oxidation

individually contributes to the increase of citrate levels during VACV infection. We used

several inhibitors targeting glycolysis and β-oxidation to assess their effects on citrate levels

during VACV infection. As can be seen in Fig 4A, bromopyruvate (targeting the first

enzyme, hexokinase, of glycolysis [43]), PFK15 (targeting the rate-limiting enzyme,

6-phosphofructo-2-kinase, of glycolysis [44]), CPI-613 (targeting pyruvate dehydrogenase

and α-ketoglutarate dehydrogenase [45]), and etomoxir (targeting carnitine palmitoyl-

transferase-1 of β-oxidation [46]) all decreased the citrate levels in VACV-infected HFFs,

at the concentrations that did not affect HFF viability in the absence of infection (Fig 4B).

In uninfected cells, PFK-15 and etomoxir, but not bromopyruvate and CPI-613, also

decreased the citrate levels (Fig 4A). It has been reported that etomoxir treatment signifi-

cantly suppresses VACV replication [14]. Here we observed significant reduction of VACV

replication by bromopyruvate, CPI-613 and PFK-15 treatment, respectively (Fig 4C and

4D). These findings indicate that both glycolysis and β-oxidation contribute significantly

to the increased citrate levels during VACV infection.
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Fig 3. VACV infection alters the TCA cycle-related metabolism. (A) A decrease in Acetyl-CoA upon VACV infection in HFFs cultured in media without glutamine.

The level of Acetyl-CoA at 8 hpi in the metabolic profiling of Fig 1A was shown. (B) VACV infection decreases the level of acetyl CoA in HFFs cultured in medium

containing glutamine. HFFs infected with WT VACV at an MOI of 2 in media with glucose plus glutamine and the Acetyl-CoA level was measured at 8 hpi using an

Acetyl-CoA assay kit. (C) A simplified overview of carnitine metabolism in β-oxidation. The long-chain fatty acids are acylated and then carnitylated by carnitine

palmitoyltransferase system, which is then transported into the mitochondrial matrix for β-oxidation to fuel the TCA cycle. (D) VACV infection increases the levels of

carnitine-conjugated fatty acids. The metabolic profiling data of fatty acyl carnitines in VACV-infected HFFs (Supplementary File S2) was uploaded to the

MetaboAnalyst tool and then a hierarchically clustered heatmap was generated using Ward’s minimum variance and Euclidean distance measure. Color keys indicate the

levels of different metabolites; blue: lowest, red: highest. The number on top of the plots represent the p-values comparing the average levels of indicated metabolites levels

in mock- and VACV-infected HFFs (E) The levels of long-chain fatty acids are reduced in VACV-infected HFFs. The metabolic profiling data of long-chain fatty acids in

VACV-infected HFFs (Supplementary File S2) was processed as in Fig 3D. (F) VACV infection does not affect the level of lactate. The level of lactate in HFFs infected

with MOI-3 of WT-VACV in media with glucose (Glc) or glucose plus asparagine (Glc+N) at 8 hpi was determined by global metabolic profiling in Fig 1A. (G) The

glycolysis intermediates are either unaffected or reduced by VACV infection. The levels of glycolysis intermediates in HFFs infected with MOI-3 of WT-VACV in

medium with glucose (Glc) or glucose plus asparagine (Glc+N) at 8 hpi as determined by global metabolic profiling in Fig 1A. Error bars represent the standard deviation

of at least three biological replicates. ns, P> 0.05; �, P� 0.05; ��, P� 0.01; ���, P� 0.001; ����, P� 0.0001.

https://doi.org/10.1371/journal.ppat.1009303.g003
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VGF gene deletion abolishes the elevation of citrate level during VACV

infection

Our previous study indicated that VACV replication was suppressed at a late replication stage

in medium containing glucose only, without glutamine/asparagine [38]. The upregulation of

citrate and other metabolites in HFFs cultured in glucose only medium suggests an early event

of VACV replication is responsible. We further tested if viral DNA replication inhibition

Fig 4. Both Glycolysis and β-oxidation contribute towards the citrate level enhancement during VACV infection. (A) Inhibition of glycolysis

and fatty acid oxidation reduces the increase of citrate levels during VACV infection. HFFs were mock-infected or infected with WT-VACV at an

MOI of 5 in medium with glucose plus glutamine in the presence or absence of 50 μΜ bromopyruvate, 50 μM PFK-15, 100 μΜ of CPI-613, and

50 μΜ etomoxir. Citrate levels measured at 4 hpi using a citrate assay kit. (B) HFFs treated with indicated chemicals at a concentration as listed in

Fig 4A in medium with glucose plus glutamine. Cell viability measured by a trypan blue assay at 48 h post treatment. (C) Glycolysis inhibition

suppresses VACV replication. HFFs infected with WT VACV at an MOI of 2 (for 24 h) or MOI of 0.1 (for 48 h) in medium with glucose plus

glutamine with or without 50 μΜ bromopyruvate, 50 μM PFK-15. Virus titers measured by a plaque assay. (D) Inhibition of pyruvate

dehydrogenase and α-ketoglutarate dehydrogenase reduces VACV titers. HFFs infected with WT VACV at an MOI of 2 (for 24 h) or MOI of 0.1

(for 48 h) in medium with glucose plus glutamine in the presence or absence of 100 μΜ CPI-613. Virus titers were measured by a plaque assay.

Error bars represent the standard deviation of at least three biological replicates. ns, P> 0.05; ��, P� 0.01; ���, P� 0.001; ����, P� 0.0001.

https://doi.org/10.1371/journal.ppat.1009303.g004
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affected the upregulation of citrate level in VACV-infected cells using AraC, a well-established

inhibitor of DNA replication but not viral early protein synthesis [47]. AraC treatment did not

inhibit the increase in citrate level upon VACV infection (Fig 5A), indicating an event prior to

viral DNA replication could stimulate the citrate level. However, treatment with cycloheximide

(CHX), a well-known inhibitor of mRNA translation [48], abolished the citrate level’s increase

upon VACV infection. In contrast, cycloheximide treatment did not affect the citrate level in

uninfected HFFs (Fig 5B). These results suggest that early VACV protein expression is

required to enhance the citrate level upon VACV infection.

Fig 5. VACV growth factor (VGF) deletion abolishes the elevation of citrate level during viral infection. (A) Inhibition of DNA synthesis does not inhibit the

increased citrate level upon VACV infection. HFFs were infected with VACV at an MOI of 5 in medium with glucose plus glutamine in the presence or absence of

40 μg/mL AraC. Citrate level was measured at 8 hpi. (B) Inhibition of protein synthesis reduces citrate level in VACV-infected HFFs. HFFs were infected with VACV at

an MOI of 5 in medium with glucose plus glutamine in the presence or absence of 100 μg/mL Cycloheximide. Citrate level was measured at 2 hpi. (C-E) VGF is required

for the elevation of citrate level during VACV infection. (C) HFFs were infected with either WT-VACV or vΔVGF or a VGF revertant vΔVGF_Rev at an MOI of 5 in

medium with glucose plus glutamine. Citrate level was measured at 4 hpi. (D) HFFs were infected with indicated viruses at an MOI of 5 in medium with glucose only

(Glc). Citrate level was measured at 4 hpi. (E) HFFs were infected with indicated viruses at an MOI of 5 in with glucose + asparagine (Glc+N), and citrate level was

measured at 4 hpi. (F) VGF mRNA expression in WT-VACV, vΔVGF, and vΔVGF_Rev. RNA was extracted from HFFs infected with indicated viruses at an MOI of 5

for 1 h in medium with glucose plus glutamine, and reverse transcription-quantitative PCR (qRT-PCR) analysis was performed. (G) VGF deletion does not affect the

levels of other VACV early proteins. HFFs infected with indicated viruses at an MOI of 5. Western blotting analysis was performed at indicated time post infection to

measure the levels of VACV E3 and L2 proteins. Error bars represent the standard deviation of at least three biological replicates. ns, P> 0.05; �, P� 0.05; ��, P� 0.01;
���, P� 0.001; ����, P� 0.0001.

https://doi.org/10.1371/journal.ppat.1009303.g005
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We tested several viral early genes and found that VGF is needed for VACV to increase the

citrate level. We generated a recombinant VACV with both copies of the VGF gene deleted

(vΔVGF). We also made a VGF revertant VACV (vΔVGF_Rev), with one copy of the VGF

gene under its natural promoter inserted at a different locus of the original VGF gene in the

central region of the viral genome. VGF was known to be critical for VACV replication and

virulence in infected mice [34,35]. While the role of VGF in cultured cells was less prominent,

we observed a significant 4.2-fold yield reduction of vΔVGF in HFFs (S6A Fig), similar to

what had been observed in BSC40 cells [32]. While VACV infection of HFFs could not form

clear and measurable plaques, we observed significantly smaller plaques of vΔVGF in BS-C-1

cells (S6B Fig), similar to what had been observed previously in BSC40 cells [32]. Remarkably,

while WT-VACV infection resulted in a significant increase in citrate level, the deletion of

VGF rendered VACV unable to enhance the level of citrate upon infection, regardless of the

culture medium contents (Fig 5C–5E). Interestingly, vΔVGF_Rev partially recused the citrate

level enhancement, consistent with that the VGF mRNA level in the vΔVGF_Rev was approxi-

mately 50% of that in WT-VACV infected cells (Fig 5F). Moreover, VACV early gene expres-

sion was not affected by the deletion of VGF, evidenced by similar levels of two viral early

proteins, E3 and L2, in WT, vΔVGF, and vΔVGF_Rev infected HFFs (Fig 5G), further corrob-

orating that the reduced level of citrate in vΔVGF-infected cells was due to a lack of VGF

expression. Interestingly, we also observed a reduction of ATP level in vΔVGF-infected than in

WT VACV-infected HFFs (Fig 2G). Overall, our results demonstrate VACV elevation of the

citrate level depends on VGF expression.

To investigate if VGF is sufficient for the increased level of citrate, we used a synthetic pep-

tide of processed VGF to treat HFFs. However, we could not observe a rescue of citrate level

(S7 Fig). The finding is not conclusive as it is not clear the failure to elevate the citrate level by

this peptide was due to VGF alone is not sufficient or the synthetic peptide is not fully and bio-

logically active. Further studies using different approaches are needed.

EGFR, MAPK, and STAT3 signaling pathways are needed for citrate level

increase in VACV-infected cells

VGF is homologous to cellular EGF that activates the EGFR and MAPK pathways [32,49]. We

hypothesized that VGF-mediated cell signaling is required for the increasing citrate level upon

VACV infection. We first tested the effect of afatinib, an irreversible inhibitor of the EGFR

pathway on citrate metabolism [50]. We found that VACV infection resulted in an increase in

citrate levels, while EGFR inhibition with afatinib at a concentration that did not affect cell via-

bility reduced the increase in the citrate level upon VACV infection (Figs 6A and S8A).

Although it also decreased the citrate level in uninfected controls, the reduction was only

about 18%. Afatinib treatment significantly reduced VACV titer by 43-fold at the same con-

centration (S8B Fig), agreeing with a previous study on the effect of EGFR inhibitors on

VACV replication [51]. We then tested the effect of inhibiting the MAPK pathway on citrate

level using PD0325901, a selective inhibitor of MAPK/ERK pathway [52]. While VACV infec-

tion resulted in an increase in citrate level in vehicle-treated cells, PD0325901 treatment signif-

icantly reduced the citrate level in VACV infected cells to the level comparable to uninfected

cells (Fig 6B). Furthermore, MAPK pathway inhibition resulted in a 67-fold reduction of

VACV titer (S9A Fig), at a concentration that did not affect the viability of HFFs (S9B Fig),

consistent with an earlier study [49]. It is worth noting that both EGFR and MAPK pathways

are activated by VGF during VACV infection [32,49,53]. Therefore, our results indicate that

the EGFR and MAPK signaling pathways are required for the upregulation of the citrate level

during VACV infection.
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One downstream signaling molecules of the EGFR-MAPK axis is the STAT3, as EGFR

induced MAPK pathway is a major upstream activator of non-canonical STAT3 phosphoryla-

tion at serine 727 (S727) [54,55]. Notably, stattic, an inhibitor of STAT3 activation [56], signifi-

cantly reduced the increase in citrate level in VACV-infected cells but not in uninfected cells

(Fig 6C). Chemical inhibition of the STAT3 pathway by stattic resulted in a 177-fold reduction

Fig 6. Inhibition of the STAT3 pathway and its upstream signaling decreases citrate levels during VACV infection. (A)

Inhibition of the EGFR pathway decreases the citrate level in VACV-infected HFFs. HFFs were infected with WT VACV at an

MOI of 5 in the presence or absence of 3 μM afatinib. The citrate level was measured at 4 hpi. (B) Inhibition of the MAPK

pathway decreases the citrate level during VACV infection. HFFs were infected with WT VACV at an MOI of 5 in the presence

or absence of 20 μM PD0325901. The citrate level was measured at 2 hpi. (C) Inhibition of the STAT3 pathway decreases the

citrate level in VACV-infected cells. HFFs were infected with VACV at an MOI of 5 in the presence or absence of 3 μM stattic.

The citrate level was measured at 4 hpi. (F) siRNA-mediated knockdown of STAT3. HFFs were transfected with a negative

control siRNA or two specific siRNA targeting STAT3 for 48 h. Western blotting analysis was performed to measure the level

of STAT3. (G) siRNA-mediated knockdown of STAT3 decreases citrate level during VACV infection. HFFs were transfected

with indicated siRNAs for 48 h and then infected with an MOI of 5 of VACV for 4 h, and the citrate level was measured. All the

infections were performed in media with glucose plus glutamine. Error bars represent the standard deviation of at least three

biological replicates. ns, P> 0.05; �, P� 0.05; ��, P� 0.01; ���, P� 0.001.

https://doi.org/10.1371/journal.ppat.1009303.g006
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in VACV titers in HFFs (S10A Fig), consistent with our results in other cell types and an unbi-

ased screening of compounds of VACV inhibitors [57]. Stattic treatment did not affect HFF

viability at the same concentration (S10B Fig), suggesting that STAT3 signaling is also

required for VACV-induced citrate level increase. Further supporting the critical role of

STAT3 signaling in citrate level upregulation during VACV infection, specific siRNA treat-

ment significantly decreased the citrate level during VACV infection (Fig 6F and 6G) without

affecting the HFF viability (S10C Fig).

VACV infection stimulates non-canonical STAT3 activation in a VGF-

dependent manner

STAT3 can be phosphorylated at tyrosine 705 position (Y705) (induced mainly by JAK1/2

pathway) and at serine 727 (S727) (induced mainly by MAPK pathway); known as the canoni-

cal and non-canonical phosphorylation, respectively [55,58]. We analyzed STAT3 phosphory-

lation in HFFs infected with WT or vΔVGF or vΔVGF_Rev VACV at 2 and 4 hpi, using

medium containing glucose and glutamine. VACV infection selectively upregulated the non-

canonical STAT3 phosphorylation at the S727 (Fig 7A). Notably, the deletion of VGF abol-

ished STAT3 S727 phosphorylation, which could be rescued by the VGF revertant mutant (Fig

7A). In contrast, the canonical Y705 phosphorylation of STAT3 did not increase upon VACV

infection (Fig 7A). The VGF dependent upregulation of the non-canonical STAT3 pathway

was seen as early as 10-minute post-infection and could still be observed at 8 hpi (Fig 7B). The

early stimulation of STAT3 S727 phosphorylation is consistent with the fact that VGF is an

early gene and it starts to be expressed immediately after VACV enters the cells [4]. Similar

results were found when using medium containing no glutamine (Fig 7C), indicating the VGF

dependent phosphorylation of STAT3 at S727 can be achieved in a glutamine-independent

manner.

Next, we determined if the EGFR and MAPK signaling is needed for STAT3 phosphoryla-

tion at S727 during VACV infection. Afatinib treatment noticeably decreased the S727 phos-

phorylation in VACV infected cells. However, it did not affect Y705 phosphorylation (Fig

7D), indicating a pivotal role of the EGFR pathway in non-canonical STAT3 activation during

VACV infection. MAPK inhibitor, PD0325901, inhibited S727, and Y705 STAT3 phosphoryla-

tion, the former was more evident in VACV-infected cells (Fig 7E). The results suggest that

the PD0325901 also inhibited STAT3 Y705 phosphorylation, likely via signaling crosstalk.

There is no S727 specific STAT3 inhibitor available. The STAT3 inhibitor, stattic, partially

inhibited the VACV infection-mediated increase of S727 phosphorylation, but with no notice-

able effect on Y705 phosphorylation (Fig 7F). The latter was not changed much upon VACV

infection. These results demonstrate the requirements of VGF, EGFR, and MAPK in non-

canonical activation of STAT3 at S727. Together with the results in Fig 6, the results also indi-

cate the indispensable roles of VGF, EGFR, MAPK, and STAT3 in citrate level elevation during

VACV infection. While the non-canonical STAT3 signaling is activated to elevate the citrate

level, the canonical pathway is not stimulated by VACV infection.

We examined if the JAK-STAT3 axis that phosphorylates Y705 is required for citrate induc-

tion during VACV infection, although it is not further activated by VACV infection. Ruxoliti-

nib, an inhibitor of JAK1/2 that is the primary upstream activator of STAT3 Y705

phosphorylation [59], did not affect S727 phosphorylation but inhibited the Y705 phosphory-

lation in both uninfected and VACV infected cells (Fig 7G). Ruxolitinib deceased citrate level

in the uninfected cells by 23% while it significantly reduced the induction by 55% in VACV

infection (Fig 7H) without affecting HFF viability (S11 Fig). This result suggests that the

canonical STAT3 activity is also required for VACV elevation of the citrate level. Furthermore,
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Fig 7. VACV infection induces non-canonical STAT3 phosphorylation at S727 in a VGF-dependent manner. (A) VACV VGF is indispensable to activate STAT3

(S727) phosphorylation. HFFs infected with indicated viruses at an MOI of 5 for the indicated time. Western blotting analysis was performed to measure the levels of

various forms of STAT3. (B) Upregulation of STAT3 S727 phosphorylation starts early during VACV infection. HFFs infected with indicated viruses at an MOI of 5.

The samples were collected at 10 min post-infection and 8 hpi, respectively, followed by Western blotting analysis. (C) VACV activates STAT3 (S727)

phosphorylation in the absence of glutamine in the medium. HFFs were infected with indicated viruses at an MOI of 5 in medium with glucose only (Glc) or with

glucose+asparagine (Glc+N). Protein levels were detected by performing a Western blotting analysis at 4 hpi. (D) Inhibition of the EGFR pathway decreases STAT3

S727 phosphorylation in VACV infected cells. HFFs were infected with MOI of 5 of WT-VACV with or without 3 μM afatinib treatment. Western blotting analysis

was performed at 4 hpi to test the levels of different forms of STAT3 protein. (E) Inhibition of the MAPK pathway decreases both Y705 and S727 phosphorylation.

HFFs were infected with MOI of 5 of VACV in medium with or without 20 μM PD0325901 treatment. Western blotting analysis was performed at 2 hpi to detect the
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viral early proteins were still expressed with the treatments with EGFR, MAPK, STAT3, or

JAK1/2 inhibitors. EGFR, MAPK, and JAK1/2 inhibitors had little effects on viral early protein

levels, evidenced by the expression of a viral early protein E3 and a reporter VACV with Gaus-
sia luciferase expression under the control of the VACV early VGF gene promoter [38] (Fig 7I

and 7J). While the STAT3 inhibitor (stattic) treatment decreased VACV early protein levels,

considerable amounts of viral early proteins were still expressed (Fig 7I and 7J). The result

suggests that stattic also suppresses VACV replication at or prior to viral gene expression

steps.

Discussion

In this study, we discovered a novel VACV metabolic reprogramming strategy that elevates

the intermediates of the TCA cycle, the cellular metabolic hub. We determined the viral factor

and cellular signaling pathways driving this metabolic alteration for an elevated citrate level,

the first molecule of the TCA cycle. The findings lead to a model by which VACV elevates the

TCA cycle intermediate levels (Fig 8): VACV produces VGF at an early time of infection. The

VGF then stimulates the EGFR/MAPK/non-canonical STAT3 signaling axis in the infected

and perhaps also in the uninfected neighboring cells to reprogram the TCA cycle and its

related cellular metabolism. While the canonical STAT3 signaling is not stimulated by VACV

infection, its basal activity is still required. At this point, we cannot conclude if VGF alone is

sufficient to exert this effect as our data using a synthetic VGF peptide failed to elevate the cit-

rate level in the absence of VACV infection (S7 Fig). Further investigations using a system

more closely mimicking the natural route of VGF expression and processing in the absence of

VACV infection is needed to answer this question. Moreover, the mechanistic details of the

TCA cycle reprogramming and the broad impacts of the elevated TCA cycle intermediate lev-

els are yet to be fully determined.

The steady-state levels of metabolites in cells are a net outcome of dynamic metabolism,

including uptake from and secretion to extracellular space, synthesis and consumption. While

our data in this study and studies from multiple groups suggest that VACV infection promotes

the TCA cycle and related metabolism including oxygen consumption, ATP production, gluta-

minolysis [13–15], our results that VACV infection elevates the levels of citrate and other TCA

cycle intermediates, and alters other related metabolites, does not give a quantitative and defin-

itive answer on how the synthesis or consumption contributes to the final outcomes.

We have previously shown that VACV replication is fully rescued in medium containing

glucose and asparagine in glutamine-depleted conditions [38,60]. This culture medium pro-

vides a unique VACV infection system to study VACV-induced manipulation of cellular

metabolism in the absence of the complications caused by VACV’s upregulation of glutamino-

lysis [12,13]. Glucose, glutamine, and fatty acids are the three major carbon sources to feed the

levels of different forms of STAT3 protein. (F) Stattic treatment inhibits S727 phosphorylation. HFFs were infected with MOI of 5 of WT VACV with or without

3 μM stattic. At 4 hpi, Western blotting analysis was performed to detect the levels of different forms of STAT3 protein. (G) STAT3 S727 phosphorylation is

independent of the JAK1/2 pathway. HFFs were infected with an MOI of 5 of VACV in medium with or without 5 μM ruxolitinib treatment. Western blotting

analysis was performed at 4 hpi to measure different protein levels. (H) Ruxolitinib treatment decreases the induction of citrate level upon VACV infection. HFFs

were infected with WT VACV at an MOI of 5 in the presence or absence of ruxolitinib treatment. The citrate level was measured at 4 hpi. (I) Effects of inhibition of

STAT3 and its upstream signaling pathways on VACV early protein expression. HFFs infected with WT VACV at an MOI of 2 in the presence or absence of 3 μM

afatinib, 20 μM PD0325901, 3 μM stattic, 5 μM ruxolitinib, 40 μg/mL AraC, or 100 μg/mL cycloheximide. The levels of VACV E3 protein was measured at 2 hpi by a

Western blotting analysis. (J) Effects of inhibition of STAT3 and its upstream signaling pathways on VACV early protein levels. HFFs infected at an MOI of 2 with a

recombinant VACV expressing Gaussia luciferase under virus early VGF promoter in the presence or absence of 3 μM afatinib, 20 μM PD0325901, 3 μM stattic, 5 μM

ruxolitinib, 40 μg/mL AraC, or 100 μg/mL cycloheximide. Early gene expression was measured by a Gaussia luciferase activity assay kit at 2 hpi. All experiments were

performed in media with glucose plus glutamine unless otherwise stated. Error bars represent the standard deviation of at least three biological replicates. ns, P>

0.05; �, P� 0.05; ��, P� 0.01; ����, P� 0.0001. The blots were from different lanes on the same gel and the dashed lines indicate that some non-relevant lanes were

removed.

https://doi.org/10.1371/journal.ppat.1009303.g007
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TCA cycle. while it was known that VACV stimulates glutaminolysis, our results using chemi-

cal inhibitors indicate that both glycolysis and β-oxidation of fatty acids are needed to increase

the TCA cycle intermediates (Fig 4). Because of the upregulation of the carnitine-conjugated

lipids, VACV may promote β-oxidation of fatty acids to elevate the TCA cycle. The metabolic

profiling data support a possibility that fatty acyl-carnitines, which enter mitochondria to feed

the TCA cycle, are selectively upregulated in the absence of glutamine. More mechanistic and

comprehensive investigations of various branches of glycolysis and fatty acid metabolism are

needed, including the modulation of the activities of key enzymes involved and the metabolic

flux of the carbon by VACV infection.

The TCA cycle is at the heart of major cellular pathways for carbohydrate, lipid, and amino

acid metabolism. TCA cycle intermediates and other metabolic products are the sources for

the production of cellular energy and many biosynthetic precursors. The TCA cycle is also

named the citric acid cycle due to its first molecule, citrate. Citrate is essential not only to drive

the TCA cycle forward in the mitochondria but is also transported to the cytosol to be used for

fatty acid biosynthesis [16]. Our finding that VACV infection elevates the citrate level and

many other TCA cycle intermediates, but simultaneously decreases the Acetyl-CoA level, sug-

gests that the virus has evolved to reprogram the hub of cellular metabolism to create a favor-

able environment for its replication. Our results can explain the chemical foundations for the

oxidative phosphorylation pathway (OXPHOS) upregulation by VACV infection. The

Fig 8. Proposed model by which VACV infection promotes the TCA cycle. VACV infection enhances the levels of TCA cycle intermediates and

related products. Upon VACV infection, the levels of Acetyl-CoA decrease, while the levels of fatty acyl carnitines (key metabolites for β-oxidation

of fatty acids) increase. The increase in the level of citrate can be attributed to the VACV VGF mediated upregulation of non-canonical STAT3

phosphorylation at S727 via EGFR and MAPK pathways. Although not upregulated by VACV, the Y705 phosphorylation of STAT3 is also

important for enhancing citrate level. It is unclear if additional viral factors are also required to elevate the TCA cycle and if VGF alone can exert

the function in uninfected cells. Red upward arrows indicate increase and black downward arrows indicate decrease of indicated intermediates.

https://doi.org/10.1371/journal.ppat.1009303.g008
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OXPHOS is the major source of cellular energy in ATP [61]. During VACV infection, there is

an increase in the oxygen consumption rate (OCR), an indicator of energy metabolism [14], as

well as ATP production [15,40]. Increased citrate and TCA cycle intermediates upon VACV

infection also provide the substrates to upregulate the biosynthesis of other biomolecules, evi-

denced by the metabolic profiling indicating higher glutamate production, and carnitylated

lipids during VACV infection in the absence of glutamine. Greseth et al. demonstrated that

VACV replication requires de novo fatty acids biosynthesis [14], which requires citrate as a

source of precursor.

VGF induces cell proliferative responses [29,31]. The identification of VGF as the required

VACV protein to stimulate the citrate level provides the metabolic foundation of VGF’s func-

tions in many aspects of VACV infection. Although it does not affect VACV replication in

some proliferating cells, the deletion of VGF from VACV reduces VACV replication in resting

cells and proliferating HFFs (S6 Fig). Because the metabolic level is higher in proliferating cells

than in resting cells [62], the different replication phenotypes are at least partially due to differ-

ent metabolic statuses in these cells. As most of the cells are in resting state in an animal, the

VGF’s function to stimulate the TCA cycle intermediates could also explain the reduced repli-

cation and virulence in mice [34,35]. Since cell mobility consumes energy [63], it explains that

VGF is crucial for facilitating cell motility for virus spread [32]. In addition to enhancing the

motility, the secreted VGF induces EGFR in a paracrine fashion [64], which may instruct the

neighboring uninfected cells to be metabolically prepared for infection.

STAT3 is a transcription factor activated by growth factors, oncogenes, and cytokines that

leads to cell proliferation, migration, and differentiation, etc. [65]. While the canonical path-

way of STAT3 activation with Y705 phosphorylation has been well-understood to stimulate

gene transcription in cell proliferation, cell cycle, and cell survival, the mechanism, and func-

tion of the non-canonical activation of STAT3 by S727 phosphorylation in these processes are

less well understood [66]. In agreement with the notion that the STAT3-mediated biological

processes require energy, STAT3 has been shown to stimulate mitochondrial OXPHOS and

the activities of electron transport chain (ETC) complex [67–70]. However, the mechanism by

which STAT3 stimulates the energy production mechanism is still not clear. While some stud-

ies suggest that a small portion of STAT3 localizes to the mitochondria and promotes the ETC

complex activity directly [67,69], others suggest that STAT3 does not go into the mitochondria

but only closely associates with mitochondria [71]. Interestingly, here we found that STAT3

signaling is required to stimulate citrate level upon VACV infection, suggesting STAT3 signal-

ing may indirectly promote OXPHOS and ETC through elevating the TCA cycle. Interestingly,

a recent study suggests that STAT3 transcriptionally induces the citrate synthase and, hence,

citrate level to regulate lymphocyte growth [18]. However, we could not observe the citrate

synthase and its activity upregulation during VACV infection (not shown). More mechanistic

studies are required to understand the link between STAT3 signaling and the TCA cycle acti-

vation. It is of particular interest that VACV infection selectively stimulates non-canonical

STAT3 phosphorylation at the S727, but not the canonical site at Y705, although both are

required for citrate level elevation. As VGF is a homolog of cellular growth factor, our result

that VGF selectively stimulates EGFR-MAPK-STAT3 (S727) provides new molecular tools to

understand the functions of different growth factors with diverse roles in many physiologically

relevant conditions, notably, a valuable model to understand different functions and activating

mechanisms of the canonical and non-canonical STAT3 signaling. Note that our results do

not exclude the EGFR-MAPK-STAT3 signaling affects VACV replication other than repro-

gramming the TCA cycle and related metabolism. Also, STAT3 pathway is upregulated in sev-

eral other viral infections [72,73,73–80]. It would be interesting to elucidate how different

viruses exploit different axis of the STAT3 signaling to affect viral infections.

PLOS PATHOGENS Viral growth factor- and STAT3-dependent elevation of the TCA cycle during vaccinia virus infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009303 February 2, 2021 17 / 28

https://doi.org/10.1371/journal.ppat.1009303


VGF-deleted VACV preferentially replicate in cancer cells in mice [81]. Cancer cells usually

have higher and dysregulated metabolism to support cell proliferation and growth [82]. It has

been noted by other studies that non-canonical activation of STAT3 at S727 is related to cer-

tain types of cancers [70,83–85]. Because most cells in animals are in resting state, in which the

replication of VACV with VGF deletion is lower than in proliferating cells [34], our finding

provides a metabolic mechanism of VGF-deleted VACV’s cancer cell tropism in animals.

Our results that STAT3 inhibition reduces VACV replication is somehow discrepant to a

previous report that inhibition of STAT3 enhanced the replication of ACAM2000, a VACV

strain currently used as a vaccine in mice, and keratinocytes [86]. We have independently con-

firmed the suppression effects on VACV replication using multiple inhibitors and multiple cell

types [57]. We do not fully understand the discrepancy, although it could possibly be explained

by different cell types or virus strains used in these studies.

Overall, we found that VACV infection elevates host cell metabolic activities, including the

TCA cycle that could be achieved in a glutamine-independent manner. We identified VACV

VGF as an essential viral factor that elevates the level of a central molecule of metabolism, cit-

rate. Non-canonical STAT3 signaling is activated upon VACV infection through the

VGF-EGFR-MAPK signaling axis to stimulate citrate upregulation. Our study revealed a

global metabolic reprogramming effect on host cells by VACV infection and identified the cel-

lular and viral mechanisms underlying it. The results have a broad impact on understanding

poxvirus replication and prevention and understanding growth factors-induced metabolism.

Materials and methods

Cells and viruses

Human Foreskin Fibroblasts (HFFs) were a kind gift from Dr. Nicholas Wallace at Kansas

State University and were maintained in Dulbecco’s minimal essential medium (DMEM;

Fisher Scientific) supplemented with 10% fetal bovine serum (FBS; Peak Serum), 2 mM gluta-

mine (VWR), 100 U/ml of penicillin, and 100 μg/ml streptomycin (VWR). BS-C-1 cells

(ATCC CCL-26) were cultured in Eagle’s minimal essential medium (EMEM; Fisher Scien-

tific) with supplements as described above for other cells. All cells were grown in a humidified

incubator at 37˚C with 5% CO2. VACV Western Reserve (WR) strain (ATCC VR-1354) was

used in this study. Amplification, purification, and titration of VACV were performed using

methods described previously [87]. Unless otherwise stated, infection of cells was performed

with the indicated multiplicity of infection (MOI) of indicated viruses in special DMEM

(Fisher Scientific) without glucose, L-glutamine, sodium pyruvate, and phenol red. This

medium was supplemented with 2% dialyzed FBS, 1 g/L glucose (Fisher Scientific), and 2 mM

glutamine. Where indicated, only glucose or glucose plus 2 mM L-asparagine was used instead

of glucose plus glutamine.

Generation of VGF (C11R) deletion and revertant VACV

VGF-deleted VACV was generated by homologous recombination by replacing the VGF-

encoding C11R gene with a green fluorescent protein (GFP) gene. The GFP coding sequence

following a P11 promoter flanked by 500-bp homologous sequences upstream and down-

stream of the C11R gene was generated by overlapping PCR and transfected into VACV-

infected HeLa cells. Recombinant viruses expressing GFP were harvested from HeLa cells

(ATCC CCL-2) and plaque purified in BS-C-1 cells. Recombinant VACV vΔVGF with the

deletion of two copies of C11R at both ends of the virus genome was verified by PCR. The

C11R revertant recombinant VACV vΔVGF_Rev was generated with a similar method by

inserting a DNA fragment containing one copy of the C11R gene under the C11 promoter
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followed by the dsRED coding sequence under a P11 promoter into the space between the

VACWR146 and VACWR147 loci in the central region of the VACV genome.

Chemicals and antibodies

The chemical inhibitors stattic, afatinib, and PD0325901, 3-Bromopyruvate, PFK-15, and Eto-

moxir were purchased from Selleck chemicals and used at indicated concentrations. Cytosine-

1-β-D-arabinofuranoside (AraC) and cycloheximide were purchased from Sigma-Aldrich.

Ruxolitinib was purchased from VWR. CPI-613 was purchased from Biovision Inc.

Antibodies against phospho-STAT3 (S727), phospho-STAT3 (Y705), and total STAT3 were

purchased from Cell Signaling Technology. Anti-glyceraldehyde-3-phosphate dehydrogenase

(anti-GAPDH) antibody was purchased from Santa Cruz Biotechnology. Antibodies raised

against VACV E3 protein were kind gift from Dr. Yan Xiang (UTHSA) [88]. Antibodies

against VACV L2 protein were kindly provided by Dr. Bernard Moss (NIAID). A commer-

cially synthesized recombinant VGF peptide corresponding to the cleaved fragment of VACV

VGF [25] was purchased from GenScript.

Cell viability assays

Cell viability assay was performed using the trypan blue exclusion assay as described elsewhere

[89]. The cells were grown in a 12-well plate for indicated treatments were harvested with 300

μl of trypsin and resuspended with 500 μl of DMEM by pipetting. An equal volume (20 μl) of

the cell suspension was gently mixed with 4% trypan blue (VWR). The number of live and

dead cells in each condition was counted using a hemocytometer.

Measurement of citrate, oxaloacetate (OAA), Acetyl-CoA, and ATP

The citrate measurement was carried out using EnzyChrom Citrate Assay Kit (BioAssay Sys-

tems) according to the manufacturer’s instructions. 4x106 HFFs were collected in 100 μl of ice-

cold PBS. The cells were homogenized by sonication, and the cell lysis was verified by observa-

tion under a microscope. The lysed cell suspension was centrifuged at 19,000 xg at 4˚C for 5

min. Twenty μl of the clear supernatant was mixed with 80 μl of fresh working reagent and in

a 96-well black clear bottom plate (Corning) and incubated protected from light at room tem-

perature for 15 minutes. Fluorescence reading at λex/em = 535/595 nm was measured, and the

level of citrate in the sample was calculated using a standard curve generated alongside each

experiment.

For the measurement of OAA, we followed the protocols outlined in the Oxaloacetate

Assay Kit (Sigma-Aldrich). Briefly, 4x106 HFFs were collected and homogenized in the assay

buffer. The sample was centrifuged at 15,000 x g for 10 min at 4˚C. After mixing 50 μl of the

fresh working reagent with 50 μl of the deproteinized sample, the mixture was incubated at

room temperature for 30 min. Finally, Fluorescence reading of samples, standards, and con-

trols was measured at λex/em = 535/595 nm, and the level of OAA in the sample was

calculated.

The level of Acetyl-CoA was measured using the PicoProbe Acetyl CoA Assay Kit (Abcam)

according to the manufacturer’s instructions. Briefly, 4x106 HFFs were collected and homoge-

nized in the assay buffer in ice. The cells were lysed by sonication, and the sample was centri-

fuged at 10,000 xg for 10 min at 4˚C. The supernatant was collected and then deproteinized

with a perchloric acid method. Then, ten μl of the deproteinized sample was added to each

well, and the final volume was brought up to 50 μl with assay buffer. The coenzyme A present

was quenched by adding a quencher for 5 minutes, and eventually, it was removed with

quencher remover. Finally, 50 μl of fresh reaction mixture was added to the above samples,
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and the mixture was incubated at 37˚C for half an hour. Fluorescence reading of samples, stan-

dards, and controls was measured at λex/em = 535/595 nm to calculate the level of Acetyl-CoA

in the sample.

The levels of ATP were measured using an ATP Detection Assay Kit–Luminescence (Cay-

man Chemical Company). Briefly, after desired treatment, 4x105 HFFs were washed with ice-

cold 1x PBS and homogenized in 500 μL prechilled 1x ATP detection sample buffer. After mix-

ing 100 μl of the fresh reaction mixture (containing D-Luciferin and ATP detection luciferase)

with 10 μl of the sample, standards, or blank, the mixture was incubated at room temperature

for 15 min protected from light. Finally, the luminescence was measured using a luminometer

and the ATP levels in the sample was calculated using a standard curve generated alongside

each experiment.

Global metabolic profiling

Metabolic profiling was carried out with Metabolon, as described previously [38]. Briefly, four

biological replicates of each treatment were used for each treatment. HFFs were grown in T-

175 flasks. Once the cells reached about 95% confluence, they were washed twice with 1x PBS

at 37˚C and infected with VACV at an MOI of 3 and cultured in different media. At 8 and 16

hpi, the cells were harvested by scraping, and the pellets were washed twice in ice-cold 1x PBS.

The pellet was then dissolved in the extraction solvent (methanol) and was stored at −80˚C

until shipment to Metabolon (Durham, North Carolina). Proprietary analytical procedures

were carried to ensure high-quality data after minimizing the system artifacts, misassignments,

and background noise among the samples. Following normalization to the protein concentra-

tion, log transformation, and imputation of missing values, with the minimum observed value

for each compound, ANOVA contrasts were used to identify biochemicals that differed signifi-

cantly between experimental groups.

Western blotting analysis

Western blot was performed as described previously [90]. Briefly, the cells were lysed in NP-40

cell lysis buffer after the required treatment, reduced with 100 mM dithiothreitol (DTT), and

denatured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) loading

buffer. After boiling at 99˚C for 5 min, the samples were loaded on the SDS–PAGE, followed

by transferring to a polyvinylidene difluoride membrane. The membrane was blocked in 5%

bovine serum albumin (BSA; VWR) blocking buffer in TBST buffer for 1 h at room tempera-

ture and incubated with the primary antibody in the same BSA blocking buffer for overnight

at 4˚C. After 3x washes of 10 minutes each with TBST, the membrane was incubated with

horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature. The

membranes were developed with Thermo Scientific SuperSignal West Femto Maximum Sensi-

tivity Substrate. Antibodies were stripped from the membrane by Restore (Thermo Fisher Sci-

entific, Waltham, MA, United States) for Western blotting analysis using another antibody.

Gaussia luciferase assay

The Gaussia luciferase activity assay was performed as previously described [38]. Briefly, cells

were infected with a recombinant VACV encoding Gaussia luciferase under the VGF (C11R)

viral early promoter (vEGluc) for indicated time. The cell culture media was used to measure

the Gaussia luciferase activities assay using Pierce Gaussia luciferase flash assay kit (Thermo

Scientific) and a luminometer.
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Plaque assay and plaque size determination

BS-C-1 cell monolayers were infected with indicated viruses. One hour post infection, the

media was changed to EMEM containing supplements as described above plus 0.5% methyl-

cellulose (Fisher Scientific). The viruses were allowed to grow and form plaque for 48 hrs. The

growth medium was discarded, and the cells were treated with 0.1% (w/v) crystal violet (Fisher

Scientific) in 20% ethanol for 10 minutes. The image of plate containing plaques was taken

and the plaque diameters were measured using the ImageJ software (version 1.51w) [91]. The

diameter of 50 plaques were measured per condition and the data was analyzed in RStudio

(version 1.2.5033) [92].

Quantitative reverse transcription PCR (qRT-PCR)

Total RNA was extracted from cells using TRIzol reagent (Ambion), and then it was purified

using the Invitrogen PureLink RNA mini kit (Thermo Fisher Scientific). 500 ng RNA was used

as a template to reverse transcribe into cDNA using random hexamer primers and SuperScript

III first-strand synthesis kit (Invitrogen). CFX96 Real-Time PCR Detection System (Bio-Rad)

with All-in-One 2X quantitative PCR (qPCR) mix (GeneCopoeia) and primers specific for

indicated genes was used to detect the relative levels of indicated mRNAs in the sample using

following settings: Initial denaturation at 95˚C for 3 min, followed by 39 cycles of denaturation

at 95˚C for 10 s, annealing and reading fluorescence at 52˚C for 30 s, and extension at 72˚C for

30 s. 18sRNA was used as an internal control for normalization.

RNA interference

The indicated specific siRNAs and negative control siRNAs were purchased from Qiagen. The

siRNAs were transfected at a concentration of 5 nM in Lipofectamine RNAiMAX transfection

reagent (Fisher Scientific) following the manufacturer’s instructions. The efficiency of knock-

down was measured by Western blotting analysis.

Statistical analyses

Data presented indicate a mean of at least three biological replicates, unless otherwise stated.

For the global metabolic profiling, four biological repeats were used for each condition, and

the data was analyzed and visualized in RStudio (version 1.2.5033) [92] and MetaboAnalyst

software [93]. Error bars indicate the standard deviation of the experimental replicates. A two-

tailed paired t-test was performed to evaluate any significant difference between the two

means. We used the following convention for symbols to indicate statistical significance: ns,

P> 0.05; �, P� 0.05; ��, P� 0.01; ���, P� 0.001; ����, P� 0.0001.

Supporting information

S1 Fig. (A) Heatmap of VACV-induced alteration of metabolism in HFFs in medium with

glucose plus asparagine. (B) Heatmap of VACV-induced alteration of metabolism in medium

with glucose only. Color keys indicate the levels of different metabolites; blue: lowest, red:

highest.

(TIF)

S2 Fig. VACV infection increases the levels of most of the TCA cycle intermediates in the

absence of glutamine in the medium. HFFs infected with VACV at an MOI of 3 of in

medium with glucose only (Glc) or glucose+asparagine (Glc+N). The levels of TCA cycle

intermediates at 16 hpi were measured by performing metabolic profiling. ns, P> 0.05; �, P�
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0.05; ��, P� 0.01; ���, P� 0.001; ����, P� 0.0001.

(TIF)

S3 Fig. VACV infection decreases the level of acetyl-CoA. HFFs infected with VACV at an

MOI of 3 in medium with glucose only (Glc) or glucose + asparagine (Glc+N). The level of

acetyl CoA at 16 hpi was measured by performing metabolic profiling. Error bars represent

the standard deviation of four biological replicates. �, P� 0.05; ���, P� 0.001.

(TIF)

S4 Fig. (A) Outline of glycolysis pathway. Glucose after a series of reactions is converted into

pyruvate, which can then either be converted to lactate under anaerobic conditions or to acetyl

coenzyme A under aerobic conditions. (B) The glycolysis intermediates are either unaffected

or reduced during VACV infection. The levels of glycolysis intermediates in HFFs infected

with MOI-3 of WT-VACV in media with glucose (Glc) or glucose plus asparagine (Glc+N) at

16 hpi as determined by global metabolic profiling in Fig 1A. ns, P> 0.05; �, P� 0.05; ��,

P� 0.01; ���, P� 0.001.

(TIF)

S5 Fig. VACV infection does not significantly affect the level of lactate. The level of lactate

in HFFs infected with MOI = 3 of WT-VACV in media with glucose (Glc) or glucose plus

asparagine (Glc+N) at 8 hpi was determined by global metabolic profiling in Fig 1A. Error

bars represent the standard deviation of four biological replicates. ns, P> 0.05.

(TIF)

S6 Fig. (A) VGF deletion reduces VACV replication in HFFs. HFFs infected with indicated

viruses at MOI of 0.001 in medium with glucose plus glutamine with 0.001% dialyzed FBS.

Virus titers measured at 72 hpi using a plaque assay. (B) VGF deletion decreases plaque size.

The virus samples acquired from S6 Fig (A) were used to infect a confluent monolayer of

BS-C-1 cells for 48 h. The diameters of 50 plaques from each treatment were measured and

analyzed as described in the Materials and Methods section. Error bars represent the standard

deviation of at least three biological replicates in (A) and 50 plaques in (B). ns, P> 0.05; �, P�

0.05; ����, P� 0.0001.

(TIF)

S7 Fig. A synthetic VGF peptide alone did not enhance the levels of citrate in HFFs. HFFs

were either mock-infected, infected with indicated viruses at an MOI of 5 or treated with 2500

ng/mL of a synthetic VGF peptide. After 4 h of treatment, citrate levels in the samples were

measured by a citrate assay kit. Error bars represent the standard deviation of at least three bio-

logical replicates. �, P� 0.05; ��, P� 0.01.

(TIF)

S8 Fig. (A) HFFs were grown in the presence or absence of 3 μM afatinib for 24 h. Cell viabil-

ity was measured using a trypan blue exclusion assay. (B) Inhibition of the EGFR pathway

reduces VACV titers. HFFs were infected with VACV at an MOI of 2 in the presence or

absence of 3 μM afatinib for 24 h. Virus titers were measured using a plaque assay. Error bars

represent the standard deviation of at least three biological replicates. ns, P> 0.05; ��,

P� 0.01.

(TIF)

S9 Fig. (A) Inhibition of the MAPK pathway suppresses VACV replication. HFFs were

infected with VACV at an MOI of 2 in the presence or absence of 50 μM PD0325901 for 24 h.

A plaque assay was performed to measure virus titers. (B) Inhibition of the MAPK pathway
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does not decrease HFF viability. HFFs were grown in for 24 h in the presence or absence of

50 μM PD0325901. Cell viability was determined using a trypan blue exclusion assay. Error

bars represent the standard deviation of at least three biological replicates. ns, P> 0.05; ���,

P� 0.001.

(TIF)

S10 Fig. (A) Inhibition of the STAT3 pathway suppresses VACV replication. HFFs were

infected with WT VACV at an MOI of 2 in the presence or absence of 3 μM stattic for 24 h.

VACV titers were measured using a plaque assay. (B) HFFs were grown in the presence or

absence of 3 μM stattic for 24 h. Cell viability was determined using a trypan blue exclusion

assay. (C) STAT3 knockdown does not affect HFF viability. HFFs were transfected with indi-

cated siRNAs for 72 h, and a trypan blue exclusion assay was performed to determine the cell

viability. Error bars represent the standard deviation of at least three biological replicates. ns,

P> 0.05; ��, P� 0.01.

(TIF)

S11 Fig. Inhibition of the JAK1/2 pathway does not alter HFF viability. HFFs were grown

in the presence or absence of 50 μM ruxolitinib for 24 h. Cell viability was determined by a try-

pan blue exclusion assay using a hemocytometer. All experiments were performed in media

with glucose plus glutamine. Error bars represent the standard deviation of at least three bio-

logical replicates. ns, P> 0.05.

(TIF)

S1 File. The number of metabolites significantly different upon VACV infection in

medium with glucose or glucose plus asparagine. The numbers approaching a significant

difference are also shown in the lower two rows. The red upward arrows indicate increase and

the green downwards arrows indicate decrease in indicated conditions.

(XLSX)

S2 File. Biochemicals profiled in this study. Red and green shaded cells indicate p�0.05 (red

indicates that the mean values are significantly higher for that comparison; green values signif-

icantly lower). Light red and light green shaded cells indicate 0.05<p<0.10 (light red indicates

that the mean values trend higher for that comparison; light green values trend lower).

(XLSX)
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EGFR signalling to enhance virus spread through rapid and directed infected cell motility. Nat Microbiol.

2018;4. https://doi.org/10.1038/s41564-017-0086-2 PMID: 29255282

33. Bonjardim CA. Viral exploitation of the MEK/ERK pathway–A tale of vaccinia virus and other viruses.

Virology. 2017; 507:267–275. https://doi.org/10.1016/j.virol.2016.12.011 PMID: 28526201

34. Buller RM, Chakrabarti S, Cooper JA, Twardzik DR, Moss B. Deletion of the vaccinia virus growth factor

gene reduces virus virulence. J Virol. 1988; 62:866–874. https://doi.org/10.1128/JVI.62.3.866-874.

1988 PMID: 3339716

35. Lai AC, Pogo BG. Attenuated deletion mutants of vaccinia virus lacking the vaccinia growth factor are

defective in replication in vivo. Microb Pathog. 1989; 6:219–226. https://doi.org/10.1016/0882-4010(89)

90071-5 PMID: 2739561

36. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial Regulation of Cell Cycle and

Proliferation. Antioxid Redox Signal. 2012; 16:1150–1180. https://doi.org/10.1089/ars.2011.4085

PMID: 21967640

37. El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for

therapy. Int J Biochem Cell Biol. 2013; 45:41–46. https://doi.org/10.1016/j.biocel.2012.09.021 PMID:

23036789

38. Pant A, Cao S, Yang Z. Asparagine Is a Critical Limiting Metabolite for Vaccinia Virus Protein Synthesis

during Glutamine Deprivation. J Virol. 2019;93. https://doi.org/10.1128/JVI.01834-18 PMID: 30996100

39. Berg JM, Tymoczko JL, Stryer L. Amino Acids Are Made from Intermediates of the Citric Acid Cycle and

Other Major Pathways. Biochem 5th Ed. 2002

40. Chang C-W, Li H-C, Hsu C-F, Chang C-Y, Lo S-Y. Increased ATP generation in the host cell is required

for efficient vaccinia virus production. J Biomed Sci. 2009; 16:80. https://doi.org/10.1186/1423-0127-

16-80 PMID: 19725950

PLOS PATHOGENS Viral growth factor- and STAT3-dependent elevation of the TCA cycle during vaccinia virus infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009303 February 2, 2021 25 / 28

https://doi.org/10.1073/pnas.1311635111
http://www.ncbi.nlm.nih.gov/pubmed/24550289
https://doi.org/10.1093/emboj/cdf632
https://doi.org/10.1093/emboj/cdf632
http://www.ncbi.nlm.nih.gov/pubmed/12456651
https://doi.org/10.1371/journal.pone.0082188
http://www.ncbi.nlm.nih.gov/pubmed/24340005
https://doi.org/10.1073/pnas.81.23.7363
https://doi.org/10.1073/pnas.81.23.7363
http://www.ncbi.nlm.nih.gov/pubmed/6334307
https://doi.org/10.1038/313491a0
https://doi.org/10.1038/313491a0
http://www.ncbi.nlm.nih.gov/pubmed/3871510
https://doi.org/10.1128/JVI.62.3.1080-1083.1988
https://doi.org/10.1128/JVI.62.3.1080-1083.1988
http://www.ncbi.nlm.nih.gov/pubmed/3339713
https://doi.org/10.1016/s0092-8674%2885%2980133-1
https://doi.org/10.1016/s0092-8674%2885%2980133-1
http://www.ncbi.nlm.nih.gov/pubmed/2410141
https://doi.org/10.1073/pnas.1006594107
http://www.ncbi.nlm.nih.gov/pubmed/20534518
https://doi.org/10.1128/JVI.00528-15
https://doi.org/10.1128/JVI.00528-15
http://www.ncbi.nlm.nih.gov/pubmed/25903347
https://doi.org/10.1016/0042-6822%2888%2990635-6
http://www.ncbi.nlm.nih.gov/pubmed/3363864
https://doi.org/10.1111/j.1462-5822.2009.01327.x
http://www.ncbi.nlm.nih.gov/pubmed/19388902
https://doi.org/10.1073/pnas.82.16.5300
http://www.ncbi.nlm.nih.gov/pubmed/3875097
https://doi.org/10.1038/s41564-017-0086-2
http://www.ncbi.nlm.nih.gov/pubmed/29255282
https://doi.org/10.1016/j.virol.2016.12.011
http://www.ncbi.nlm.nih.gov/pubmed/28526201
https://doi.org/10.1128/JVI.62.3.866-874.1988
https://doi.org/10.1128/JVI.62.3.866-874.1988
http://www.ncbi.nlm.nih.gov/pubmed/3339716
https://doi.org/10.1016/0882-4010%2889%2990071-5
https://doi.org/10.1016/0882-4010%2889%2990071-5
http://www.ncbi.nlm.nih.gov/pubmed/2739561
https://doi.org/10.1089/ars.2011.4085
http://www.ncbi.nlm.nih.gov/pubmed/21967640
https://doi.org/10.1016/j.biocel.2012.09.021
http://www.ncbi.nlm.nih.gov/pubmed/23036789
https://doi.org/10.1128/JVI.01834-18
http://www.ncbi.nlm.nih.gov/pubmed/30996100
https://doi.org/10.1186/1423-0127-16-80
https://doi.org/10.1186/1423-0127-16-80
http://www.ncbi.nlm.nih.gov/pubmed/19725950
https://doi.org/10.1371/journal.ppat.1009303


41. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in can-

cer metabolism. Protein Cell. 2018; 9:216–237. https://doi.org/10.1007/s13238-017-0451-1 PMID:

28748451

42. Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxi-

dation. J Inherit Metab Dis. 2010; 33:469–477. https://doi.org/10.1007/s10545-010-9061-2 PMID:

20195903

43. Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver can-

cer:characterization and targeting hexokinase. Cancer Lett. 2001; 173:83–91. https://doi.org/10.1016/

s0304-3835(01)00667-x PMID: 11578813

44. Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA, et al. Targeting 6-phospho-

fructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013; 12:1461–

1470. https://doi.org/10.1158/1535-7163.MCT-13-0097 PMID: 23674815

45. Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, et al. Non-redox-active lipoate derivates

disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med Berl

Ger. 2011; 89:1137–1148. https://doi.org/10.1007/s00109-011-0785-8 PMID: 21769686

46. Rupp H, Zarain-Herzberg A, Maisch B. The Use of Partial Fatty Acid Oxidation Inhibitors for Metabolic

Therapy of Angina Pectoris and Heart Failure. Herz. 2002; 27:621–636. https://doi.org/10.1007/

s00059-002-2428-x PMID: 12439634

47. Renis HE, Johnson HG. Inhibition of plaque formation of vaccinia virus by cytosine arabinoside hydro-

chloride. Bacteriol Proc. 1962; 140.

48. Young CW, Robinson PF, Sacktor B. Inhibition of the synthesis of protein in intact animals by acetoxy-

cycloheximide and a metabolic derangement concomitant with this blockade. Biochem Pharmacol.

1963; 12:855–865. https://doi.org/10.1016/0006-2952(63)90116-3 PMID: 14071543

49. Andrade AA, Silva PNG, Pereira ACTC, de SOUSA LP, Ferreira PCP, Gazzinelli RT, et al. The vaccinia

virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication.

Biochem J. 2004; 381:437–446. https://doi.org/10.1042/BJ20031375 PMID: 15025565

50. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac L, et al. BIBW2992, an irreversible

EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008; 27:4702–

4711. https://doi.org/10.1038/onc.2008.109 PMID: 18408761

51. Langhammer S, Koban R, Yue C, Ellerbrok H. Inhibition of poxvirus spreading by the anti-tumor drug

Gefitinib (IressaTM). Antiviral Res. 2011; 89:64–70. https://doi.org/10.1016/j.antiviral.2010.11.006

PMID: 21094187

52. Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, et al. The discovery of the

benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008; 18:6501–

6504. https://doi.org/10.1016/j.bmcl.2008.10.054 PMID: 18952427

53. Magalhães JC de Andrade AA, Silva PNG Sousa LP, Ropert C Ferreira PCP, et al. A Mitogenic Signal

Triggered at an Early Stage of Vaccinia Virus Infection Implication of MEK/ERK and Protein Kinase A in

Virus Multiplication. J Biol Chem. 2001; 276:38353–38360. https://doi.org/10.1074/jbc.M100183200

PMID: 11459835

54. Gough DJ, Koetz L, Levy DE. The MEK-ERK Pathway Is Necessary for Serine Phosphorylation of Mito-

chondrial STAT3 and Ras-Mediated Transformation. PLoS ONE. 2013;8. https://doi.org/10.1371/

journal.pone.0083395 PMID: 24312439

55. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004; 117:1281–

1283. https://doi.org/10.1242/jcs.00963 PMID: 15020666

56. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic:A Small-Molecule Inhibitor of STAT3 Activation

and Dimerization. Chem Biol. 2006; 13:1235–1242. https://doi.org/10.1016/j.chembiol.2006.09.018

PMID: 17114005

57. Peng C, Zhou Y, Cao S, Pant A, Campos Guerrero ML, McDonald P, et al. Identification of Vaccinia

Virus Inhibitors and Cellular Functions Necessary for Efficient Viral Replication by Screening Bioactives

and FDA-Approved Drugs. Vaccines. 2020; 8:401. https://doi.org/10.3390/vaccines8030401 PMID:

32708182

58. Poli V, Camporeale A. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Impli-

cations for Drug Resistance. Front Oncol. 2015;5. https://doi.org/10.3389/fonc.2015.00005 PMID:

25688333

59. Mascarenhas J, Hoffman R. Ruxolitinib:The First FDA Approved Therapy for the Treatment of Myelofi-

brosis. Clin Cancer Res. 2012; 18:3008–3014. https://doi.org/10.1158/1078-0432.CCR-11-3145 PMID:

22474318

60. Pant A, Yang Z. Asparagine:An Achilles Heel of Virus Replication? ACS Infect Dis. 2020; 6:2301–2303.

https://doi.org/10.1021/acsinfecdis.0c00504 PMID: 32786295

PLOS PATHOGENS Viral growth factor- and STAT3-dependent elevation of the TCA cycle during vaccinia virus infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009303 February 2, 2021 26 / 28

https://doi.org/10.1007/s13238-017-0451-1
http://www.ncbi.nlm.nih.gov/pubmed/28748451
https://doi.org/10.1007/s10545-010-9061-2
http://www.ncbi.nlm.nih.gov/pubmed/20195903
https://doi.org/10.1016/s0304-3835%2801%2900667-x
https://doi.org/10.1016/s0304-3835%2801%2900667-x
http://www.ncbi.nlm.nih.gov/pubmed/11578813
https://doi.org/10.1158/1535-7163.MCT-13-0097
http://www.ncbi.nlm.nih.gov/pubmed/23674815
https://doi.org/10.1007/s00109-011-0785-8
http://www.ncbi.nlm.nih.gov/pubmed/21769686
https://doi.org/10.1007/s00059-002-2428-x
https://doi.org/10.1007/s00059-002-2428-x
http://www.ncbi.nlm.nih.gov/pubmed/12439634
https://doi.org/10.1016/0006-2952%2863%2990116-3
http://www.ncbi.nlm.nih.gov/pubmed/14071543
https://doi.org/10.1042/BJ20031375
http://www.ncbi.nlm.nih.gov/pubmed/15025565
https://doi.org/10.1038/onc.2008.109
http://www.ncbi.nlm.nih.gov/pubmed/18408761
https://doi.org/10.1016/j.antiviral.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21094187
https://doi.org/10.1016/j.bmcl.2008.10.054
http://www.ncbi.nlm.nih.gov/pubmed/18952427
https://doi.org/10.1074/jbc.M100183200
http://www.ncbi.nlm.nih.gov/pubmed/11459835
https://doi.org/10.1371/journal.pone.0083395
https://doi.org/10.1371/journal.pone.0083395
http://www.ncbi.nlm.nih.gov/pubmed/24312439
https://doi.org/10.1242/jcs.00963
http://www.ncbi.nlm.nih.gov/pubmed/15020666
https://doi.org/10.1016/j.chembiol.2006.09.018
http://www.ncbi.nlm.nih.gov/pubmed/17114005
https://doi.org/10.3390/vaccines8030401
http://www.ncbi.nlm.nih.gov/pubmed/32708182
https://doi.org/10.3389/fonc.2015.00005
http://www.ncbi.nlm.nih.gov/pubmed/25688333
https://doi.org/10.1158/1078-0432.CCR-11-3145
http://www.ncbi.nlm.nih.gov/pubmed/22474318
https://doi.org/10.1021/acsinfecdis.0c00504
http://www.ncbi.nlm.nih.gov/pubmed/32786295
https://doi.org/10.1371/journal.ppat.1009303


61. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967; 213:137–

139. https://doi.org/10.1038/213137a0 PMID: 4291593

62. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The Biology of Cancer:Metabolic Repro-

gramming Fuels Cell Growth and Proliferation. Cell Metab. 2008; 7:11–20. https://doi.org/10.1016/j.

cmet.2007.10.002 PMID: 18177721

63. Baron S, Fons M, Albrecht T. Viral Pathogenesis. 4th ed. In:Baron S, editor. Medical Microbiology. 4th

ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.

64. King CS, Cooper JA, Moss B, Twardzik DR. Vaccinia virus growth factor stimulates tyrosine protein

kinase activity of A431 cell epidermal growth factor receptors. Mol Cell Biol. 1986; 6:332–336. https://

doi.org/10.1128/mcb.6.1.332 PMID: 2431267

65. Levy DE, Lee C. What does Stat3 do? J Clin Invest. 2002; 109:1143–1148. https://doi.org/10.1172/

JCI15650 PMID: 11994402

66. Avalle L, Poli V. Nucleus, Mitochondrion, or Reticulum? STAT3 à La Carte. Int J Mol Sci. 2018;19.

67. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports

Ras-dependent oncogenic transformation. Science. 2009; 324:1713–1716. https://doi.org/10.1126/

science.1171721 PMID: 19556508

68. Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NBV. The Import of the

Transcription Factor STAT3 into Mitochondria Depends on GRIM-19, a Component of the Electron

Transport Chain. J Biol Chem. 2013; 288:4723–4732. https://doi.org/10.1074/jbc.M112.378984 PMID:

23271731

69. Wegrzyn J, Potla R, Chwae Y-J, Sepuri NBV, Zhang Q, Koeck T, et al. Function of Mitochondrial Stat3

in Cellular Respiration. Science. 2009; 323:793–797. https://doi.org/10.1126/science.1164551 PMID:

19131594

70. Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, et al. Mitochondrial Localized Stat3

Promotes Breast Cancer Growth via Phosphorylation of Serine 727. J Biol Chem. 2013; 288:31280–

31288. https://doi.org/10.1074/jbc.M113.505057 PMID: 24019511

71. Avalle L, Camporeale A, Morciano G, Caroccia N, Ghetti E, Orecchia V, et al. STAT3 localizes to the

ER, acting as a gatekeeper for ER-mitochondrion Ca 2+ fluxes and apoptotic responses. Cell Death Dif-

fer. 2019; 26:932–942. https://doi.org/10.1038/s41418-018-0171-y PMID: 30042492

72. Suarez AAR, Renne NV, Baumert TF, Lupberger J. Viral manipulation of STAT3:Evade, exploit, and

injure. PLOS Pathog. 2018; 14:e1006839. https://doi.org/10.1371/journal.ppat.1006839 PMID:

29543893

73. Pinkham C, An S, Lundberg L, Bansal N, Benedict A, Narayanan A, et al. The role of signal transducer

and activator of transcription 3 in Rift Valley fever virus infection. Virology. 2016; 496:175–185. https://

doi.org/10.1016/j.virol.2016.06.004 PMID: 27318793

74. McCartney EM, Helbig KJ, Narayana SK, Eyre NS, Aloia AL, Beard MR. Signal transducer and activator

of transcription 3 is a proviral host factor for hepatitis C virus. Hepatol Baltim Md. 2013; 58:1558–1568.

https://doi.org/10.1002/hep.26496 PMID: 23703790

75. Yoshida T, Hanada T, Tokuhisa T, Kosai K, Sata M, Kohara M, et al. Activation of STAT3 by the Hepati-

tis C Virus Core Protein Leads to Cellular Transformation. J Exp Med. 2002; 196:641–653. https://doi.

org/10.1084/jem.20012127 PMID: 12208879

76. Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, et al. p38MAPK plays a critical role in induction of a

pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res. 2017;

145:70–81. https://doi.org/10.1016/j.antiviral.2017.07.012 PMID: 28739278

77. Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is

essential for the differentiation-dependent HPV18 life cycle. PLOS Pathog. 2018; 14:e1006975. https://

doi.org/10.1371/journal.ppat.1006975 PMID: 29630659

78. King CA. Kaposi’s Sarcoma-Associated Herpesvirus Kaposin B Induces Unique Monophosphorylation

of STAT3 at Serine 727 and MK2-Mediated Inactivation of the STAT3 Transcriptional Repressor

TRIM28. J Virol. 2013; 87:8779–8791. https://doi.org/10.1128/JVI.02976-12 PMID: 23740979

79. Lepiller Q, Abbas W, Kumar A, Tripathy MK, Herbein G. HCMV Activates the IL-6-JAK-STAT3 Axis in

HepG2 Cells and Primary Human Hepatocytes. PLOS ONE. 2013; 8:e59591. https://doi.org/10.1371/

journal.pone.0059591 PMID: 23555719

80. Santarelli R, Gonnella R, Di Giovenale G, Cuomo L, Capobianchi A, Granato M, et al. STAT3 activation

by KSHV correlates with IL-10, IL-6 and IL-23 release and an autophagic block in dendritic cells. Sci

Rep. 2014; 4:1–7. https://doi.org/10.1038/srep04241 PMID: 24577500

81. McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, et al. Systemic Cancer Therapy with a

Tumor-selective Vaccinia Virus Mutant Lacking Thymidine Kinase and Vaccinia Growth Factor Genes.

Cancer Res. 2001; 61:8751–8757. PMID: 11751395

PLOS PATHOGENS Viral growth factor- and STAT3-dependent elevation of the TCA cycle during vaccinia virus infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009303 February 2, 2021 27 / 28

https://doi.org/10.1038/213137a0
http://www.ncbi.nlm.nih.gov/pubmed/4291593
https://doi.org/10.1016/j.cmet.2007.10.002
https://doi.org/10.1016/j.cmet.2007.10.002
http://www.ncbi.nlm.nih.gov/pubmed/18177721
https://doi.org/10.1128/mcb.6.1.332
https://doi.org/10.1128/mcb.6.1.332
http://www.ncbi.nlm.nih.gov/pubmed/2431267
https://doi.org/10.1172/JCI15650
https://doi.org/10.1172/JCI15650
http://www.ncbi.nlm.nih.gov/pubmed/11994402
https://doi.org/10.1126/science.1171721
https://doi.org/10.1126/science.1171721
http://www.ncbi.nlm.nih.gov/pubmed/19556508
https://doi.org/10.1074/jbc.M112.378984
http://www.ncbi.nlm.nih.gov/pubmed/23271731
https://doi.org/10.1126/science.1164551
http://www.ncbi.nlm.nih.gov/pubmed/19131594
https://doi.org/10.1074/jbc.M113.505057
http://www.ncbi.nlm.nih.gov/pubmed/24019511
https://doi.org/10.1038/s41418-018-0171-y
http://www.ncbi.nlm.nih.gov/pubmed/30042492
https://doi.org/10.1371/journal.ppat.1006839
http://www.ncbi.nlm.nih.gov/pubmed/29543893
https://doi.org/10.1016/j.virol.2016.06.004
https://doi.org/10.1016/j.virol.2016.06.004
http://www.ncbi.nlm.nih.gov/pubmed/27318793
https://doi.org/10.1002/hep.26496
http://www.ncbi.nlm.nih.gov/pubmed/23703790
https://doi.org/10.1084/jem.20012127
https://doi.org/10.1084/jem.20012127
http://www.ncbi.nlm.nih.gov/pubmed/12208879
https://doi.org/10.1016/j.antiviral.2017.07.012
http://www.ncbi.nlm.nih.gov/pubmed/28739278
https://doi.org/10.1371/journal.ppat.1006975
https://doi.org/10.1371/journal.ppat.1006975
http://www.ncbi.nlm.nih.gov/pubmed/29630659
https://doi.org/10.1128/JVI.02976-12
http://www.ncbi.nlm.nih.gov/pubmed/23740979
https://doi.org/10.1371/journal.pone.0059591
https://doi.org/10.1371/journal.pone.0059591
http://www.ncbi.nlm.nih.gov/pubmed/23555719
https://doi.org/10.1038/srep04241
http://www.ncbi.nlm.nih.gov/pubmed/24577500
http://www.ncbi.nlm.nih.gov/pubmed/11751395
https://doi.org/10.1371/journal.ppat.1009303


82. Hanahan D, Weinberg RA. Hallmarks of Cancer:The Next Generation. Cell. 2011; 144:646–674.

https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

83. Frank DA, Mahajan S, Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain

signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on

serine residues. J Clin Invest. 1997; 100:3140–3148. https://doi.org/10.1172/JCI119869 PMID:

9399961

84. Qin HR, Kim H-J, Kim J-Y, Hurt EM, Klarmann GJ, Kawasaki BT, et al. Activation of Stat3 through a

Phosphomimetic Serine727 Promotes Prostate Tumorigenesis Independent of Tyrosine705 phosphor-

ylation. Cancer Res. 2008; 68:7736–7741. https://doi.org/10.1158/0008-5472.CAN-08-1125 PMID:

18829527

85. Yeh Y-T, Ou-Yang F, Chen I-F, Yang S-F, Wang Y-Y, Chuang H-Y, et al. STAT3 ser727 phosphoryla-

tion and its association with negative estrogen receptor status in breast infiltrating ductal carcinoma. Int

J Cancer. 2006; 118:2943–2947. https://doi.org/10.1002/ijc.21771 PMID: 16425286

86. He Y, Fisher R, Chowdhury S, Sultana I, Pereira CP, Bray M, et al. Vaccinia Virus Induces Rapid Necro-

sis in Keratinocytes by a STAT3-Dependent Mechanism. PLoS ONE. 2014;9. https://doi.org/10.1371/

journal.pone.0113690 PMID: 25419841

87. Cotter CA, Earl PL, Wyatt LS, Moss B. Preparation of Cell Cultures and Vaccinia Virus Stocks. Curr Pro-

toc Microbiol. 2015; 39:14A.3.1–14A.318. https://doi.org/10.1002/9780471729259.mc14a03s39 PMID:

26528781

88. Meng X, Zhong Y, Embry A, Yan B, Lu S, Zhong G, et al. Generation and characterization of a large

panel of murine monoclonal antibodies against vaccinia virus. Virology. 2011; 409:271–279. https://doi.

org/10.1016/j.virol.2010.10.019 PMID: 21056889

89. Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015; 111:A3.B.1–A3.

B.3. https://doi.org/10.1002/0471142735.ima03bs111 PMID: 26529666

90. Cao S, Realegeno S, Pant A, Satheshkumar PS, Yang Z. Suppression of Poxvirus Replication by Res-

veratrol. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00008 PMID: 28144237

91. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ:25 years of image analysis. Nat Meth-

ods. 2012; 9:671–675. https://doi.org/10.1038/nmeth.2089 PMID: 22930834

92. R Core Team. R:A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2020. Available: https://www.R-project.org/

93. Pang Z, Chong J, Li S, Xia J. MetaboAnalystR 3.0:Toward an Optimized Workflow for Global Metabolo-

mics. Metabolites. 2020; 10:186. https://doi.org/10.3390/metabo10050186 PMID: 32392884

PLOS PATHOGENS Viral growth factor- and STAT3-dependent elevation of the TCA cycle during vaccinia virus infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009303 February 2, 2021 28 / 28

https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1172/JCI119869
http://www.ncbi.nlm.nih.gov/pubmed/9399961
https://doi.org/10.1158/0008-5472.CAN-08-1125
http://www.ncbi.nlm.nih.gov/pubmed/18829527
https://doi.org/10.1002/ijc.21771
http://www.ncbi.nlm.nih.gov/pubmed/16425286
https://doi.org/10.1371/journal.pone.0113690
https://doi.org/10.1371/journal.pone.0113690
http://www.ncbi.nlm.nih.gov/pubmed/25419841
https://doi.org/10.1002/9780471729259.mc14a03s39
http://www.ncbi.nlm.nih.gov/pubmed/26528781
https://doi.org/10.1016/j.virol.2010.10.019
https://doi.org/10.1016/j.virol.2010.10.019
http://www.ncbi.nlm.nih.gov/pubmed/21056889
https://doi.org/10.1002/0471142735.ima03bs111
http://www.ncbi.nlm.nih.gov/pubmed/26529666
https://doi.org/10.3389/fmicb.2017.00008
http://www.ncbi.nlm.nih.gov/pubmed/28144237
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://www.R-project.org/
https://doi.org/10.3390/metabo10050186
http://www.ncbi.nlm.nih.gov/pubmed/32392884
https://doi.org/10.1371/journal.ppat.1009303

